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Abstract

Many software engineering tasks require analysis and verification of all be-
haviors relevant to the task. For example, all relevant behaviors must be ana-
lyzed to verify a safety or security property. An efficient algorithm must com-
pute the relevant behaviors directly without computing all the behaviors. This
is crucial in practice because it is computationally intractable if one were to
compute all behaviors to find the subset of relevant behaviors.

We present a mathematical foundation to define relevant behaviors and in-
troduce the Projected Control Graph (PCG) as an abstraction to directly com-
pute the relevant behaviors. We developed a PCG toolbox to facilitate the use
of the PCG for program comprehension, analysis, and verification. The tool-
box provides: (1) an interactive visual analysis mechanism, and (2) APIs to
construct and use PCGs in automated analyses. The toolbox is designed to
support multiple programming languages.

Using the toolbox APIs, we conducted a verification case study of the Linux
kernel to assess the practical benefits of using the PCG. The study shows that
the PCG-based verification is faster and can verify 99% of 66,609 instances com-
pared to the 66% instances verified by the formal verification tool used by the
Linux Driver Verification (LDV) organization. This study has revealed bugs
missed by the formal verification tool. The second case study is an interac-
tive use of the PCG Smart View to detect side-channel vulnerabilities in Java
bytecode.

Keywords: Program Behaviors, Software Analysis, Software Verification,
Software Security, Software Safety

1. Introduction

Accounting precisely for the execution behavior along each path of a Control
Flow Graph (CFG) blows up the computational complexity: (1) the number of
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CFG paths grows exponentially with the number of non-nested branch nodes [1,
2], and (2) path feasibility checks can incur an exponential computation [3, 4,
5, 6, 7, 8]. Moreover, the number of paths blows up because of loop iterations.

In practice, the number of behaviors relevant to a task is often significantly
smaller than the totality of behaviors. We present a mathematical foundation
for computing relevant program behaviors as relevant base behaviors and rele-
vant iterative behaviors. The goal is to compute the relevant behaviors directly
without computing all possible behaviors. Based on the mathematical founda-
tion, we introduce the Projected Control Graph (PCG) as an abstraction to
directly compute the relevant behaviors.

Along with the mathematical foundation, we present insightful examples
to illustrate possibilities of the drastic reduction in the number of behaviors
from all behaviors to the relevant behaviors. Next, we summarize results of
applying our PCG-based verification to the Linux kernel to verify the pairing
of Lock instances with corresponding Unlock instances on all feasible control flow
paths [9]. A control flow path is feasible if the path can be taken during an
actual execution, i.e., variable values can be attained to satisfy the conditions
governing the path. The study includes three versions of the Linux kernel which
altogether have 37 million lines of code and 66, 609 Lock instances. We present
a comparison with the formal verification tool that uses BLAST [10]. This
BLAST tool has been a top performer in the annual software verification com-
petition (SV-COMP) [11] and it is used by the Linux Driver Verification (LDV)
organization [12]. The BLAST tool verifies 43, 766 (65.7%) of Lock instances as
correctly paired (safe), and it is inconclusive (crashes or times out) on 22, 843
instances. The BLAST tool does not find any unsafe instances and requires 172
hours and 56 minutes for its verification. Our PCG-based automated verifica-
tion tool verifies 66, 151(99.3%) of Lock instances as safe, and it is inconclusive
on 451 instances. Seven unsafe instances are found through our study, includ-
ing an instance that was incorrectly verified as safe by the BLAST tool. The
PCG-based tool required 3 hours and 24 minutes.

Our second study is to use the PCG interactively to analyze Java bytecode to
detect side-channel vulnerabilities. A compact PCG not only improves efficiency
of an automated analysis, it also facilitates an interactive visual analysis and
program comprehension. Using the Atlas Platform [13, 14], we have designed
a visual analysis mechanism, called the PCG Smart View, to use the PCG
interactively.

The key research contributions are:

• A mathematical foundation to define and compute relevant behaviors as
relevant base behaviors and relevant iterative behaviors.

• The PCG as a graph abstraction to directly compute the relevant behav-
iors and an efficient algorithm to compute the PCG.

• An assessment of the practical impact of using the PCG interactively and
programmatically for analyzing or verifying large software.
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The remainder of the paper is organized as follows. We first describe the
class of software safety and security problems to which the mathematical foun-
dation for computing relevant behaviors applies in Section 2. Next, Section 3
describes the mathematical foundation for computing relevant behaviors. Sec-
tion 4 presents the linear-time algorithm for constructing the PCG from its
corresponding CFG. The developed PCG toolbox is presented in Section 5.
Section 6 presents our Linux verification study that assesses the practical bene-
fits of using PCGs in automated analysis and for interactive analysis. Section 7
discusses the use of PCGs in detecting side-channel vulnerabilities. Section 8
presents the related work. Finally, we conclude in Section 9.

2. Software Safety and Security Properties

This section describes a fairly broad class of software safety and security
properties which can be verified efficiently using the PCG. In general, the PCG
can be of significant value for program comprehension, analysis, and verification.

Definition 1 (2-event matching). Verify that an event e1(O) is succeeded
by an event e2(O) on every feasible execution path, where the two events are
operations on the same object O.

Besides the lock/unlock pairing verification described in this paper, the 2-
event matching covers several problems such as memory allocation/deallocation
pairing, or file open/close pairing. A number of vulnerabilities listed by the
MITRE Corporation [15] can be viewed as 2-event problems.

Definition 2 (2-event anti-matching). Verify that an event e1(O) is not
succeeded by an event e2(O) on any feasible execution path, where the two events
are operations on the same object O.

Anti-matching covers software security verification defined according to Con-
fidentiality, Integrity, and Availability (CIA) triad [16]. A confidentiality veri-
fication problem could be defined as: a sensitive source must not be followed
by a malicious sink on any feasible execution path. Similarly, an integrity ver-
ification problem could be defined as: an access to sensitive data must not be
followed by a malicious modification to sensitive data on any feasible execution
path.

The following defines the general class of verification tasks for applying the
PCG.

Definition 3 (n-event verification). Verify on every feasible execution path,
that the occurrence of events on the path follow the acceptability test defined by
a Finite State Machine (FSM) φ(E), where E is a set of n events that operate
on the same object O.
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3. Mathematical Foundation for Computing Relevant Program Be-
haviors

We present a mathematical foundation to define relevant program behav-
iors. Using this foundation, we introduce the PCG as an efficient technique to
compute relevant behaviors directly without computing all program behaviors.

Definition 4. A Control Flow Graph (CFG) of a function is defined as
G = (V,E,>,⊥), where G is a directed graph with a set of nodes V representing
the program statements and a set of edges E representing the control flow between
statements. > and ⊥ denote the respective unique entry and exit nodes of G.

A CFG node is called a branch node if it has at least two outgoing edges,
called the branch edges. We use the term condition node when we discuss a
branch node and its associated condition. A path in CFG starts from > and
ends with ⊥. A path can iterate through a loop any number of times. We
will use [ci] or [c̄i] respectively to denote the true or false values taken for the
condition expression Ci.

Definition 5 (Relevant Statements). A subset of program statements that
are determined to be relevant for a particular program analysis or verification
task.

3.1. An Overview of Computing Relevant Program Behaviors

Our approach is motivated by empirical studies of loops in open-source C and
Java software and the need for a practical approach to account for loop behaviors
relevant to verify safety and security properties. Each program behavior is a
sequence of program statements. A sequence can have repetitions because of
loop iterations. Each relevant program behavior is a sub-sequence that consists
of only the relevant program statements and the relevant conditions.

Computing the relevant program behaviors involves: (a) computing the rel-
evant program statements, (b) computing the relevant conditions to determine
the feasibility of relevant behaviors, and (c) computing the relevant program
behaviors. While this paper is primarily about (b) and (c), we have designed
our PCG tool support to accommodate analyzers for part (a).

In Section 5, we will discuss our PCG tool support designed to work with
a variety of analyzers for computing the relevant statements for a particular
task. For example, the relevant statements for verifying the lock/unlock pairing
requires a data flow analyzer that tracks the pointer to the lock object passed to
the Lock instance and identifies the corresponding Unlock instances. The relevant
statements include the data flow statements relevant for tracking the pointer.

The mathematical foundation for computing relevant behaviors introduces
the notion of base behaviors and uses it as a basis for computing iterative be-
haviors. The base behaviors are defined using acyclic graphs. These acyclic
graphs are obtained by removing the back edges from loops. The mathematical
foundation progresses from acyclic graphs, loops without nesting, and finally to
nested loops. The mathematical foundation requires a unique entry for each
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loop but it allows multiple loop termination nodes corresponding to break or
return.

Given the relevant statements for a particular analysis or verification task,
the PCG is an optimal graph abstraction that yields both: the relevant condi-
tions and the relevant program behaviors for performing the task efficiently and
accurately.

3.2. Relevant Base Behaviors for Acyclic CFGs

Let us start with an illustration. Consider the problem of verifying the
function foo1 (Figure 1(a)) for division-by-zero (DBZ) vulnerability on line 24
which involves division by d. The CFG for foo1 is shown in Figure 1(b). The
CFG is an acyclic graph with six paths. Each path yields a unique base behavior.
The base behaviors are as listed in Table 1. The behaviors (B1 and B2) exhibit
the DBZ vulnerability. The yellow highlighted statements shown in Figure 1 are
the relevant program statements. In this example, these statements are relevant
to the DBZ vulnerability because they affect the value of the denominator d in
line 24.

(a)	foo1 source	code (b)	foo1 CFG

int a1 = 1, a2 = 2; 
int y = 2; 
bool C1 = true; 
bool C2 = false; 
bool C3 = true; 
void foo1(){ 

int x = a1 + a2; 
int d = a1; 
if(C1){ 

x = a1; 
}else{ 

x = a2 - 1; 
} 

 
if(C2){ 

if(C3){ 
y = a1; 

}else{ 
d = d - a1; 

} 
}else{ 

d = d + 1; 
} 
int z = x / d; 

} 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Figure 1: A division-by-zero (DBZ) vulnerability

Verifying any vulnerability poses challenges: (1) computing the vulnerable
behaviors out of all behaviors, and (2) path feasibility, i.e., checking the feasi-
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Table 1: Base behaviors and relevant base behaviors for foo1 (Figure 1(a))

Base Behaviors Relevant Base Behaviors
B1 : 7, 8, 9[c1], 10, 15[c2], 16[c̄3], 19, 24

RB1 : 8, 15[c2], 16[c̄3], 19, 24
B2 : 7, 8, 9[c̄1], 12, 15[c2], 16[c̄3], 19, 24
B3 : 7, 8, 9[c1], 10, 15[c̄2], 22, 24

RB2 : 8, 15[c̄2], 22, 24
B4 : 7, 8, 9[c̄1], 12, 15[c̄2], 22, 24
B5 : 7, 8, 9[c1], 10, 15[c2], 16[c3], 17, 24

RB3 : 8, 15[c2], 16[c3], 24
B6 : 7, 8, 9[c̄1], 12, 15[c2], 16[c3], 17, 24

bility of CF paths with vulnerable behaviors. The large number of behaviors
(i.e., 2n behaviors for n non-nested branch nodes) is one reason the problem
of computing all behaviors becomes computationally intractable. Computing
the path feasibility is intractable because it is equivalent to the satisfiability
problem [17]. Later, we shall see a third challenge due to iterations of loops.

A closer inspection reveals that multiple base behaviors can be grouped so
that each group corresponds to a unique relevant base behavior. The relevant
statements for the DBZ vulnerability on line 24 (Figure 1(a)) are: 8, 19, 22 and
24. The relevant base behaviors and the corresponding groups of base behaviors
are listed in Table 1. Of the three relevant base behaviors, RB1 exhibits the DBZ
vulnerability. Conditions C2 and C3 are included in relevant base behaviors as
relevant conditions. These conditions determine the feasibility of relevant base
behaviors, in particular the vulnerable relevant behavior is RB1.

Let us finish this subsection with formal definitions for base behaviors and
relevant base behaviors. The formal definition for relevant conditions is given
later (Definition 17). For now, a condition is relevant if there is a relevant
statement that is control dependent on that condition.

Definition 6. For a path P in an acyclic CFG, its base behavior BP is the
sequence of program statements and conditions along P .

Definition 7. The relevant base behaviors for an acyclic CFG are the dis-
tinct sub-sequences derived from base behaviors by retaining only the relevant
statements and the relevant conditions.

In the above example, three distinct sub-sequences RB1, RB2, RB3 are
derived from 6 behaviors B1 to B6 by retaining only the relevant statements
and relevant conditions.

3.3. Relevant Iterative Behaviors for CFGs with Loops

Definition 8. Successors of a node u in a directed graph G, denoted by
suc(u), consist of the set of nodes v 6= u such that ∃ an edge (u, v).

Definition 9. Node d dominates node n if every path from > to n goes
through d.

Definition 10. A back edge is an edge whose head dominates its tail.

Definition 11. A loop L is a subgraph with the following properties:
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1. L has a unique node h, called the loop header, to enter the subgraph L.
The header dominates all nodes of L.

2. L contains at least one back edge (n, h) where n ∈ L.

3. L has one or more termination nodes, defined as the nodes that have a
successor that is outside L. Termination nodes which account for break or
return are referred to as exceptional termination nodes. Other termination
nodes are referred to as normal termination nodes. A loop header in while

and for loops is a normal termination node. In case of do-while loops, the
normal termination node is the condition node associated with the boolean
expression for while.

3.3.1. Relevant Iterative Behaviors for Non-nested Loops

Consider the problem of verifying lock/unlock pairing: a Lock must be fol-
lowed by a corresponding Unlock and it must not be followed by another Lock. Let
us show how to compute the relevant iterative behaviors to verify the property.

Figure 2 shows the code for the function foo2 and its CFG. foo2 has a loop
L, which is the subgraph of nodes corresponding to lines 3 to 15 with the loop
header at line 3, normal termination node at line 3, exceptional termination
node at line 6, and the blue colored edges (11, 3) and (13, 3) are the back edges.
Figure 3 shows the acyclic graph for the loop L obtained by removing the two
back edges.

(a)	foo2 source	code

Loop	Header

Loop	Back	Edges

Normal	
Termination	Node

Exceptional	
Termination	

Node

Loop	ℒ

(a)	foo2 CFG

void foo2(bool C1, bool C2, bool C3){
int counter = 0;
while(C1){

lock(O);
if(C2){

break;
}else{

unlock(O);
}
if(C3){

counter++;
}else{

continue;
}

}
unlock(O);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 2: Loops with break and continue
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Normal	Base	Behavior	!"#

Normal	Base	Behavior	!$#

Exceptional	Base	Behavior	!"%

Figure 3: The acyclic graph for loop L in foo2 (Figure 2)

Definition 12. The acyclic graph of a loop L is the graph A(L) obtained
by removing the back edges from L. The acyclic graph of a CFG G is the
graph A(G) obtained by removing all the back edges from loops in G.

Definition 13. Base behaviors of a loop or a cyclic CFG are the base behav-
iors defined by the acyclic graphs obtained from the loop or the CFG by removing
the back edges.

The base behaviors for loops are partitioned into: (a) normal base behaviors
(BN ) - the behaviors along the paths that terminate at the normal termination
point, and (b) exceptional base behaviors (BE) - the behaviors along the paths
that terminate at the exceptional termination points.

Definition 14. An iterative behavior is a sequence of base behaviors of length
k, where k is a positive integer representing the number of iterations of a loop.

Definition 15. An iterative relevant behavior is a sequence of relevant base
behaviors of length k, where k is a positive integer representing the number of
iterations of a loop.

For k > 0 iterations, p normal base behaviors, e exceptional base behaviors,
the number of iterative behaviors is: (pk+e×pk−1) with (pk) iterative behaviors
that do not end with an exceptional base behavior, and (e × pk−1) iterative
behaviors with k − 1 iterations of normal base behaviors followed by a final
iteration of an exceptional base behavior. Note that the maximum number of
normal base behaviors for an acyclic graph of a loop is p = 2n, where n is
number of branch nodes along these behaviors. In the acyclic graph for loop L
in function foo2 (Figure 3), there are two normal base behaviors BN

1 and BN
2

and one exceptional base behavior BE
1 .
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In the function foo2, the relevant statements are: 4, 8 and 16. The relevant
conditions are: C1 and C2 with corresponding statements 3 and 5 respectively.
The base behaviors BN

1 and BN
2 are grouped because they represent the same

relevant normal base behavior which is:
�� ��3[c1], 4, 5[c̄2], 8 . The relevant excep-

tional base behavior corresponding to BE
1 is:

�� ��3[c1], 4, 5[c2] . We use the notation

(v1, v2, · · · )k to denote that the sequence of statements (v1, v2, · · · ) is repeated
k times. With that notation: the relevant behaviors of the loop L for k > 0

iterations are:
�� ��(3[c1], 4, 5[c̄2], 8)k and

�� ��(3[c1], 4, 5[c̄2], 8)k−1, 3[c1], 4, 5[c2] .

Substituting the relevant behaviors of the loop, we get for the entire func-
tion foo2 the following relevant behaviors to verify the lock/unlock pairing:�� ��(3[c1], 4, 5[c̄2], 8)k, 3[c̄1], 16 and

�� ��(3[c1], 4, 5[c̄2], 8)k−1 , 3[c1], 4, 5[c2], 16 , where

k > 0 is the number of loop iterations. We have one more behavior
�� ��3[c̄1], 16

for the case that the loop is not entered (k = 0). One can verify that all three
relevant base behaviors are safe.

3.3.2. Relevant Iterative Behaviors for Nested Loops

As before, the iterative behaviors are defined using the base behaviors. How-
ever, the base behaviors for nested loops are defined recursively as follows.

Remark 1. The base behaviors in the presence of nested loops are de-
fined recursively by substituting the iterative behaviors of each nested loop on a
path.

Let us illustrate this process by computing the relevant behaviors to verify
lock/unlock pairing for the function foo3 shown in Figure 4. The code and the
CFG are shown in the Figure 4. Line 3 (Figure 4(a)) represents the loop header
for the outer loop L and Line 5 represents the loop header for the inner loop K.
L has one normal termination node at line 3 and one exceptional termination
node at line 15. K has one normal termination node at line 5 and one exceptional
termination node at line 8. The loop back edge (17, 3) is associated with L and
and the loop back edge (10, 5) is associated with K. The acyclic graph for the
two loops is shown in Figure 4(c).

The relevant statements for verifying the lock/unlock pairing are: 4, 7, 14 and
17. In this example, all conditions C1, C2, C3, and C4 are relevant conditions.

The relevant behaviors for loop K with j > 0 iterations are:
�� ��(5[c2], 6[c̄3])j and�� ��(5[c2], 6[c̄3])j−1, 5[c2], 6[c3], 7 . There is one more behavior if K is not entered

(j = 0) which is
�� ��5[c̄2] . The relevant behaviors for loop L with k > 0 iterations

are:
�� ��(3[c1], 4,∆, 13[c̄4], 17)k and

�� ��(3[c1], 4,∆, 13[c̄4], 17)k−1, 3[c1], 4,∆, 13[c4], 14

where ∆ denotes an iterative relevant behavior of the inner loop K. There is
one more behavior for the case that the loop L is not entered (k = 0) which is�� ��3[c̄1] .
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(b)	foo3 CFG
(c)	Acyclic	Graphs	

for	ℒ and	"

Loop	"

Loop	ℒ

(a)	foo3 source	code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

void foo3(bool C1, bool C2, bool C3, bool C4) {
int count = 0;
while (C1) {

lock(O);
while (C2) {

if (C3) {
unlock(O);
break;

} else {
count++;

}
}
if (C4) {

unlock(O);
break;

} else {
unlock(O);

}
}

}

Figure 4: An illustrative example using two nested loops

3.4. Behavior Compaction

Since the number of iterations of a nested loop and its behaviors could
vary across iterations of the outer loop, computing the base behaviors for the
outer loop may become extremely computation intensive. We introduce the
notion of behavior compaction to mitigate this computational complexity. The
compaction rules vary based on the verification requirement. We illustrate the
compaction for the loop K nested in the loop L shown in Figure 4.

The compaction rules for the lock/unlock pairing, where L and U denote
Lock and Unlock operations respectively and φ denotes a behavior that does not
contain any relevant statement and thus it is a null sequence, are: (i) (U)j = U, (ii)
(φ, L) = L, (iii) (φ, U) = U, and (iv) (L, U)j = (L, U). We will use the abbreviations
RNBB and REBB to denote the relevant normal base behavior and relevant
exceptional base behavior, respectively. Applying the compaction rules, the
relevant base behaviors for loop K with j iterations are:

• The RNBB
�� ��(5[c2], 6[c̄3])j can be compacted as: φ.

• The REBB
�� ��(5[c2], 6[c̄3])j−1, 5[c2], 6[c3], 7 can be compacted as: U.
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• The relevant behavior when the loop is not iterated
�� ��5[c̄2] can be com-

pacted as: φ.

After the behavior compaction, there are two unique relevant behaviors for
the loop K: φ and U. Similarly, the relevant base behaviors for the loop L are:

• The RNBB
�� ��(3[c1], 4,∆, 13[c̄4], 17)k can be compacted as: (L,∆, U)k.

• The REBB
�� ��(3[c1], 4,∆, 13[c̄4], 17)k−1, 3[c1], 4,∆, 13[c4], 14 can be com-

pacted as: (L,∆, U)k−1, L,∆, U.

• The relevant behavior when the loop is not entered
�� ��3[c̄1] can be com-

pacted as: φ.

Incorporating the compacted relevant behaviors of K into the relevant base
behaviors of L, the compacted relevant base behaviors for L are:

• Relevant normal base behaviors:

1. (L, φ, U)k. Compacted as: L, U.

2. (L, U, U)k. Compacted as: L, U.

• Relevant exceptional base behaviors:

1. (L, φ, U)k−1, L, φ, U. Compacted as: L, U.

2. (L, φ, U)k−1, L, U, U. Compacted as: L, U.

3. (L, U, U)k−1, L, φ, U. Compacted as: L, U.

4. (L, U, U)k−1, L, U, U. Compacted as: L, U.

• The relevant behavior when the loop is not entered: φ.

All relevant behaviors are compacted as (L, U) and φ, which implies correct
pairing of Lock and Unlock on all paths of foo3.

3.5. Linux Example

This lock/unlock pairing example is from the Linux kernel. Figure 5 shows
the CFG of hwrng attr current store function. The relevant statements in this
example are: 7 corresponding to L and 26 corresponding to U. There is one rel-
evant condition which is C1. Following the previous discussion for computing
relevant behaviors, there is one normal base behavior for loop L and two excep-
tional base behaviors. These behaviors do not contain relevant statements and
thus yield φ. The overall relevant behaviors in this example are: (1)

�� ��L, 8[c1]

and (2)
�� ��L, 8[c̄1], U . The first behavior needs the path feasibility check because

it is a potential vulnerability.
Later in Section 4.2, we will show the PCGs for the examples presented in

this section and how the PCG directly computes the relevant behaviors without
the need to compute all behaviors.
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(b)	hwrng_attr_current_store CFG

!"

!#

!$

!%

Loop	ℒ

Lock

Unlock

static DEFINE_MUTEX(rng_mutex);

static ssize_t hwrng_attr_current_store(struct
device *dev, struct device_attribute *attr,
const char *buf, size_t len){

int err;
struct hwrng *rng;
err = mutex_lock_interruptible(&rng_mutex);
if (err)

return -ERESTARTSYS;

err = -ENODEV;

for (rng = list_first_entry(&rng_list, 
typeof(*rng), list);

&rng->list != (&rng_list);
rng = list_next_entry(rng, list))

{
if (sysfs_streq(rng->name, buf)) 
{

err = 0;
if (rng != current_rng)

err = set_current_rng(rng);
break;

}
}

mutex_unlock(&rng_mutex);

return err ? : len;
}

1
2
3

4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(a)	hwrng_attr_current_store source	code

Figure 5: Code and CFG for the function hwrng attr current store

4. The Projected Control Graph (PCG)

The mathematical foundation uses relevant base behaviors to compute iter-
ative behaviors. The PCG is a graph abstraction to compute the relevant base
behaviors efficiently. We shall present an efficient algorithm to obtain the PCG
by transforming a CFG.

Definition 16. Successors of a subgraph S in a directed graph G, denoted
by suc(S), consist of the set of nodes v /∈ S such that v ∈ suc(u) for u ∈ S.

Definition 17. A condition node C is an irrelevant condition node if there
exists a subgraph S containing C and all branch edges of C such that S does not
have nodes corresponding to relevant statements, and S has a unique successor,
i.e., |suc(S)| = 1. If such a set S does not exist for a condition node then it is
a relevant condition node.
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Definition 18. Predecessors of a node u in a directed graph G, denoted by
pred(u), consist of the set of nodes v 6= u such that ∃ an edge (v, u).

Definition 19 (Projected Control Graph (PCG)). The PCG of a CFG
G = (V,E,>,⊥) is PCG = (V ′, E′,>,⊥), where V ′ consists of the nodes in G
for relevant statements and relevant conditions. E′ are the resultant set of edges
connecting only V ′ after the removal of all irrelevant statement nodes in V and
retaining all relevant condition nodes in V . For each removed irrelevant node
r ∈ V −V ′ or a subgraph of irrelevant nodes R ⊆ V −V ′, a new set of edges are
introduced so that pred(r)/pred(R) become predecessors of suc(r)/suc(R), then
all incoming and outcoming edges of r or each node in R are removed. > and
⊥ denote the respective unique entry and exit nodes of the PCG.

4.1. CFG to PCG Transformation

We present an efficient algorithm to compute the PCG. It uses Tarjan’s
algorithm to compute strongly-connected components of a directed graph [18].
We will use the terms relevant and irrelevant node to denote a node in a graph
corresponding to a relevant and irrelevant statement for a particular analysis.

Step 1: T-Irreducible Graph GT-irr Construction

Reduce the CFG GCFG to the T-irreducible graph GT-irr by applying the
following basic transformations T = {T1, T2, T3} until the resultant graph cannot
be further reduced.

T1: Elide Irrelevant Nodes

Let n be an irrelevant node with a single successor m. The T1 transfor-
mation is the consumption of node n by m. New edges are introduced so
that predecessors of n become predecessors of m. (Figure 6(a))

T2: Elide Self-Loop Edges

Let n be an irrelevant node that has a self-loop edge (n, n). The T2
transformation removes that edge (Figure 6(b)). When a loop block does
not contain relevant nodes, execution of the loop is immaterial as it yields
a φ behavior. T2 transformation elides such loops.

T3: Elide Simple Irrelevant Condition Nodes

Let n be a condition node that does not correspond to a relevant node
and without relevant nodes on its branch edges such that all branch edges
lead to the same successor m of n. The T3 transformation elides n and
its branches so that the predecessors of n become predecessors of m (Fig-
ure 6(c)). T3 elides only a subset of the irrelevant condition nodes (Def-
inition 17). The condition nodes elided by T3 are the ones that become
vacuous after T1 elides all irrelevant nodes.
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Figure 6: T-irreducible graph transformations: (a)T1, (b)T2, (c)T3

Listing 1 shows the worklist algorithm for creating a GT-irr from an input
graph G.

1 Procedure constructTIrreducibleGraph(G(V,E,>,⊥))

2 do

3 // Transformation T1 to elide irrelevant nodes.

4 for each irrelevant node n ∈ G : suc(n) = {m}
5 for each edge (p, n) where p ∈ pred(n)

6 G← G(V,E + (p,m)− (p, n),>,⊥)

7 end for

8 G← G(V − n,E,>,⊥)

9 end for

10
11 // Transformation T2 to elide self -loop edges.

12 for each irrelevant node n ∈ G : n has a self -loop edge

13 G← G(V,E − (n, n),>,⊥)

14 end for

15
16 // Transformation T3 to elide irrelevant condition nodes.

17 for each condition node n ∈ G : suc(n) = {m} and n is

irrelevant statement

18 for each edge (p, n) where p ∈ pred(n)

19 G← G(V,E + (p,m)− (p, n),>,⊥)

20 end for

21 G← G(V − n,E,>,⊥)

22 end for

23 while (there is a change in G)

24 return G

25 end Procedure

Listing 1: The worklist algorithm for creating a GT-irr from an input graph G

We examined the irreducible graphs obtained by applying the three trans-
formations in Step 1 and found examples of complex CFGs where some of the
irrelevant condition nodes (Definition 17) were not completely elided from the
irreducible graph. The rest of the algorithm (Steps 2 to 5) is designed to elide
these remaining irrelevant condition nodes.

Definition 20. GCG is the condensation graph of a directed graph G if each
strongly-connected component (SCC) of G contracts to a single node in GCG

and the edges of GCG are induced by edges in G.
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Step 2: Irrelevant Nodes Condensation Graph GIRCG Construction

Compute the subgraph GI of GT-irr induced by its irrelevant nodes. Then,
construct the irrelevant node condensation graph GIRCG of GI.

Step 3: Relevant Nodes Condensation Graph GRCG Construction

Construct a new graph GRCG by adding the relevant nodes in GT-irr to
GIRCG. If an edge exists between a node in an SCC and a relevant node n in
GT-irr, then introduce an edge in GRCG between the contracted node for that
SCC and the relevant node n.

Step 4: Condensed PCG GcPCG Construction

Transform GRCG into a T -irreducible graph GcPCG by applying the set of
basic transformations T = {T1, T2, T3} as in Step (1). The resultant graph
GcPCG after this step is the condensed PCG.

Step 5: Final PCG GPCG Construction

Transform GcPCG into GPCG by expanding each remaining contracted SCC
in GcPCG back to the original SCC as in GT-irr. The resultant graph GPCG after
this step is the PCG.

Figures 7(a-g) illustrate CFG to PCG transformation. In this example, the
relevant nodes (highlighted in yellow) are: r1 and r2. Note that the GcPCG in
Figure 7(f) and the PCG in Figure 7(g) are the same as there are no remaining
SCCs in GcPCG that need to be expanded in PCG.

4.2. PCG Examples

Figure 8(a) shows the PCG for function foo1 (Figure 1) that we used to verify
the DBZ vulnerability. The relevant statements are highlighted in yellow. We
can see that there are three paths in the PCG and each path provides a unique
relevant behavior. Note that the condition node C1 is not present in the PCG
as it is an irrelevant condition (Definition 17) causing multiple CFGs paths to
exhibit the same relevant behavior, i.e., B1 and B2 behaviors result in the same
relevant behavior RB1 in Table 1. Therefore, checking whether function foo1 is
vulnerable requires checking the feasibility of the conditions C2 and C3 as both
are relevant conditions.

Figure 8(b) shows the PCG for function foo2 (Figure 2) that we use to verify
correct lock/unlock pairing. By removing the back edges from the PCG, it
results in three paths. Each path contributes a unique relevant base behavior.
The CFG has two normal base behaviors due to the C3 condition, but both
normal base behaviors exhibit the same relevant base behavior. Thus, the PCG
transformation eliminates the C3 condition as it is an irrelevant condition.

The same reasoning applies to the PCG in Figure 8(c) for function foo3 with
nested loops (Figure 4). We can see that each path in the acyclic PCG exhibits
a unique relevant base behavior. With behavior compaction, we can see that all
relevant base behaviors are safe. The PCG retains all condition nodes in this
example as they are relevant conditions. Note that the SCC of the condition
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Figure 7: CFG to PCG Transformation Illustration

nodes C2 and C3 is retained in the PCG as it has two relevant successors, which
are the relevant condition node C4 and the relevant node unlock(O) (Line 7).

Finally, Figure 8(d) shows the PCG for function hwrng attr current store (Fig-
ure 5). The PCG has two paths and each path corresponds to a unique relevant
behavior. Note that C1 is retained in the final PCG as it is needed to check
the feasibility of the vulnerable path from the true branch of condition C1. The
condition nodes C2, C3 and C4 in the CFG (Figure 5(b)) are removed in the
PCG as they are irrelevant condition nodes.

4.3. Algorithmic Complexity

Let |V | and |E| be the respective numbers of nodes and edges in the CFG.
For creating the T-irreducible graphs in Step 1 and Step 4, we use the worklist
algorithm in Listing 1. This algorithm never grows in the size of the input
graph and the maximum size of the graph it will traverse is |V |+ |E|, yielding
the complexity of O(|V | + |E|). For detecting the SCCs in Step (2), we use
an algorithm by Tarjan et al. [18] to compute strongly-connected components
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Figure 8: PCGs for the examples in Section 3

of a directed graph. This algorithm also has a complexity of O(|V | + |E|),
yielding the complexity of O(|V | + |E|) for the CFG to PCG transformation.
The run-time of the transformation does not depend on the number of paths in
the CFG.

4.4. PCG Theory with Proofs

In this section, we show the optimality of the PCG, which is to minimize the
repetitive computation encountered in computing the relevant base behaviors
from the CFG. Given a CFG G, computing the relevant base behaviors for every
path of A(G) (Definition 12) involves unnecessary repetitions because multiple
paths in A(G) can produce the same relevant base behavior.

Definition 21. The optimality property of PCG Ĝ is defined as: (1) each
path in A(Ĝ) (Definition 12) yields a distinct relevant base behavior, (2) A(Ĝ)
includes the totality of relevant base behaviors of A(G) where G is the CFG, and
(3) Ĝ does not contain irrelevant statements.

For establishing the optimality of PCG, we use the notion of a colored graph
G where a subset of nodes are colored and each of those nodes has a unique
color. The colored nodes represent relevant statements for a particular analysis.

Definition 22. The boundary of subgraph S in a directed graph, denoted
by boundary(S), is the set of nodes u ∈ S such that suc(u) and suc(S) have a
non-empty intersection.
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Note: See Definition 8 and Definition 16 for the definitions of the successor of
a node and the successor of a subgraph.

Theorem 1. Let G be a colored graph such that any subgraph S of G con-
taining only non-colored nodes is an acyclic graph. If G is T-irreducible then
|suc(S)| ≥ 2.

Proof. If a non-colored node u ∈ G has only one successor then it is eliminated
by transformation T1. Thus, since G is T -irreducible, |suc(u)| ≥ 2 for all non-
colored nodes u ∈ G. Also, by assumption, any subgraph S of G containing
only non-colored nodes is an acyclic graph. Using these two facts, we will show
that the subgraph S must have a node with at least two successors outside S
and thus |suc(S)| ≥ 2.

Let Pv0→vn
: (v0, v1), (v1, v2), · · · , (vn−1, vn) be a maximal path in subgraph

S. Since vn is the terminal node of this maximal path P , its successor cannot
be another node in S not on the path P . Also, the successor of vn cannot be
another node on the path P because S is an acyclic graph, so vn must belong
to boundary(S) and all its successors must be outside the subgraph S. Since vn
is a non-colored node, we have |suc(vn)| ≥ 2. Since vn ∈ S and has at least two
successors outside of S, we have |suc(S)| ≥ 2. This completes the proof.

Corollary 1. Let G be a CFG and GcPCG be the condensed PCG. Then, for
any subgraph S containing non-colored nodes of GcPCG, |suc(S)| ≥ 2.

Proof. Note that the condensed PCG GcPCG is the graph resulting from Step (4)
of the transformation from the CFG to PCG. By construction, the condensed
graph GcPCG is a colored T -irreducible graph. Also, by construction any sub-
graph S of GcPCG containing only non-colored nodes is an acyclic graph. By
applying Theorem 1 to GcPCG, we prove the corollary.

Corollary 2. The PCG does not contain any irrelevant condition nodes.

Proof. Let G be the CFG and let GT-irr be the irreducible graph obtained by
applying transformations T1, T2, T3 to G. We will prove that all the irrelevant
condition nodes will be eliminated when GcPCG is constructed. According to
Definition 17, a node c is an irrelevant condition node if there is a subgraph S
that contains c, all its branch edges, S has no relevant nodes (colored nodes),
and |suc(S)| = 1. It follows from this definition and Corollary 1 that GcPCG

does not contain any irrelevant condition nodes. Thus, the final graph PCG
also does not contain any irrelevant condition nodes, because it consists of the
colored nodes in GcPCG and the non-colored nodes resulting from expanding
each remaining contracted SCC in GcPCG.

Note: According to Definition 12, A(G) and A(Ĝ) denote the acyclic graphs
derived from the CFG G and its PCG Ĝ.

Definition 23. Let E denotes the set of relevant nodes in a CFG G, then a
path equivalence relation RE is an equivalence relation on the set of paths
in A(G) such that two paths are equivalent iff they have the same relevant base
behavior.
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Corollary 3 (Optimality of PCG). Let E be the set of relevant nodes in a
CFG G and let Ĝ be the corresponding PCG. Then, PCG has the optimality
property (Definition 21).

Proof. Let RE be the path equivalence relation (Definition 23) defined on G.
Let A(G) and A(Ĝ) be the respective acyclic graphs for G and Ĝ.

To prove the optimality property (Definition 21), let us show a one-to-one
and onto mapping between the equivalence classes of RE and the paths in A(Ĝ)
such that each equivalence class and the corresponding path are associated with
the same relevant base behavior.

Since the PCG retains all the relevant statements and the relevant condition
nodes (Corollary 2), it follows that each path in A(Ĝ) yields a distinct relevant
base behavior. Each equivalence class also corresponds to a distinct relevant
base behavior. Thus, we get one-to-one and onto mapping between the equiva-
lence classes of RE and the paths in A(Ĝ) such that each equivalence class and
the corresponding path are associated with the same relevant base behavior.

Note: A tighter path equivalence relation can be defined by introducing the
notion of semantically equivalent relevant nodes. The established optimality is
with respect to a weaker path equivalence which does not take into account the
semantic equivalence of relevant nodes.

Theorem 2. If there exists a feasible CFG path P with a relevant base behavior
B then there exists a feasible PCG path P̂ with the relevant base behavior B.

Proof. Note that the conditions on each CFG path P contains the set of condi-
tions on the corresponding PCG path P̂ . Thus, if P is feasible then P̂ is also
feasible. Also, the relevant statements and relevant conditions on P are retained
on P̂ ; so, it has the same relevant base behavior B as the path P . Thus, if there
is a feasible CFG path P with a relevant base behavior B then there is a feasible
PCG path P̂ with the relevant base behavior B.

Remark 2. The converse of Theorem 2 would hold except for the problematic
scenario described below. By the definition of irrelevant condition nodes (Def-
inition 17), an equivalence class has paths going through all possible branches
at an irrelevant condition node. So, given a PCG path P̂ with relevant base be-
havior B, we can always choose feasible branches at irrelevant condition nodes
to construct a CFG path P with a relevant base behavior B that is feasible with
respect to its governing conditions.

The problematic scenario is one in which all the CFG paths corresponding
to a PCG path have a statement S (e.g., an infinite loop) that is not otherwise
relevant but it makes a part of the CFG path unreachable. Since the statement
S is not included in the PCG, the complete PCG path is reachable. Thus, we
can have a PCG path P̂ with a relevant base behavior B that is not observable in
the CFG because the corresponding CFG paths are broken due to the statement
S.
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Note: Theorem 2 shows that path feasibility can be more efficiently computed
due to the PCG because only the relevant conditions identified by the PCG
need to be used for checking the feasibility.

4.5. CFG to PCG Mapping as a Graph Homomorphism

Let us conclude this section by pointing out an important connection to
graph homomorphisms. Graph homomorphisms are mappings that preserve
adjacency of vertices and they are widely used in applications involving graph
coloring and other problems [19].

The CFG to PCG mapping is a graph homomorphism. Intuitively, a ho-
momorphism from G to H is a partition of G, each node of H represents one
partition, the edges in H correspond to the edges between partitions. Given
partitions P1 and P2, there is an edge from P1 to P2 if and only if there exists
x in P1, y in P2, and (x, y) is an edge in G. A precise definition of graph homo-
morphism for directed graphs is as follows. Let G and H be directed graphs.
Let V (G) and V (H) be their node sets and E(G) and E(H) be their edge sets.
A homomorphism of G to H is a mapping f : V (G)→ V (H) such that

1. if ∃ x, y ∈ V (G) such that f(x) = f(u), f(y) = f(v), (x, y) ∈ E(G), and
f(u) 6= f(v) =⇒ (f(u), f(v)) ∈ E(H);

2. if @ x, y ∈ V (G) such that f(x) = f(u), f(y) = f(v), (x, y) ∈ E(G) =⇒
(f(u), f(v)) /∈ E(H) .

In CFG to PCG, the homomorphism is a one-to-one mapping between the
nodes for relevant statements and relevant conditions and the other nodes in
the CFG are mapped to their relevant successors in the PCG.

5. PCG Tool Support

We developed a PCG toolbox to facilitate the use of the PCG for program
comprehension, analysis, and verification. The toolbox provides: (1) “PCG
Smart View” - an interactive visual analysis mechanism, and (2) APIs to con-
struct and use PCGs in automated analyses. The toolbox is designed to support
multiple programming languages. We have developed the PCG toolbox as an
Atlas [14, 13] plug-in to leverage features including: multi-language support,
a graph database, a query language, the eXtensible Common Software Graph
Schema (XCSG), a variety of program analyzers, and interactive program graph
visualization. The toolbox is deployed as an Eclipse [20] plug-in, so it can also
leverage the Eclipse infrastructure.

5.1. PCG Toolbox Workflow

Using the PCG toolbox involves the following two phases:
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1. Relevant statement selection: The user may do so interactively by clicking
on code statements or by clicking on the corresponding CFG nodes. Al-
ternatively, the user can invoke an automated analyzer (e.g., for the DBZ
problem (Figure 1), we use an analyzer that computes the Use-Def (UD)
chains).

2. PCG construction: The PCG construction is based on the CFG to PCG
transformation algorithm in Section 4. The step can be done interactively
through a visual interface called the PCG Smart View or programmatically
by using the toolbox APIs.

5.2. PCG Toolbox Infrastructure

The PCG toolbox leverages the Eclipse and Atlas infrastructure for:

• Visual interactions using program graphs or source code: This capability
is used in the toolbox to select relevant statements by creating a CFG
and clicking on CFG nodes, synchronizing these selections with creation
and visualization of the corresponding PCG as it evolves in response to
selections. A similar capability is provided to select relevant statements
by clicking on the source code.

• Queries through the Atlas Shell : This capability is used in the toolbox in
two ways: (a) to build a set of relevant statements using queries, and (b)
to use the PCG as input for a subsequent analysis.

• Write Java programs with the toolbox APIs and Atlas Queries: This ca-
pability is used to build a verifier or analyzer that obtains the PCG and
operates on it for further processing. Section 6.1 describes our PCG-based
verifier for lock/unlock pairing in the Linux kernel.

• Analyzers in Atlas: As discussed earlier, a number of analyzers in Atlas
can be used with the toolbox to select relevant statements. For example,
the toolbox uses an Atlas-based analyzer for detecting loops based on the
DLI algorithm [21]. The analyzer identifies all of the loop back edges.

• XCSG Schema: XCSG provides support for multiple languages, which
provides a base for the toolbox to do the same.

• Graph Database: Atlas uses attributed graphs [13] for representing pro-
gram semantics. An analyzer can use the Atlas tagging mechanism to add
attributes to nodes and edges of a program graph. The tagging has multi-
ple uses including its use for analyses to communicate with each other. As
an example, we use the loop-detection analyzer to compute and tag the
loop back edges. These loop back edges are then used by another analyzer
to create an acyclic graph to compute the paths corresponding to relevant
base behaviors.
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Section 6 and Section 7 present case studies on how we use the PCG toolbox
interactively via the PCG Smart View and programmatically via the toolbox
APIs to verify the lock/unlock pairing in the Linux kernel and detect side-
channel vulnerability in Java bytecode.

6. Case Study 1: Linux Verification

The PCG is applicable for verifying the matching and anti-matching safety
and security properties discussed in Section 2. We present a Linux verification
study to show the practical benefits of using PCGs in automated and interactive
analyses.

6.1. PCG-Based Automated Verification

We developed a PCG-based automated analyzer to verify the lock/unlock
pairing in the Linux kernel [9]. The PCG-based verifier is developed using the
PCG toolbox APIs (Section 5). The study compares the verification results
of the PCG-based verifier with the Berkeley Lazy Abstraction Software Veri-
fication Tool (BLAST) [10]. This tool, top rated in the software verification
competition (SV-COMP) [11], is used by the Linux Driver Verification (LDV)
organization [12]. The problem we have chosen is to verify the lock/unlock
pairing on all feasible paths. The study is based on three versions of the Linux
operating system with altogether 37 million lines of code and 66, 609 Lock in-
stances.

6.1.1. PCG-Based Automated Verification: Performance Improvements

BLAST verifies 43, 766(65.7%) of Lock instances as safe; it is inconclusive
(crashes or times out) on 22, 843 instances. BLAST does not find any unsafe
instances. BLAST required 172 hours and 56 minutes for its verification. The
PCG-based automated verification tool verifies 66, 151(99.3%) of Lock instances
as safe, and it is inconclusive on 451 instances. Seven unsafe instances found
through our study were reported as bugs to the Linux organization. These were
accepted and fixed. The PCG-based verifier required 3 hours and 24 minutes.

Since the analysis work is related to the size of the CFG or PCG, we use the
size reduction from CFG to PCG as the metric to measure the work reduction.
Figure 9 shows the distribution of nodes, edges, and condition nodes for both the
CFGs and PCGs for all the relevant functions for lock/unlock pairing analysis in
Linux kernel (v3.19-rc1). Compared to 30, 914 CFGs, only 115 PCGs have more
than 30 nodes, which is a reduction of 99%. Compared to 35, 145 CFGs, only
879 PCGs have more than 30 edges, which is a reduction of 97%. Compared to
17, 120 CFGs, only 1, 810 PCGs have more than 10 condition nodes, which is a
reduction of 89%. Recall that PCGs simplify path feasibility checks by reducing
the number of condition nodes. Compared to 8, 644 CFGs, 30, 999 PCGs have
no condition nodes, which is a 259% increase of cases where PCGs eliminate the
need for path feasibility checks.

The reduction from CFG to PCG is particularly important for a CFG with
a large number of condition nodes. Table 2 lists the reductions for the ten
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Figure 9: Linux kernel CFG to PCG reduction for lock/unlock pairing

functions with the largest number of condition nodes from the Linux kernel
(v3.19-rc1). For example, for function ptlrpc connect interpret the reductions
from CFG to PCG are: from 791 nodes to 8 nodes, from 1, 000 edges to only
9 edges, and from 214 condition nodes to 2 condition nodes. For function
arcnet interrupt the reduction from CFG to PCG are: from 4-million paths in
A(G) to only 2 paths in A(Ĝ). The number of paths are for the acyclic graphs
A(G) and A(Ĝ) (Definition 12) corresponding to the CFG G and the PCG Ĝ
respectively.

6.2. Interactive Verification using PCG

In a landmark paper [22] on program verification and proofs in mathemat-
ics, De Millo, Lipton and Perlis (the first recipients of the Turing Award) argue
that tools for program verification must provide evidence to support verification.
With the growing need for software assurance for mission-critical systems, there
is renewed interest in automated verification with evidence [23]. The bugs we
have found in the results of automated verification substantiate the argument
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Table 2: A comparison of CFG vs. PCG

Function Name
Nodes Edges Conditions Paths

CFG PCG CFG PCG CFG PCG CFG PCG

ptlrpc connect interpret 791 8 1,000 9 214 2 380,414 3

kiblnd passive connect 668 24 840 40 174 17 34,216 18

client common fill super 644 17 801 29 162 13 1,724,067 14

qib make ud req 630 9 833 13 160 5 20,586 6

xfrm6 input addr 574 8 769 11 151 4 1,719 7

kiblnd create conn 568 16 714 27 149 12 3,748 12

jbd2 journal commit transaction 522 4 648 3 127 0 2,697 1

ceph writepages start 416 13 540 21 126 9 1,004 7

arcnet interrupt 408 6 588 6 183 1 4,004,200 2

macsec post decrypt 390 8 521 9 104 2 1,381 3

for evidence. The PCG-based automated verification tool produces supporting
evidence. The evidence includes the CFG and the PCG for each analyzed func-
tion. Overall, PCGs are smaller than corresponding CFGs. The CFG and the
PCG graphs for 66, 609 Lock instances are posted on a website [24].

6.2.1. PCG-Based Interactive Analysis User Study

The study was performed by 36 undergraduate students from a software en-
gineering course and 4 graduate students from our research group. We chose
400 Lock instances of varying difficulty for the audit. We asked the students to
use the PCG and CFG graphs from the website [24] and PCG Smart View (Sec-
tion 5) to audit the verification results. Each Lock instance was independently
audited by two undergraduate students and also by two graduate students.

We report here four representative examples of interesting findings from in-
teractive analysis using PCGs. We present a difficult verification instance (Ex-
ample 4), which requires an analysis of function pointers. The instance brings
out the need for interactive analysis for cases which can be inordinately difficult
for a completely automated analysis. This instance is incorrectly verified as safe
by the automated analysis of the BLAST tool. The PCG-based verification tool
is inconclusive on this instance but it provides evidence that is quite valuable
for a human analyst to complete the verification.

Example 1: Correct Lock/Unlock Pairing

The first example shows the PCG serving as valuable evidence to facilitate
manual verification of correct lock/unlock pairing. Figure 10(a) shows the func-
tions that must be examined for the Lock in the function hso free serial device.
Figures 10(b) and 10(c) show the PCGs for the functions hso free shared int and
hso free serial device, respectively.

In this example, it is easy to observe from the PCG of hso free serial device

that the Lock is followed by a condition node with two paths: (1) one path leads
to a matching Unlock (intra-procedural), and (2) the other path leads to a call to
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Figure 10: An example of correct lock/unlock pairing

function hso free shared int (inter-procedural). The PCG of the called function
hso free shared int shows a matching Unlock on all paths within that function.

Example 2: Inconclusive Verification by BLAST

The second example shows the PCG serving as valuable evidence to manually
cross-check an instance for which the BLAST verification is inconclusive, i.e.,
BLAST cannot determine if the pairing happens correctly or not. Our cross-
checking with the help of a PCG revealed that it is an unsafe instance. This
instance was reported as a bug and the Linux organization fixed the bug.

Figure 11 shows the PCG for the function toshsd thread irq that has calls to
Lock and Unlock. The CFG for this function is more complex with 8 condition
nodes and multiple loops. The multiple CFG paths between the Lock and the
Unlock are all equivalent and they get mapped to one PCG path. The CFG can
be viewed at the website [24].

The PCG for toshsd thread irq shows a path on which the Lock is not followed
by an Unlock. As seen from the PCG, the path is feasible if its governing condi-
tions C1 = false and C2 = true. The feasibility check is easy to do manually and
it shows that the path is feasible and thus it is a bug. This bug was reported
to the Linux organization and it was fixed.

Example 3: Verification Involves a Loop

The third example shows the PCG serving as valuable evidence to reason
about cases where the Lock happens inside a loop. This instance looks like a bug
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Figure 11: A Linux bug discovery using a PCG as evidence

at a cursory glance, but a careful review using the PCG shows that it is not
a bug. The PCG in this example is an unusual case because our PCG-based
verification verifies one lock at a time. The PCG in Figure 12(a) shows that
the Lock L1 is matched correctly on two paths with the Unlock U1 and Unlock U2.
However, U1 is dangling upon the entry to the loop. This raises the question
of whether there is another Lock before the loop, which would be required for
a correct pairing. Since a separate PCG is created for each instance of Lock,
the other Lock is not seen in this PCG. Creating a PCG considering all Locks
and Unlocks in this function shows that there is another Lock L2 before the loop
as shown in Figure 12(b). Thus, it is not an error in Linux, but this unusual
situation does require a careful review of the PCG to confirm that. A possible
refinement of the current PCG-based verifier is to include all the Locks on a
single lock object together as relevant statements.

Example 4: A Verification Instance with a Quirk

The fourth example shows the PCG serving as a valuable evidence that
helped us find an erroneous verification by BLAST. BLAST verifies this instance
as safe. An unusual programming style revealed by the PCG made us suspect
the BLAST verification. This turns out to be a complex scenario for verification,
but we were able to show that it is an unsafe instance [25]. This instance was
reported as a bug which the Linux organization fixed. The reason why this
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Figure 12: A PCG indicating a missing lock preceding a loop

scenario is complex has to do with extra layers of indirection [25], which we
describe below.

Figure 13 shows the PCG for the function drxk gate crtl. The PCG shows
that the Lock cannot be matched by the Unlock as the Lock and Unlock are on two
mutually exclusive paths. The mutually exclusive paths are governed by the
branch node marked as C. If C = true, the Lock executes, otherwise the Unlock

executes.

Unlock Lock

!

Figure 13: A PCG Quirk

The Lock and Unlock on disjoint paths could pair with each other if function
drxk gate crtl is called twice, first with C = true then with C = false. This
amounts to using drxk gate crtl first as a lock and then as an unlock. A quick
query using Atlas shows that drxk gate crtl is not called directly anywhere. The
function could be either dead code or called via function pointers. Our PCG-
based automated verification tool currently lacks function pointer analysis. Us-
ing advanced Atlas queries, we can see that drxk gate crtl is called twice using
function pointers in function tuner attach tda18271. However, there is a path on
which there is a return before the second call which makes drxk gate crtl act as
unlock and thus a bug.
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This example shows an unusual programming pattern which would be in-
tractable for a fully automated verification. A human-in-the-loop evidence-
supported approach is crucial to handle such difficult cases.

7. Case Study 2: Detecting a Side-Channel Vulnerability

Detecting sophisticated Side-Channel Vulnerabilities (SCVs) [26] is like search-
ing for a needle in haystack without knowing what the needle looks like. It often
requires domain-specific knowledge [27, 28]. Detection involves exploring soft-
ware to identify vulnerable code, conceiving plausible attack hypotheses, and
analyzing software to gather evidence to prove or refute each hypothesis.

The PCG helps the analyst to focus on the space and time changing events
and their governing conditions. If executing such events causes observable
space/time differences then it creates the possibility of an SCV. The governing
conditions need to be user-input controlled for an attacker to force the execu-
tion of paths with observable space/time differences. Thus, to detect SCVs, the
analyst must understand the program to answer specific questions: (a) What
are the space/time changing events present in the program? (b) What are the
governing conditions controlling the execution of these events? (c) Can the gov-
erning conditions be controlled by user-inputs? Three phases of the interactive
analysis are:

• Phase I: Automated Exploration. The objective is to precompute infor-
mation that serves as the basis for the analyst to begin the investigation.
The precomputed information includes the locations of space/time chang-
ing loops and the user-input controlled conditions.

• Phase II: Hypothesis Formulation. After reviewing the precomputed
information, the analyst hypothesizes possibilities for SCVs. By the end
of Phase II, the analyst has hypotheses that need to be either validated
or refuted.

• Phase III: Validating the Hypotheses. The objective is to: (1) enable the
analyst to gather evidence to refine, refute, or validate each hypothesis
formulated in Phase II, and (2) help the analyst compose the overall modus
operandi of the attack.

Illustrating Example

This example illustrates an interactive use of the PCG to analyze Java byte-
code to detect SCVs. Consider a simple password checking app that compares
the passwords stored in a server against user-input strings submitted as pass-
words. The app Accepts if the submitted string matches with a stored password.
The app Rejects if the match fails.

At the end of Phase I, the analyst observes the statement Thread.sleep(25)

as a time-changing event. The analyst then needs to check whether there are
any user-input controlled conditions that govern the time-changing event. With
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the help of an Atlas-based taint flow analyzer, the analyst can explore the
taint flow graph shown in Figure 14. The taint flow graph shows: (1) the
program statements in the app tainting the secret (i.e., the passwords stored
on the server) highlighted with red color, (2) the program statements in the
app tainting the user-input (i.e., the string that can be submitted via the user
as a password) highlighted with blue color, and (3) the program statements
that mutually taint the secret and the user-input highlighted with yellow color.
Based on the taint analysis result, the analyst observes that the taints from
the secret and the user-input come together at conditions C1 and C2. These
conditions are user-input controlled conditions and both compare the user-input
against the secret passwords on the server.

Figure 14: Taint flows from the secret and the user-controlled input

In Phase II, the analyst hypothesizes that, depending on the comparison
result of the secret passwords with the submitted password, two paths are
created either by the condition C1 or C2 such that the time-changing event
Thread.sleep(25) happens on only one of those two paths. Investigating the con-
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ditions C1 and C2, the analyst sees that the secret and the user-input password
are compared one character at a time. Thus, if time difference can be observed
by an attacker, it can reveal to the attacker that there is a character match.
By submitting different strings for the password and observing the time differ-
ences, the attacker can learn the secret password. To validate the hypothesis,
the analyst gathers evidence in Phase III to answer the following questions:

1. Do the conditions C1 or C2 determine whether the time-changing event
Thread.sleep(25) will execute? In other words, are C1 and C2 relevant
conditions for the time-changing event?

2. Do the conditions depend on character-wise comparison of secret and user-
input?

The PCG is useful for answering these questions. To answer the first ques-
tion, the analyst creates the PCG using Thread.sleep(25) as a relevant statement.
The resulting PCG in Figure 15(a) shows that the condition C1 actually governs
the relevant statement Thread.sleep(25) when C1 = true. Thus, the execution of
Thread.sleep(25) is dependent on the comparison of the user-input and the secret
passwords.

Thread.sleep(25)

!"
!"

#$

#"

#%

#&
(a)	PCG	with	respect	to	Thread.sleep(25) (b)	PCG	with	respect	to	Thread.sleep(25)

and	data	flow	statements	for	!"

Figure 15: PCGs with respect to Thread.sleep(25) and data flow statements for C1

To answer the second question, the analyst uses Atlas data flow analyzer to
find the statements that belongs to the data flow for condition C1. The data flow
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analyzer returns the statements d1, d2, d3 and d4. Then, the analyst adds these
statements to the set of relevant statements with Thread.sleep(25) to construct
the PCG shown in Figure 15(b). The new PCG reveals the character-wise
comparison and the execution of Thread.sleep(25) is dependent on the condition
C1 comparing the user-input and the secret passwords. Thus, confirming the
existence of the SCV.

8. Related Work

The papers by Choi et al. [29] and Ramalingam [30] introduce the notion of
Sparse Evaluation Graph (SEG). Their research uses the same general principle
that for a given analysis problem, a compact program graph can be constructed
by removing irrelevant program statements. The fixed-point algorithm to com-
pute the SEG aggregates data flow behaviors on different paths.

The Binary Decision Diagram (BDD) [31] has been used in different contexts
of program analysis as a way to reduce the explosion of state space [6, 32]. Unlike
the approaches [6, 32], the PCG does not use a heuristic based on loop unrolling
and efficiently computes the relevant behaviors without the need to compute all
behaviors. The Binary Decision Tree (BDT) to BDD reduction has been also
used for path-sensitive analysis [7]. Unlike BDT to BDD reduction, the PCG
transformation does not require the input CFG to be acyclic and each path in
the acyclic PCG corresponds to a unique distinct relevant base behavior.

Das et al. [1] proposed a path-sensitive program verification in polynomial
time. Their approach propagates symbolic states relevant to a particular anal-
ysis along control flow paths. At a merge point for a given condition node, the
approach merges the symbolic states and eliminates a condition node and its
branches if the propagated symbolic states are not affected by the statements
along the branches.

CFG pruning techniques have been proposed in [33, 34] to overcome the
computational complexity of exploring all paths. However, the resultant com-
pact CFG does not achieve the optimality (Definition 21) the PCG achieves.
The PCG has evolved from our earlier research on event view [35] and event
flow graphs [36].

9. Conclusion

This paper presents an efficient and accurate approach to analyze software
for a broad spectrum of safety and security vulnerabilities. The paper provides
a rigorous formulation and a practical method to apply the approach. The ap-
proach is illustrated with a challenging analysis problem of lock/unlock pairing
on all feasible execution paths. The tool support for the approach is developed
using Atlas [13, 14], a platform for developing software analysis and visualization
tools.

The approach involves transforming a CFG to a PCG. The effectiveness of
the approach depends on the reduction from CFG to PCG. The approach is
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evaluated using three versions of the Linux kernel. The CFGs and PCGs, for
each of the 66, 609 Lock instances from the three versions of the Linux kernel,
are posted on a website [24].

As a study of interactive analysis using the PCG, 400 Lock instances of vary-
ing difficulty were chosen for auditing by undergraduate and graduate students.
We reported four representative examples of interesting findings from the study.
These examples show the PCG serving as a valuable evidence to facilitate man-
ual verification of correct lock/unlock pairing. Our manual verification with the
help of PCGs has revealed bugs in the Linux kernel - bugs that were missed by
a top rated formal verification tool.

We describe the use of the PCG to detect sophisticated side-channel vulner-
abilities (SCVs). Detecting SCVs requires domain-specific knowledge [27, 28].
It involves exploring software to identify vulnerable code, conceiving plausible
attack hypotheses, and analyzing software to gather evidence to prove or refute
each hypothesis. We present a case study to show that the PCG is useful when
the analyst has to gather evidence to prove or refute an SCV.
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