
STATEMENT OF TEACHING PHILOSOPHY

AHMED TAMRAWI

As psychologists say thinking is an uncomfortable process, it takes effort. If I tell you to
memorize the random number 9102, you may say probably in two days I will forget it, but
if I relate this number to something you already know, e.g., If I tell you that the number
9102 is the reverse of 2019 (last year) when COVID-19 pandemic started, I am confident
that when I get to meet everyone who reads this will recall the random number and answer
promptly. The conversion from 9102 to 2019 which is the fact that we know is a way to force
thinking. I believe that thinking and learning correspond to the process of building chunks of
information and storing further connected information in a long-term memory. Our lives are
full of patterns and our thinking and memory classify new situations into previously learned
patterns.

The memorable lectures and talks would be the ones that build on these chunks of informa-
tion that we already thought of or previously learned. Those are the ones that grabbed our
attention either through a funny speaker, visually appealing graphics, or self-explanatory
stories. The main guiding principle of my teaching philosophy can be summarized with:
make each lecture a memorable, informative, and exploratory time for students.

All of us watch Youtube videos and most of the time we skip the ads after the 5 seconds
grace period, but there are several times when we watch the full ad. This is the power of
attraction that I look to invest in my teaching to make students curious to see what next,
force them silently to think, and make their learning experience unforgettable.

Teaching Experience

I held couple of positions as a teaching assistant in Yarmouk university, Iowa State Uni-
versity and as an assistant professor at Yarmouk University and Birzeit University. As an
assistant professor I was involved in teaching Software Construction, Numerical Analysis for
Engineers, Operating Systems Design and Introduction to Programming courses.

The Software Construction1 course is a graduate-level course with about 20 students. The
primary goal of this course is to help students to create higher-quality software that is ro-
bust, flexible, extensible, scalable, and maintainable. The course mainly focuses on the best
practices at each stage of the software development process that will lead to constructing a
higher-quality software. As an entry-level graduate course, we designed the course to benefit
students on both the technical and theoretical sides. This was achieved through: (1) visually
appealing lecture slides with in-class activities focusing on trying out new technologies and
tools and experimenting with real-word software repositories, (2) a set of open-ended synthe-
sis and conceptual assignment questions that require thorough research, observations, and
working software implementation, (3) research paper writing to enhance professional writing
skills, and (4) a final programming project with emphasis on applying the concepts studied
through the course to a well-established open-source project with many contributors and
various issues open to fix. The open-source contribution would enable student interaction
with actual developers and will force them to obey project’s rules and style.

1https://atamrawi.github.io/teaching/swen6301



The Numerical Analysis Methods for Engineers2 course is a 300-level course with about 100
students. The biggest challenge in this course was the diversity of the students’ background.
I worked with my colleagues on evolving the course materials to make it both accessible
and engaging for all students. For example, we added a section to every topic or a group of
topics to discuss actual applications of the studied numerical method(s) in different fields. We
also added a new course outcome that emphasizes on the applications of numerical analysis
techniques in real-world setup and added exam question(s) to test that outcome. Students
were really challenged and interested especially that the problems spawn different prerequisite
courses. Another example is that we came up with visually appealing graphics to use in
our course presentations to grab students’ attention and simplify the pure mathematical
concepts. To that end, we added proper animations to visually comprehend the different
mathematical algorithms especially the ones that require iterative solutions.

The Operating Systems Design3 course is a 400-level course with about 50 students. Back
from my days, I always remember the Operating System Design course to be boring because
of the dense theoretical information. So, I have decided to revolutionize the course and build
it from ground up. From my 5-year research experience with Linux kernel code, I decided to
interleave between the theoretical information given in the course and that practical aspects
of these information from the Linux kernel. To this end, I authored a set of slides for each
chapter of the selected textbook. 20% of the slides contents were only text and the rest were
images supported with proper animation intertwined with funny jokes and situations that
stem for local culture traditions or metaphors that were applicable to the studied topic. I
tried to leverage local characters and use them to tell a story of an operating system concept.
For example, the story of two cartoon characters who got into a big fight around printers
due to a deadlock. The students were very interested to see how the story evolves. For every
topic, I relate the topic to my industry experience and show the students the algorithmic
reasoning behind every concept. Moreover, I related the studied concepts to the actual code
from a live Linux kernel repository. The course was accompanied with the 3-hour lab every
week. I have developed a new material for the lab focused on learning new operating system
concepts as well as software design, development, and testing. I taught students how to use
Linux-based operating systems, how to create build files for a project, how to use software
repositories (e.g., github), and how to write proper test cases for a project. We also discussed
various algorithm design strategies to choose the best strategy to develop an efficient solution
addressing the assigned requirements.

The Introduction to programming4 course is a 100-level course with about 120 students.
This course was one of the toughest and most challenging courses to teach. Not because it is
difficult but because students have different backgrounds and no coding skills at all. I started
to force the students to think outside the box on how we can teach a kid to do something. I
also compared a computer to a simple calculator where it knows how to do simple operations
and I asked them how we can use these simple operations to perform averaging operations
for 50 grades, how to do multiplication through addition and how to do division through
subtraction. Then, we moved up to C++ syntax which is used as the programming language
to teach the course. I always prepared couple of programs to write in the class to teach
multiple concepts. In class, I open the preferred IDE which is used in the Lab as well
and start live coding. We first discuss the problem and how we can achieve a solution
and eventually motivate the need for some language constructs. Next, we start writing the
program interactively, by posing questions to the students and intentionally making logical
mistakes to catch their attention. Many times, I stop and intentionally ask them oh should

2https://atamrawi.github.io/teaching/cpe310
3https://atamrawi.github.io/teaching/cpe460
4https://atamrawi.github.io/teaching/cpe150

2



we do this or that, is this a less than or greater than. Is this a double array with 7 elements
or less than that. After we finish the first draft, we iterate through different approaches to
solve the same problem. If there is an erroneous output, we use the Debugging feature which
comes at great advantage especially in teaching arrays, pointers and functions calls. The
course was accompanied with a 3-hour lab per week. In the lab, I have made a set of tasks
oriented around toy-size applications that mimic real-world applications such as coffee shop,
salary computation, wind forecasting models, etc. The goal was to emphasize on software
design, development, and testing. Course theoretical and practical exams were aimed to
asses two outcomes: program comprehension and debugging and programming skills. The
first outcome was assessed via couple of output related problems, logical errors fixing and
describing a mathematical expression between variables that the program induce. The second
outcome was about writing complete programs slightly different from the program taught in
the lecture or lab tasks.

Teaching Methodology

I believe that a central goal of teaching a subject is to nurture the ability of students
to inquire and learn the subject themselves. Achieving this goal is particularly important
especially in computer science and engineering fields as both fields are most rapidly changing.
Many programming languages and software techniques that we are using today did not exist
twenty years ago and most likely will be obsolete or superseded twenty years from now.
Nevertheless, the ability to learn can serve a lifetime. From my personal experience, I
learned all of Java, C#, and C/C++ programming skills and full stack web development
by myself from online tutorials and empirical projects. I believe the success of a career in
computer science and engineering largely depends on one’s ability to keep up with the rapid
innovations happening everyday in the field.

In a lecture setting, I really like interleaving theoretical material with live tool demon-
strations, slides and animation, and hands-on exercises that students and I collectively solve
in class. I use this style in my guest lectures and tutorials in the college of engineering at
Iowa State University, Yarmouk University, as well as one tutorial on program verification
and analysis tools that I gave at Amazon campus in Seattle while I was an intern. I found
this to be a great way to build a feedback loop between theory and practice and keep the
audience motivated and engaged. Many times, I refer students to my work at EnSoft as well
as being a software engineer at Amazon. I was telling them many stories that were for sure
engaging and opening up their curiosity to see how things get resolved in real-world and how
the learned concepts and theories are applied in real-world setting.

One thing that I teach my students is that: never think that there is a stupid question,
these curious questions may lead you to winning the Nobel prize or inventing a new thing.
This has opened up the students to a lot of curious questions to the extent that I needed to
note them down to research answers. I was happy that I was able to pull out these questions
from students who are still learning the topic.

From my past experience, interactive lecture components such as open-ended problem sets
and large projects are better than traditional lectures and quizzes in nurturing the ability of
students to inquire and learn the subject themselves. I am a strong proponent of using large
open-ended team projects for teaching computer science and engineering subjects. There are
at least three major benefits. First, working on a large project encourages active learning.
Secondly, there is always a gap between the theory and the practice. There is no better way
to close this gap than actually to implement the learned theory. Lastly, doing projects is a
more attractive way for students to learn. It gives the students the satisfying feeling that
they invented and created something on their own. To ensure the success of a large project

3



assignment, the project should be broken into many step-by-step incremental milestones so
that a steady learning curve can be achieved and the course staff can monitor the progress
of each team. More importantly, assistance and guidance from the course staff should be
accessible for every student along the way so that students do not stray too far during the
early stages of the project.

In a practical lab setting, I usually attend the whole 3-hour lab engaging students into
discussion and helping out attending teaching assistants. Sometimes, students feel shy or
looking for ideas, I simply grab a chair and help the students. This was self-rewarding and
relaxing for me and the students. Top-notch students were challenged with bonus questions
that require more research and effort. In the lab, I have an open-resources policy where
students can collaborate to an extent and can use available online resources to solve the
given problem.

In an exam setting, I noticed that visually appealing exams are a factor for student hap-
piness and better scores. Also, injecting funny questions after a hard question, make the
student step aside from the overwhelming technical concentration to think outside the box
and free their minds.

I engage with the students in an after-exam session after grading the exam and looking
at the ABET analysis results of the exam. In the grading process, I note down where each
student has problems or should have solved the problem based on his past performance.
After the exam, I compare the current results with previous semesters to gauge my teaching
and what is missing in each class. The ABET experience gave me a great way to gauge my
teaching. Once the exam is graded, I call each student the following day and ask him/her
to meet me at the office. Going through the exam point by point with the student and
reading through my grading notes, I start asking the student why did he/she answer this,
what changes his/her mind from the correct answer. One time, I realized that the students
found one of the question statements to be ambiguous, and on rare occasions, I noticed
that students has some wrong interpretations of some concepts. Overall, it was an exciting
learning experience.

Teaching Interests

Definitely, I would enjoy teaching both undergraduate and graduate courses on program-
ming languages, compilers, software security and analysis, and software engineering. In
addition, I am interested in contributing to introductory programming or algorithms and
data structures courses. In particular, I would be interested in bringing elements of program
analysis and security into those courses. I would also be happy to teach undergraduate
classes outside my immediate areas of interest.

I would enjoy teaching an undergraduate course on The Mechanics of Programming. In this
course, students will be introduced to the details of program structure and the mechanics
of execution and translation processes (e.g., some essentials programming languages and
compilers) as well as supportive operating system features (e.g., some essentials of operating
system design and concepts). Moreover, this course will shed the light on some security and
performance issues in program design (i.e., software analysis and security).

At the graduate level, I would like to teach classes on software analysis and security,
and software testing and maintenance. I believe that my extensive research experience in
several areas of program analysis and security puts me in a position to design a course
that covers a wide range of topics. I have already designed a course based on the book
“secure programming with static analysis.”. Moreover, I want to offer a crucial course to
both graduate and undergraduate students called “Bridging the Academic-Industry Gap”
where I will focus on putting all puzzle pieces together from building a resume, preparing for

4



a technical interview, recap data structure concepts, software design, software testing, and
software engineering. All of this wrapped up in the final year to make sure the graduating
students are ready to be in the position they are dreaming of.

Advising Approach

From my assistant professor time to when I was a PhD student, I was responsible for
advising many students either on the graduate or undergraduate levels. Both with different
needs. I have always enjoyed working with students in advising capacity. It is like you
juice out everything that you know and give them the shortest way to achieve the best.
I am an engaging person, so I talk to students on their future career and guide them to
the proper way with the help of other professors. As a graduate student, I supervised two
undergraduate research projects and two master theses. This humble experience made me
realize the importance of finding a good balance between letting students pursue their own
ideas and giving them the guidance they need to succeed, in the form of weekly discussions,
intermediate deadlines, or reading lists. I also realized that every student is different, and a
single style of guidance does not fit all.

5


