
RESEARCH STATEMENT

AHMED TAMRAWI

We are living in the information era and the only way to tame such astronomical amount
of information is through software. Today’s software systems are growing increasingly larger
and more complex, and they are everywhere. For example, the recent version of the Linux
kernel is about 20 MLOC. Software projects routinely measure in the millions of lines of
code, span several programming languages, and are expected to run on a variety of platforms
with various configurations. It is no great surprise that the mere mortals who develop these
systems struggle to write code that is reliable, secure, efficient, and maintenable. My research
overarching goals aim to answer the question: how we can efficiently verify resilience of this
mountain code against sophisticated cyber-security attacks?

My research makes it easier to build secure software systems and help developers identify
security issues in their own systems. Society increasingly relies on software systems that
handle sensitive information and safety-critical tasks: government, businesses, military, and
private individuals all use software systems that manipulate confidential data and safety-
critical tasks. Thus, the key challenge in building and maintaining secure software systems
is to develop software analysis techniques to: (1) define application-specific security guar-
antees; (2) express and understand the security requirements of applications; (3) develop
interactive tools and provide human-comprehensible evidence to help analysts comprehend,
visualize, and interact with detected anomalies, violations, and vulnerabilities for seamless
and accurate auditing and verification.

My vision for future research is to broaden the scope and impact of program analysis to
push the boundaries of what can be discovered about program dynamics using novel machine-
centric approaches. In other words, making advanced program analysis techniques more
useful and accessible for software developers to enable them build secure software systems
and easily audit and verify these systems against sophisticated cyber-security attacks.

Besides seeking an outstanding career at one of the top leading universities in the world, my
overarching goal is to establish a strong research and development laboratory that emphasizes
on creating novel and practical program analysis techniques to ensure security of software
systems and verify their resilience against sophisticated cyber-security attacks. My vision for
the new laboratory is to establish solid connections and collaborations with leading industry
firms (such as Google, Microsoft, Amazon, etc.) and academia to define research goals and
future directions.

The remainder of this document will shed the light on a selection of my research contri-
butions and future directions that I plan to pursue.

Program Analysis for Software Security

With growing dependence on software in embedded and cyber-physical systems where vul-
nerabilities and malware can lead to disasters, efficient and accurate verification has become
a crucial need for safety and cyber-security [17]. Formal verification of large software has
remained an elusive target, riddled with problems of low accuracy and high computational
complexity [8, 6, 29, 30, 9]. The need for automating verification is undoubted [14, 13, 12],

however human is indispensable to accurate real-world software verification [16]. The au-
tomation should actually enable and simplify human crosschecking, which is especially im-
portant when the stakes are high. My research work in this area highlights a new frontier
of software verification to ensure safety and security of critical software systems. The goal
is about targeting automation to amplify human intelligence to scale it to large software. It
projects the Intelligence Amplification (IA) vision propounded by Frederick Brooks [7].’

My research is based on the fact that software developers “do not play dice”, and there
is some hidden software model embedded in design documents that the developers embody
into software. To this end, my research tries to leverage this knowledge by modeling software
as graphs. Then, we develop techniques to abstract-out all irrelevant details in these graphs
to result in compact and human-comprehensible graphs we call evidence [28, 12, 13, 23, 15].
This evidence will be used to reason about behaviors of programs. We have developed
algorithmic methods for answering queries about the static behavior of programs. Such
queries have broad applications in software engineering, including program verification (can
a null pointer be dereferenced?), security analysis (can an adversary learn something about a
customer’s credit card information from the program’s output?), and compiler optimization
(is a given computation redundant?). Technology that is able to answer such questions
quickly and accurately has the potential to revolutionize the way we build software.

The focus of my dissertation work was on evidence-enabled software verification [28]. It
is about creating a powerful fusion of automation and human intelligence [16, 18, 15] by
incorporating algorithmic innovations to address the major challenges to advance the state-
of-the-art for accurate and scalable software verification where complete automation has
remained intractable. The key is a mathematically rigorous notion of verification-critical
evidence that the machine abstracts from software to empower human to reason with. The
algorithmic innovation is to discover the patterns the developers have applied to manage
complexity and leverage them. A pattern-based verification is crucial because the problem
is intractable otherwise.

The papers [23, 11, 22, 21, 15] present a mathematical foundation to define relevant be-
haviors. Computing the relevant program behaviors involves: (a) computing the relevant
program statements, (b) computing the relevant conditions to determine the feasibility of
relevant behaviors, and (c) computing the relevant program behaviors. The papers introduce
the Projected Control Graph (PCG) as an abstraction to directly compute the relevant be-
haviors for a fairly broad class of software safety and security problems. The paper presents
an efficient algorithm to transform a Control Flow Graph (CFG) to PCG with complexity
with O(|V | + |E|), where |V | and |E| are respectively numbers of nodes and edges in the
CFG. The PCG is human-comprehensible and much smaller than the corresponding CFG. I
have also introduced an efficient PCG-based verification algorithm that leverages the PCG
concept to define compact function summaries and used it to verify the lock/unlock pairing
and allocation/deallocation pairing in the Linux kernel. The PCG-based verifier is able to
verify 99.3% of the 66, 609 lock instances (from 3 different versions of the Linux kernel) in
less than four hours. The PCG-based verifier was able to verify properties of (92.3%) of
the allocation instances in one Linux version. This verification scalability, efficiency, and
accuracy were previously out of the reach of state-of-the-art automated techniques such as
BLAST [6]. The PCG-based verification resulted on reporting 7 instances of lock/unlock
pairing violations and 50 instances of memory leaks to the Linux kernel community.

I have also worked on two DARPA projects APAC [1] and STAC [4] as part of my col-
laboration with Iowa State University team. In APAC project [1], the goal was to detect
malware and security vulnerabilities in military android applications. Through the various
live engagements at DARPA facility, we were presented with many military applications

2

where sophisticated malware and security vulnerabilities were manually injected by third-
party teams. In these engagements, we were asked to run our developed tools and analyses
to detect these malware and security vulnerabilities. We were proud to be the leading team
in this project in terms of efficiency and accuracy. The STAC project (ongoing) [4] is con-
cerned about detecting Algorithmic Complexity (AC) and Side-Channel (SC) attacks in Java
bytecode applications. The research goal was to build up on top of our analysis tools and
techniques we used in APAC to detect: (1) hidden paths with higher algorithmic complex-
ities that can be exercised by attackers, and (2) reveal clever adversary attacks that use
traffic analysis via the study of the size and timing of network packets to reveal sensitive
information. To this end, we developed an arsenal of program analysis, comprehension and
visualization techniques to mitigate such attacks. Personally, I have engaged in two live
engagements at DARPA facility where we were presented with curated apps with embed-
ded AC and SC attacks. The goal is to use the developed techniques to detect embedded
vulnerabilities.

Along the line, nowadays, I am leading the research and development effort at EnSoft
Corp. to build a novel interactive analysis framework for binaries. The goal is to enable
on-the-fly security vulnerabilities patching to make it easy for software practitioners to patch
legacy systems as well as provide instant and small-sized security patches without the risk
of potential down times and increased effort of re-installing the systems from scratch.

Configuration Security and Build Code Analysis

Software building is the process that converts and integrates source code, libraries, and
other data in a software project into stand-alone deliverables and executable files. The
build process is managed by a build tool, i.e. a program that coordinates and controls
others [3]. A build tool needs to execute the build commands according to the rules specified
in build files, which are written in a build language supported by the tool. Popular build
tools are make, ant, and maven. Prior research found that build maintenance could impose
from 12%− 36% overhead on software development [19]. In a large-scale system, build files
grow quickly and become very complex because they must support the building of the same
software in multiple platforms with various configuration and environment parameters [10].
McIntosh et al. [20] found that from 4−27% of tasks involving source code changes require an
accompanied change in the related build code. They concluded that build code continually
evolves and is likely to have defects due to high churn rate [20]. Importantly, those studies
call for better tool support for build code.

My research focuses on developing techniques to support developers in dealing with com-
plex build code. To this end, we have developed SYMake [24, 25], an infrastructure and tool
for the analysis of build code in GNU make. SYMake includes Abstract Syntax Tree building
module, a symbolic evaluation algorithm, and an evaluation trace building algorithm. We
used SYMake to develop a tool to detect code smells and to support refactoring in Make-
files. Our evaluation on real-world Makefiles showed that our renaming tool is accurate and
efficient, and that with SYMake, users could detect code smells and refactor Makefiles more
accurately. Recently, we have submitted a proposal to the DARPA ConSec program [2]. The
ConSec program aims at developing automated techniques to generate, deploy, and enforce
configurations of components and subsystems for use in military platforms.

Software Maintenance

Software bugs are inevitable and bug fixing is an essential and costly phase during software
development. Such defects are often reported in bug reports which are stored in an issue
tracking system, or bug repository. Such reports need to be assigned to the most appropriate

3

developers who will eventually fix the issue/bug reported. This process is often called Bug
Triaging. Manual bug triaging is a difficult, expensive, and lengthy process, since it needs
the bug triager to manually read, analyze, and assign bug fixers for each newly reported bug.
Triagers can become overwhelmed by the number of reports added to the repository. Time
and efforts spent into triaging typically diverts valuable resources away from the improvement
of the product to the managing of the development process. To assist triagers and improve
the bug triaging efficiency and reduce its cost, we focused on two aspects: (1) software
tagging of bug reports and (2) automatic bug triaging.

Software tagging has been shown to be an efficient, lightweight social computing mecha-
nism to improve different social and technical aspects of software development. Despite the
importance of tags, there exists limited support for automatic tagging for software artifacts,
especially during the evolutionary process of software development. We developed a novel,
accurate, automatic tagging recommendation tool [5] that is able to take into account users
feedback on tags, and is very efficient in coping with software evolution. The core technique
is an automatic tagging algorithm that is based on fuzzy set theory. Our empirical evaluation
on the real-world IBM Jazz project shows the usefulness and accuracy of our approach and
tool. The tool we have developed is able to tag workitems based on previously manually
tagged workitms. The goal was to allow developers to easily query workitem based on their
social preferences when they tagged those workitems.

In terms of automatic bug triaging, we have developed Bugzie [27, 26], a novel approach
for automatic bug triaging based on fuzzy set and cache-based modeling of the bug-fixing
capability of developers. Our evaluation results on seven large-scale subject systems show
that Bugzie achieves significantly higher levels of efficiency and correctness than existing
state-of-the-art approaches.

Future Work

State-of-the-art approaches to software security rely on black-box testing techniques and
most of time those techniques are oblivious to the internals of the vulnerable software sys-
tems. These approaches mitigate the security concerns by preventing suspicious access to
the vulnerable software without providing clues about the vulnerabilities buried in those
systems. Thus, leaving those systems vulnerable to undetected and sneaky potential at-
tacks. For software security, we aim to extend our current work and continue developing
novel analysis techniques and tools that rely on mathematical abstractions and use machine-
centric approach to bridge the detection gap of sophisticated vulnerabilities. The goal is to
provide software practitioners with the means to audit and verify their systems before ship-
ping their code to customers. This requires augmenting the analysis framework with hackers
mental model and proper abstractions that amplify analyst’s knowledge to be able to detect
sophisticated vulnerabilities. Along the line, enforcing security of build code poses many
analysis challenges in terms of the exponentiality of the configuration combinations and the
myriad of programming languages used in a single build system. Our goal in this area is to
build novel variability-aware analysis techniques that work on graphs of heterogeneous build
code artifacts. These build code artifacts include: artifacts from the different programming
languages used in build systems and configuration information used to distinguish various
deployment environment.

References

[1] Automated Program Analysis for Cybersecurity (APAC). https://www.fbo.gov/spg/ODA/DARPA/CMO/
DARPA-BAA-11-63/listing.html, 2012.

[2] Configuration Security (ConSec). https://www.darpa.mil/program/configuration-security, 2012.
[3] Software Build. https://en.wikipedia.org/wiki/Software_build, 2012.

4

https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html
https://www.darpa.mil/program/configuration-security
https://en.wikipedia.org/wiki/Software_build

[4] Space/Time Analysis for Cybersecurity (STAC). https://www.fbo.gov/spg/ODA/DARPA/CMO/

DARPA-BAA-14-60/listing.html, 2015.
[5] Jafar M Al-Kofahi, Ahmed Tamrawi, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.

Fuzzy set approach for automatic tagging in evolving software. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–10. IEEE, 2010.

[6] Dirk Beyer and Alexander K. Petrenko. Linux driver verification. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification and Validation. Applications
and Case Studies, pages 1–6, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] Frederick P. Brooks, Jr. The computer scientist as toolsmith ii. Commun. ACM, 39(3):61–68, March
1996.

[8] C. Canal and A. Idani. Software Engineering and Formal Methods: SEFM 2014 Collocated Workshops:
HOFM, SAFOME, OpenCert, MoKMaSD, WS-FMDS, Grenoble, France, September 1-2, 2014, Revised
Selected Papers. Lecture Notes in Computer Science. Springer International Publishing, 2015.

[9] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive analysis. In
ACM SIGPLAN Notices, volume 43, pages 270–280. ACM, 2008.

[10] Lorin Hochstein and Yang Jiao. The cost of the build tax in scientific software. In Empirical Software
Engineering and Measurement (ESEM), 2011 International Symposium on, pages 384–387. IEEE, 2011.

[11] Benjamin Holland, Payas Awadhutkar, Suresh Kothari, Ahmed Tamrawi, and Jon Mathews. Comb:
Computing relevant program behaviors. In Companion Proceedings of the 40th International Conference
on Software Engineering. ACM, 2018.

[12] Suraj Kothari, Ahmed Tamrawi, and Jon Mathews. Rethinking verification: Accuracy, efficiency,
and scalability through human-machine collaboration. In Software Engineering Companion (ICSE-C),
IEEE/ACM International Conference on, pages 885–886. IEEE, 2016.

[13] Suraj Kothari, Ahmed Tamrawi, Jeremias Sauceda, and Jon Mathews. Let’s verify linux: Accelerated
learning of analytical reasoning through automation and collaboration. In Software Engineering Com-
panion (ICSE-C), IEEE/ACM International Conference on, pages 394–403. IEEE, 2016.

[14] Suresh Kothari, Payas Awadhutkar, and Ahmed Tamrawi. Insights for practicing engineers from a formal
verification study of the linux kernel. In Software Reliability Engineering Workshops (ISSREW), 2016
IEEE International Symposium on, pages 264–270. IEEE, 2016.

[15] Suresh Kothari, Payas Awadhutkar, Ahmed Tamrawi, and Jon Mathews. Modeling Lessons from Verify-
ing Large Software Systems for Safety and Security. In Cyber-Physical Systems Special Track at Winter
Simulation Conference (WSC), 2017. to appear.

[16] Suresh Kothari, Akshay Deepak, Ahmed Tamrawi, Benjamin Holland, and Sandeep Krishnan. A
human-in-the-loop approach for resolving complex software anomalies. In Systems, Man and Cyber-
netics (SMC), 2014 IEEE International Conference on, pages 1971–1978. IEEE, 2014.

[17] Suresh Kothari, Ganesh Ram Santhanam, Payas Awadhutkar, Benjamin Holland, Jon Mathews, and
Ahmed Tamrawi. Catastrophic cyber-physical malware. In Versatile Cybersecurity, pages 201–255.
Springer, 2018.

[18] Suresh Kothari, Ahmed Tamrawi, and Jon Mathews. Human-machine resolution of invisible control
flow? In Program Comprehension (ICPC), 2016 IEEE 24th International Conference on, pages 1–4.
IEEE, 2016.

[19] Gary Kumfert and Tom Epperly. Software in the doe: The hidden overhead of”the build”. Technical
report, Lawrence Livermore National Lab., CA (US), 2002.

[20] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Yasutaka Kamei, and Ahmed E Hassan. An empir-
ical study of build maintenance effort. In Proceedings of the 33rd international conference on software
engineering, pages 141–150. ACM, 2011.

[21] Ahmed Tamrawi and Suresh Kothari. Event-flow graphs for efficient path-sensitive analyses. arXiv
preprint arXiv:1404.1279, 2014.

[22] Ahmed Tamrawi and Suresh Kothari. Projected control graph for accurate and efficient analysis of safety
and security vulnerabilities. In Software Engineering Conference (APSEC), 2016 23rd Asia-Pacific,
pages 113–120. IEEE, 2016.

[23] Ahmed Tamrawi and Suresh Kothari. Projected control graph for computing relevant program behaviors.
Science of Computer Programming, 2018.

[24] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen. Build code analysis
with symbolic evaluation. In Proceedings of the 34th International Conference on Software Engineering,
pages 650–660. IEEE Press, 2012.

[25] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen. Symake: a build code
analysis and refactoring tool for makefiles. In Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering, pages 366–369. ACM, 2012.

5

https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html

[26] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Fuzzy set-based automatic
bug triaging (nier track). In Proceedings of the 33rd International Conference on Software Engineering,
pages 884–887. ACM, 2011.

[27] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M Al-Kofahi, and Tien N Nguyen. Fuzzy set and cache-
based approach for bug triaging. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 365–375. ACM, 2011.

[28] Ahmed Yousef Tamrawi. Evidence-enabled verification for the linux kernel. 2016.
[29] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Practice

and experience. ACM Computing Surveys (CSUR), 41(4):19, 2009.
[30] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error detection using boolean satisfiability.

ACM Transactions on Programming Languages and Systems (TOPLAS), 29(3):16, 2007.

6

	Program Analysis for Software Security
	Configuration Security and Build Code Analysis
	Software Maintenance
	Future Work
	References

