COMB: Computing Relevant Program Behaviors®

Benjamin Holland?, Payas Awadhutkar!, Suresh Kothari!, Ahmed Tamrawi?, Jon Mathews

2

Towa State University, Ames, Iowa, 50010
2EnSoft Corp., Ames, Iowa, 50010
{bholland,payas,kothari}@iastate.edu,{ahmedtamrawi,jmathews}@ensoftcorp.com

ABSTRACT

The paper presents COMB, a tool to improve accuracy and efficiency
of software engineering tasks that hinge on computing all relevant
program behaviors. Computing all behaviors and selecting the
relevant ones is computationally intractable. COMB uses Projected
Control Graph (PCG) abstraction to derive the relevant behaviors
directly and efficiently. The PCG is important as the number of
behaviors relevant to a task is often significantly smaller than the
totality of behaviors.

COMB provides extensive capabilities for program comprehen-
sion, analysis, and verification. We present a basic case study and
a Linux verification study to demonstrate various capabilities of
COMB and the addressed challenges. COMB is designed to support
multiple programming languages. We demonstrate it for C and Java.
Video url: https://youtu.be/YoOJ7avBIdk

CCS CONCEPTS

« Security and privacy — Software and application security;
- Software and its engineering — Software verification and
validation;

KEYWORDS

Program Behaviors, Software Analysis, Software Verification

1 INTRODUCTION

Many software engineering tasks require analysis and verification
of all program behaviors relevant to the task. For example, all
relevant behaviors must be analyzed to verify software for safety
or security. We will describe COMB capabilities and underlying
ideas with the help of examples. Consider the problem of verifying
software for Division-By-Zero (DBZ) vulnerabilities. Line 24 of the
code in Figure 1 involves division by d, which must be checked for
a DBZ vulnerability.

As described in [10], each Control Flow (CF) path yields a behav-
ior represented by the corresponding trace. Each trace is a regular

“This material is based on research sponsored by DARPA under agreement numbers
FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3183476

1 |public class DBZ {

2 public static int a1 = o;

3 public static int a2 = 1;

4 public static boolean c1 = true;
5 public static boolean c2 = false;
6 public static boolean c3 = true;
7 public static void main(String[] args){
8 int x = a1 + a2;

9 int d = a1;
10 if(c1){
11 X = al;
12 } else {
13 X = al;
14 }
15 if(c2){
16 if(e3){
17 int y = a1;
18 } else {
19 d=d - ai;
20
21 } else {
22 d=d+1;
23
24 int z = x / d;
25 }
26 |}

Figure 1: A DBZ vulnerability

expression of program statements along a path. In this simple ex-
ample without loops, each trace is a sequence of statements. There
are six behaviors and their corresponding traces are: (B1) 8, 9, 10,
11, 15, 18, 19, 24; (B2) 8, 9, 12, 13, 15, 18, 19, 24; (B3) 8, 9, 10, 11,
15, 16, 17, 24; (B4) 8, 9, 12, 13, 15, 16, 17, 24; (B5) 8, 9, 10, 11, 21,
22, 24; (B6) 8, 9, 12, 13, 21, 22, 24. The first two traces exhibit the
vulnerability.

Verifying any vulnerability poses two challenges: (1) computing
the vulnerable behaviors out of all behaviors and, (2) path feasibility,
i.e., checking feasibility of CF paths for the vulnerable behaviors.
The large number of behaviors (2" behaviors for n non-nested 1F
conditions) make the problem computationally intractable. The path
feasibility problem is equivalent to the satisfiability problem [5].

An efficient algorithm must compute the vulnerable behaviors
without computing all the behaviors. A closer inspection reveals
that multiple behaviors can be grouped so that each group corre-
spond to a unique relevant behavior defined by a sub-trace that
retains only the relevant statements and conditions. The relevant
statements for the DBZ vulnerability are: 9, 19, 22, and 24. The
relevant behaviors are: (RB1) 9, 15, 18, 19, 24; (RB2) 9, 15, 16, 24;
(RB3) 9, 21, 22, 24 with the grouping: RB1: {B1, B2}, RB2: {B3, B4},
RB3: {B5, B6}. Note if(c1) is irrelevant because taking the true and
false branches produce the same relevant behaviors.

COMB uses the PCG abstraction [9] to compute the relevant
behaviors directly and efficiently. The abstraction amounts to an
efficient way to form the equivalence classes of behaviors to yield
relevant behaviors. The Control Flow Graph (CFG) fuses together
multiple facets of the program logic. Unlike the CFG, the PCG
distills the behaviors for a particular facet of the program logic. The
CFG and its corresponding PCG for the DBZ example are shown in
Figure 2. As borne out by the case studies, the use of the PCG can



[=|c>DBZ

[=| 8 (default package)
[=|@ DBZ

/=] ¢° main < DBZ

[=] & (default package)
[<]© DBZ

?
“.

false

d=d-al;| true d=d+1;

- ~ //
S ¥
intz=x/d;

¥

false

(a) CFG (b) PCG
Figure 2: CFG and PCG for the DBZ vulnerability

circumvent the challenges of analyzing large number of paths and
path feasibility.

2 COMB WORKFLOW

Using COMB involves the following steps:

(1) Use COMB to select the relevant statements within a func-
tion. The user may do so interactively by clicking on the
statements in the source code panel or by clicking on the cor-
responding CFG nodes from a previously constructed CFG.
Alternatively, the user can invoke an automated analyzer
(e.g., for the DBZ problem (Section 1), we use an analyzer
that computes the Use-Def (UD) chains). The demo shows
different ways of selecting relevant statements.

(2) Use COMB to compute the PCG based on the selected rele-
vant statements. This can be done interactively through a
visual interface or programmatically by using an APL

(3) The user may use COMB to visualize PCGs for program com-
prehension. Alternatively, the user may invoke COMB APIs
to compute PCGs as a part of an automated analyzer (e.g., an
automated verification for the DBZ). The demo includes an
automated use of COMB from our safety verification study
on the Linux kernel. [9].

3 THE PCG ABSTRACTION

The PCG abstraction and an efficient algorithm to compute it are
originally described in our 2016 paper [10]. Figure 2 shows the PCG
for the DBZ vulnerability discussed in Section 1. User can choose a
layout algorithm and apply styling to suit their visualization needs.
Nodes for relevant statements are colored yellow and the True edges
from IF are colored white in Figure 2.

= Toy

ol
7

toy.c

i

[=] © main

Figure 3: An illustrative example of loop behavior model.
The loop-back edge is marked with a cross.

With respect to this paper, key points about the PCG are:

e The PCG is obtained by transforming the corresponding
CFG. In all our studies, we have found the PCGs are often
much smaller than the corresponding CFGs. An extreme
example from the Linux verification study [9], the CFG for
client_common_fill_super has 1,101 nodes, 1,179 edges, and
249 branch nodes. The corresponding PCG has 15 nodes, 28
edges, and 13 branch nodes.

o Filtering out unnecessary details is important to facilitate
program comprehension. This is brought out in the demo by
an example of a Linux bug that is easily spotted using the
PCG.

o Relevant behaviors are derived by traversing the PCG paths.
The demo includes a utility to count and compare the number
of paths in a CFG and the corresponding PCG.

3.1 Loop Behaviors Model

To compute behaviors in presence of loops, a model of loop be-
haviors is required as loops may iterate several times. Our loop
behavior model [10] is intended for a class of problems in which
the validity of safety or security properties does not depend on the
exact number of times the loop iterates. This model is motivated
by an empirical study of loops in open-source C and Java software
and the need for a practical approach to account for loop behaviors
to verify safety and security properties.

Let us illustrate the model with an example (Figure 3). Consider
the problem where a Lock must be followed by unlock and it must not
be followed by another Lock. Consider a loop with Lock Unlock and a
break in between. The model yields three relevant behaviors with
traces: (1) (c1, L, c2, U)*, (2) (1, L, c2, U)*cl, L, c2, break, (3) c1 with
L for Lock and U for Unlock. ci and ci denotes whether the condition
ci evaluates to true or false. The second behavior implies that the
property is violated. The model requires a unique entry for each
loop but allows multiple exits to account for break or return.



4 COMB INFRASTRUCTURE

COMB provides an extensive infrastructure to support program
comprehension, analysis, and verification for which analyzing all
relevant behaviors is a crucial requirement.

Building this infrastructure from scratch would be a major engi-
neering effort. Instead, we have designed COMB as an Atlas [1, 8]
plug-in to leverage its multi-language support, graph database,
query language, eXtensible Common Software Graph Schema (XCSG),
a variety of program analyzers, and interactive program graph vi-
sualization. COMB is written in Java and deployed as an Eclipse
plug-in, and so it can also leverage the Eclipse infrastructure. COMB
leverages the Eclipse and Atlas infrastructure for the following:

Visual interactions using program graphs or source code: This capabil-
ity is used in COMB to select relevant statements by creating a CFG
and clicking on CFG nodes, synchronizing these selections with
creation and visualization of the corresponding PCG as it evolves
in response to selections. A similar capability is provided to select
relevant statements by clicking on the source code.

Queries through the Atlas Shell: This capability is used in COMB in
two ways: (a) build a set of relevant statements using queries, and
(b) feed the PCG to a query to perform further analysis based on
the PCG.

Write Java programs with COMB APIs and Atlas Queries: This capa-
bility is used to build a verifier or analyzer that obtains the PCG
and operates on it for further processing.

Analyzers in Atlas: As discussed earlier, a number of analyzers
in Atlas can be used in COMB to select relevant statements. For
example, COMB uses a Atlas-based analyzer for detecting loops
based on the DLI algorithm [12]. The analyzer identifies all the
loop-back edges as shown in Figure 3.

XCSG Schema: XCSG provides support for multiple languages,
which provides a base for COMB to do the same. The video demon-
strates COMB for C and Java.

Graph Database: Atlas uses attributed graphs [8] for representing
program semantics. An analyzer can use the Atlas tagging mecha-
nism to add attributes to nodes and edges of a program graph. The
tagging has multiple uses including its use for analyses to commu-
nicate with each other. As an example, we use the loop-detection
analyzer to compute and tag the loop-back edges (Figure 3). These
loop-back edges are then used by another analyzer to create an
acyclic graph to compute the paths corresponding to relevant be-
haviors.

Figure 4 shows an example of how the COMB infrastructure can
be used. The function defined on line 22 is an analyzer written in
Java, using COMB APIs and Atlas queries. This analyzer is used
to find the matching unlock calls corresponding to a lock call. It is
invoked on line 16 and the result is used by the COMB infrastructure
on line 18 to compute the PCG. This PCG can then be used to verify
whether a lock call has a matching unlock call on all relevant paths.

5 COMB CASE STUDIES

We present two case studies to demonstrate COMB: (1) a simple
example of DBZ and, (2) the Linux verification study to illustrate
its use on real-world software.

1 [public class LockUnlockPairing {

2

3 private static final String lockingSignature = "__raw_spin_lock";

4 private static final String unlockingSignature = "__raw_spin_unlock";
5

6 private static Q idf = Common.edges(XCSG.InterproceduralDataFLlow);

7 private static Q ivf = Common.edges(XCSG.InvokedFunction);

9 public static PCG computePCG(Q locks) {

10 Q unlocks = getCorrespondingUnlocks(locks);

11 Q behaviors = locks.union(unlocks);

12 return PCGFactory.create(behaviors);

13 }

14

15 public static Q getLocks() {

16 Q locks = CommonQueries.functions(lockingSignature);

17 return locks.predecessorson(ivf).parent();

18 }

19

20 public static Q getCorrespondingUnlocks(Q locks) {

21 Q lockingType = locks.children().predecessorsOn(idf).nodes(XCSG.Field);
22 Q typeInvocations = lockingType.successorson(idf).parent();

23 Q function = CommonQueries.getContainingFunction(locks);

24 Q cfg = CommonQueries.cfg(function);

25 Q unlocks = CommonQueries.functions(unlockingSignature);

26 Q allunlocks = unlocks.predecessorsOn(ivf).parent();

27 Q matchingUnlocks = typeInvocations.intersection(

28 allunlocks.intersection(cfg.nodes(XCSG.ControlFlow_Node)));
29 return matchingUnlocks;

30 }

31|}

Figure 4: Example use of COMB infrastructure

5.1 DBZ Study

This basic study illustrates a variety of user interactions to: (a) se-
lect relevant statements, (b) compute the PCG, (c) use the PCG
for further analysis. It brings out the basic concepts of relevant
behaviors, traces to represent behaviors, and relevant conditions
for behavior feasibility check.

The underlying code (Figure 1) is small and simple so that a user
can manually check the results produced by the tool. As shown
in Figure 2, the total number of behaviors is six. The number of
relevant behaviors is three. One behavior depicts the vulnerability.
Two conditions out of three are relevant for the feasibility of the
vulnerability.

5.2 Linux Verification Study

We designed a COMB-based automated analyzer to verify the lock-
/unlock pairing in the Linux kernel [9]. The study compared the
COMB-based verifier with the Berkeley Lazy Abstraction Software
Verification Tool (BLAST) [4], a top-rated tool in the software verifi-
cation competition (SV-COMP) [2]. We summarize pertinent results
from the study and bring out some uses of COMB for verification.
The problem we have chosen is to verify the Lock/Unlock pairing on
all feasible behaviors. The study is based on three versions of the
Linux operating system with altogether 37 million lines of code
and 66, 609 Lock instances to be verified.

BLAST verifies 43,766 (65.7)% of Lock instances as safe, and it
is inconclusive (crashes or times out) on 22, 843 instances. BLAST
does not find any unsafe instances. BLAST required 172 hours
and 56 minutes for its verification. The COMB-based automated
verification tool verifies 66, 151(99.3)% of Lock instances as safe, and
it is inconclusive on 451 instances. Seven unsafe instances found
through our study were reported as bugs to the Linux organization.
These were accepted and fixed. One of the bugs we found is an
instance that BLAST reported as a safe instance. COMB-based
verifier required 3 hours and 24 minutes.

In a landmark paper [7] on program verification and proofs
in mathematics, De Millo, Lipton and Perlis (the first recipient of
the Turing Award) argue that tools for program verification must



T

f(_ep |
< lep->ep >
desc)

if
(dev->epostate
" Ep0_SUSPEND)

-

| nuketep, -esruTDOWN);

8

Figure 5: PCG retaining results of inter-procedural analysis

provide evidence to support verification. With the growing need for
software assurance for mission-critical systems, there is renewed
interest in automated verification with evidence [3]. The bugs we
have found in the results of automated verification substantiate the
argument for evidence.

The COMB-based verification tool produces supporting evidence.
The evidence includes the CFG and the PCG for each analyzed
function. Overall, PCGs are smaller than corresponding CFGs. For
the Linux version 3.19-rc1, the average CFG to PCG reduction is
73.4% for the number of nodes and 75.5% for the number of edges.

COMB with inter-procedural analyzer: Inter-procedural anal-
ysis is required to solve many problems and it is important to reflect
the results of the analyzer in the PCG-based evidence. Let us briefly
discuss how the COMB-based tool brings out results from an inter-
procedural analysis. The tool can produce PCGs as shown by the
example in Figure 5. As shown, PCG retains the call to the function
nuke as a relevant call. The call to Lock is followed by the call to nuke.
It suggests that unlock is called inside the function nuke. The analyst
can then check the PCG for nuke to see if it includes unlock calls on
all paths.

A Linux Bug: This is an example for which BLAST cannot com-
plete the verification. but the PCG reveals a bug. Figure 6 shows
the PCG for the function toshsd_thread_irq that has calls to Lock and
unlock. The CFG for this function is complex with 8 branch nodes
and multiple loops. PCG simplifies the path feasibility check. The
PCG for the function toshsd_thread_irq shows a path on which the
Lock is not followed by an unlock. Using the two relevant conditions
shown by the PCG, it can be checked that the vulnerable path is
feasible. This bug was reported to the Linux organization and it
was fixed.

6 RELATED WORK

This demo paper is based on our recent work [9, 10]. For extensive
references to the literature on the challenges and approaches for
computing all relevant behaviors, we refer the readers to [10]. The
efficient algorithm to compute PCG abstraction is based on a graph
algorithm by Tarjan [11].

!

(j1 if (\data) >

/ :
Lock —*

if
Cy <_sq_miter_next(sq_miter)) -~

Unlock T F

spin_unlock irqrestore(&host->lock. flags); |
[

.

Figure 6: PCG for an unsafe Lock
7 CONCLUSION

Analyzing each relevant behavior individually is important for ac-
curacy, but that is often not done because of the efficiency and
scalability hurdles posed. The PCG abstraction is useful to miti-
gate these hurdles when the the number of relevant behaviors is
significantly smaller than the totality of behaviors, which is often
true in practice. This is borne out by a Linux verification study [9].
The paper and the accompanying demonstration presents COMB, a
tool based on the PCG abstraction. We are using COMB in DARPA
Space/Time Analysis for Cybersecurity (STAC) project [6] to detect
Algorithmic Complexity and Side Channel vulnerabilities.

ACKNOWLEDGMENT

We thank our colleagues at the Knowledge-Centric Software (KCS)
Engineering Lab at Jowa State University and the colleagues at
EnSoft for helping us with our research. Dr. Kothari is the founding
President of EnSoft.

REFERENCES

[1] 2002. EnSoft Corp. http://www.ensoftcorp.com. (2002).

[2] Dirk Beyer. 2014. Status report on software verification. In International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 373-388.

Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. 2016. Cor-

rectness witnesses: Exchanging verification results between verifiers. In Proceed-

ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 326-337.

[4] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The
software model checker Blast. International Journal on Software Tools for Tech-
nology Transfer 9, 5-6 (2007), 505-525.

[5] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing. ACM.

[6] DARPA. 2014. Space/Time Analysis for Cybersecurity. https://www.fbo.gov/
spg/ODA/DARPA/CMO/DARPA-BAA- 14-60/listing.html. (2014).

[7] Richard A De Millo, Richard J Lipton, and Alan J Perlis. 1979. Social processes
and proofs of theorems and programs. Commun. ACM 22, 5 (1979), 271-280.

[8] Tom Deering, Suresh Kothari, Jeremias Sauceda, and Jon Mathews. 2014. Atlas:
A New Way to Explore Software, Build Analysis Tools. In Companion Proceedings
of the 36th International Conference on Software Engineering (ICSE Companion
2014). ACM, New York, NY, USA.

[9] Suresh Kothari, Payas Awadhutkar, Ahmed Tamrawi, and Jon Mathews. 2017.

Modeling Lessons from Verifying Large Software Systems for Safety and Security.

In Proceedings of the 2017 Winter Simulation Conference. to appear.

Ahmed Tamrawi and Suresh Kothari. 2016. Projected Control Graph for Accu-

rate and Efficient Analysis of Safety and Security Vulnerabilities. In Software

Engineering Conference (APSEC), 2016 23rd Asia-Pacific. IEEE, 113-120.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal

on computing 1, 2 (1972), 146-160.

Tao Wei, Jian Mao, Wei Zou, and Yu Chen. 2007. A new algorithm for identifying

loops in decompilation. In International Static Analysis Symposium. Springer.

[3

[10

[11

[12



