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Abstract—The goal of path-sensitive analysis (PSA) is to
achieve accuracy by accounting precisely for the execution
behavior along each path of a control flow graph (CFG). A
practical adoption of PSA is hampered by two roadblocks: (a)
the exponential growth of the number of CFG paths, and (b) the
exponential complexity of a path feasibility check. We introduce
projected control graph (PCG) as an optimal mathematical
abstraction to address these roadblocks.

The PCG follows from the simple observation that for
any given analysis problem, the number of distinct relevant
execution behaviors may be much smaller than the number
of CFG paths. The PCG is a projection of the CFG to retain
only the relevant execution behaviors and elide duplicate paths
with identical execution behavior. A mathematical definition of
PCG and an efficient algorithm to transform CFG to PCG are
presented.

We present an empirical study for three major versions
of the Linux kernel to assess the practical benefit of using
the optimal mathematical abstraction. As a measure of the
efficiency gain, the study reports the reduction from CFG to
PCG graphs for all relevant functions for pairing Lock and
Unlock on all feasible execution paths. We built a tool to
compute these graphs for 66,609 Lock instances. The CFG and
PCG graphs with their source correspondence are posted on a
website. We used these PCG graphs in a classroom project to
audit the results of Lock and Unlock pairing done by the Linux
Driver Verification (LDV) tool, the top-rated formal verification
tool for the Linux kernel. Our audit has revealed complex
Linux bugs missed by LDV.

I. INTRODUCTION

A path-sensitive analysis requires that: (a) the execution
behavior along each CFG path is accounted individually,
and (b) the execution behavior along an infeasible path is
excluded. A path-sensitive analysis is critically important
for accuracy. Because of its high computational complexity,
path-sensitive analysis is avoided in practice by aggregating
the execution behaviors [1], [2]. This aggregation is a source
of the large number of false positives and negatives in static
analyses. Consider a Lock followed by a branch node with
two branches, with Unlock on only one branch. Depending
on how the aggregation is interpreted by a particular anal-
ysis, the result could be a false negative or inconclusive.

This material is based on research sponsored by DARPA under agreement
numbers FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

It could also be a false positive, if the branch without the
Unlock is infeasible.

A path-sensitive analysis can have exponential computa-
tional complexity: (1) the number of CFG paths grows ex-
ponentially with the number of non-nested branch nodes [3],
[4], and (2) path feasibility check can incur an exponential
computation [5], [6], [7], [8], [9], [10].

We present a path equivalence class (PEC) approach
to optimize path-sensitive analysis. Paths are equivalent if
their execution behaviors are the same for the purpose of
analyzing a given problem. We will give formal definitions
in Section IV. For now, let us use an example to illustrate
the idea. Consider the problem of pairing Lock and Unlock.
Suppose the control flow graph has a Lock(X) for object X,
followed by a branch node B1, followed by another branch
node B2, and each branch node has two paths. For B2, one
path has a corresponding Unlock(X). The two B1 paths do
not have any statements relevant for the Lock/Unlock pairing.
If n is the number of non-nested branch nodes then the
number of paths is 2n. In this example, we have 4 paths.
The 4 corresponding behaviors relevant to the pairing are:
(a) Lock(X) followed by Unlock(X) on two paths, and (b)
Lock(X) not followed by Unlock(X) on two other paths.
Thus, the 4 paths can be partitioned into 2 equivalence
classes corresponding to the 2 distinct behaviors. Also, note
that the B1 branch node may be irrelevant for performing
the path feasibility check. In Sections III and IV , we will
formally describe the PEC approach and it’s applicability.

Given operations relevant for a problem as a subset of
the CFG nodes, the research question is: what is an optimal
abstraction to represent all distinct relevant execution behav-
iors? The CFG may have irrelevant paths, i.e. paths without
relevant operations. The CFG may also have duplicate
equivalent paths, i.e. paths with the same execution behavior
in terms of the sequence of relevant operations along each
path. Thus, in general, CFG is not the optimal abstraction
for representing relevant execution behaviors. The PEC
approach defines an optimal abstraction, called the projected
control graph (PCG). The PCG incorporates all relevant
execution behaviors with one and only one path for each
relevant execution behavior. It may seem counterintuitive,
but it is shown in Section V how to construct the PCG with
all distinct relevant execution behaviors without examining
each CFG path.

Another important research question is about the practical
impact of the mathematical abstraction: Is the analysis work



significantly reduced in practice by using the PCG instead of
the CFG? Answering this question requires empirical studies
with real-world software and complex analysis problems. We
report an empirical study with the Linux kernel and 66, 609
instances of a complex analysis problem. The amount of
work required for a path-sensitive analysis using the CFG
or the PCG is reflected by the size attributes of those graphs.
We use them as the metrics for the empirical study.

In Section VI, we present a quantitative study to evaluate
the practical impact of the PEC approach. The study covers
66, 609 Lock instances from three major releases of the
Linux kernel. This study is performed using an automated
tool we developed to determine the relevant functions,
compute the CFG and PCG for each of those functions,
and then measure the size attributes of each CFG and PCG.
The CFG and PCG graphs for all the Linux Lock instances
along with their source correspondence are available through
a website [11].

A compact PCG improves efficiency of an automated
analysis as well as it facilitates program comprehension. We
conducted a study in which a group of students audited the
results of the formal verification of Lock/Unlock pairing by
the top-rated Linux Driver Verification (LDV) tool [12]. It
was much easier for students to audit using the PCG instead
of the CFG. The PCG helped to discover complex Linux
bugs missed by the formal verification tool (Sections VI).

The key research contributions are:
• The PEC approach with an optimal mathematical ab-

straction for accurate and efficient analysis of a wide
spectrum of software and safety vulnerabilities (Sec-
tions III,IV,V).

• An assessment of the practical impact of using the
mathematical abstraction to improve efficiency of a
path-sensitive analysis (Sections VI).

• An illustration of how the mathematical abstraction is
useful to reveal complex bugs (Sections VI).

II. A MOTIVATING EXAMPLE

This example illustrates the grouping of paths in a CFG as
a motivation for the proposed PEC approach. The context for
the example is the problem of verifying the correct pairing
of Lock and Unlock on all feasible execution paths.

Figure 1 shows the CFG of hwrng_attr_current_store

function from the Linux kernel. The nodes > and ⊥ respec-
tively denote the unique entry and exit nodes added to the
CFG. Let T and F respectively denote the true and false

branches from a branch node.
In this example, we want to group the paths with

respect to two relevant operation nodes highlighted in
gray: mutex_lock_interruptible (&rng_mutex) (e1) and
mutex_unlock (&rng_mutex) (e2). All the paths from the
F branch of c1 are put in one group because they all have
the same sequence e1e2 of relevant operation nodes. All
the paths from the T branch of c1 are put in another group
because they all have the same sequence e1 of relevant
operation nodes. The verification analysis needs to extract

Figure 1. CFG for Function hwrng_attr_current_store

from the CFG paths the two distinct possibilities e1e2 and
e1. We will refer to these possibilities as relevant execution
behaviors. The grouping is a mechanism to extract these
distinct possibilities for the purpose of verification. Each
relevant execution behavior correspond to a group of paths.
We will refer to such a group of paths as a path equivalence
class.

A. Representation of Loop Execution Behavior

We use the regular expression (xi..xk)+ to represent the
execution behavior of a loop that is executed one or more
times, with the operation nodes xi to xk.

The paths due to a loop are accounted as follows. The
three possibilities for paths through a loop are: (1) the loop is
not entered because the loop entry condition is not satisfied,
(2) at the very first iteration of the loop, a break is executed,
and (3) the loop without a break is executed at least once and
then a break may or may not be executed. Suppose the loop
has k break points, then the paths are counted as: 1 path for
the first possibility, k paths for the second possibility, and
(k+ 1) paths for the third possibility. In the CFG shown in
Figure 1, since the loop has 3 break points, we count 8 paths
due to the loop. The CFG has a total of 9 paths partitioned
into 2 path equivalence classes. One equivalence class with
8 paths corresponds to the relevant execution behavior e1e2.
The other path equivalence class has only one path with the
relevant execution behavior e1.



Let us illustrate how loops containing relevant operations
are handled. Denote by L1 and U2 the Lock and the Unlock

in the above example. For the sake of illustration, suppose
we have inside the loop an Unlock U1 followed by a Lock L2

before the normal loop exit. Now, we have 3 distinct relevant
execution behaviors: L1, L1(U1L2)+U2, and L1U2. The
number of paths in three equivalence classes are respectively
1, 4, and 3. The c3 branch node becomes relevant because
it has different execution behaviors on its branches. Unlike
the previous analyses such as [8], [13], the PEC approach
does not use a heuristic based on loop unrolling.

III. SOFTWARE SAFETY AND SECURITY PROBLEMS

This section describes the class of software safety and
security problems for which the PEC approach is applicable.

Definition 1: 2-event matching - Verify that an event
e1(O) is succeeded by event e2(O) on every feasible execu-
tion path, where the two events are operations on the same
object O.

Besides the Lock/Unlock pairing problem which is de-
scribed in this paper, the 2-event matching covers several
problems such as memory Allocation/Deallocation pair-
ing, or file Open/Close pairing. A number of vulnerabilities
listed by the MITRE Corporation [14] can be viewed as
2-event problems.

Definition 2: 2-event anti-matching - Verify that an
event e1(O) is not succeeded by event e2(O) on any feasible
execution path, where the two events are operations on the
same object O.

Anti-matching covers several software security problems
defined according to confidentiality, integrity, and availabil-
ity (CIA) model [15]. A confidentiality verification problem
could be defined as: a sensitive source must not be followed
by a malicious sink on any feasible execution path. Similarly,
an integrity verification problem could be defined as: an
access of sensitive data must not be followed by a malicious
modification of sensitive data on any feasible execution path.

The following defines a general class of problems for
applying the PEC approach.

Definition 3: n-event verification - Verify on every
feasible execution path, that the occurrence of events on the
path follow the acceptability test defined by a finite state
machine (FSM) φ(E), where E is a set of n events that
operate on the same object O.

IV. THE PEC FRAMEWORK

In this section, we describe the PEC framework and its
mechanism for addressing the challenges for an accurate and
efficient analysis.

Definition 4: A Control Flow Graph (CFG) of a pro-
gram is defined as G = (V,E,>,⊥), where G is a directed
graph with a set of nodes V representing the program
statements and a set of edges E representing the control
flow between statements. > and ⊥ denote the respective
unique entry and exit nodes of the graph.

A. CFG Paths and Execution Behaviors

A CFG has two types of nodes: operation nodes and
branch nodes. For a branch node c, a branch edge is an
out-coming edge of c. A CFG path starts at the > node,
goes through a sequence of operation and branch nodes,
and ends at the ⊥ node. We will use the term governing
condition for a path for the condition associated with each
of the branch nodes along the path. Each CFG path has
a unique governing condition expression consisting of ci
or c̄i corresponding to that condition being T or F for that
path. A feasible path means that there is a possible program
execution where the governing condition expression for the
path is satisfied. A path with a loop is a corner case for the
governing condition expression. Suppose a loop is entered
when a condition ci is T, after some iterations of the loop
the condition ci becomes F and the loop terminates. We use
ĉi in the path expression to handle this case.

Definition 5: The execution behavior along a path P
(denoted by B(P )) is represented by a regular expression
consisting of the labels of the operation along the path where
each operation and branch node is labeled with a unique
identifier.

A subset of the CFG operation nodes are relevant for
analyzing a given problem instance. We will refer to these
nodes as the relevant operation nodes. For example, given a
call site Lock(X), the corresponding Unlock(X) call sites are
relevant operations. In presence of aliasing, the additional
relevant operations would be the CFG nodes where X is
aliased and Unlock(X̄) where X̄ is an alias of X.

Definition 6: The relevant execution behavior along a
path P (denoted by RB(P )) is represented by retaining
only the relevant operation labels in the execution behavior
regular expression for P .
An example to illustrate the representation of exe-
cution behavior: Let us illustrate the representation of
execution behavior using the CFG first shown in Figure 1
and redrawn in Figure 2(a). The highlighted nodes are
the relevant operation nodes. Operation nodes are labeled
x1 through x15, and the branch nodes are labeled c1
through c5 . Figure 2(b) shows a CFG path P1 with the
governing condition expression c̄1c2c3c̄4c̄5 where c̄i means
the path is associated with the condition for ci being F.
The B(P1) is: >x1x2e1x3x4x9x10x11x12x13e2x15⊥. Fig-
ure 2(c) shows a CFG path P2 with a loop; the B(P2) is:
>x1x2e1x3x4(x6)+x7x8e2x15⊥. The governing condition
expression for P2 is c̄1c̄2ĉ3c̄4. Note that relevant execution
behavior is the same for P1 and P2, i.e., RB(P1) =
RB(P2) = e1e2. We may omit > and ⊥ while illustrating
execution behaviors.

Definition 7: Successors of a node u in a directed graph
G, denoted by suc(u), consist of the set of nodes v 6= u such
that ∃ an edge (u, v).

Definition 8: Successors of a subgraph S in a directed
graph G, denoted by suc(S), consist of the set of nodes
v /∈ S such that v =suc(u) for u ∈ S.



Figure 2. Execution paths in a CFG

Definition 9: A node c is an irrelevant branch node
if there exists a subgraph S containing c and all branch
edges of c such that S does not have nodes with relevant
operations, and S has a unique successor, i.e., |suc(S)| = 1.
If such a set S does not exist for a branch node then it is a
relevant branch node.

Definition 10: The projected control graph (PCG) of a
CFG G is the node-induced subgraph of G consisting of the
nodes for relevant operations, the relevant branch nodes, and
the entry (>) and exit (⊥) nodes.

Remark 1: The PEC approach does not collapse distinct
relevant operation nodes of CFG. Consider the following
example: suppose the node xi is on one branch and the node
xj on the other branch and both nodes have the same relevant
operation Unlock(X). The PEC approach retains both nodes.
An extension of the PEC approach would be to define a
tighter path equivalence relation by introducing the notion
of semantically equivalent relevant operation nodes.

B. Accuracy and Efficiency with the PEC Approach

The classic challenges for an accurate and efficient anal-
ysis are:

1) The path multiplicity challenge due to the exponential
growth of the number of CFG paths.

2) The path feasibility challenge due to the exponential
complexity of checking feasibility of unsafe paths.

3) The object tracking challenge due to the high compu-
tational complexity of the pointer analysis to track the
object O for the set of relevant operations.

The PEC approach addresses the path multiplicity chal-
lenge. There is a one-to-one correspondence between PCG
paths and the distinct relevant execution behaviors. Because
of this correspondence, analyzing all CFG paths is equivalent
to analyzing all PCG paths. Note that the number of distinct
behaviors is the lower bound on the number of paths that

must be analyzed. The PCG achieves this lower bound
(Section V).

The PEC approach addresses the path feasibility chal-
lenge. There exists a feasible CFG path P with a relevant
execution behavior B if and only if there exists a path P ′

with the behavior B that is feasible with respect to the
relevant branch nodes on P (Section V). Thus the PEC
approach simplifies the path feasibility by retaining only the
relevant branch nodes.

Let us now understand how the PEC approach helps to ad-
dress the object tracking challenge. Recall that we start with
a set of relevant operations and a FSM. The PEC approach
uses an almost linear-time points-to analysis [16] to select
the additional relevant operation nodes for constructing the
PCG. These additional nodes are for operations that alias
the object O on which the FSM events operate.

By keeping track of aliasing, the PCG can be used to track
individual paths during an inter-procedural analysis. Suppose
an event e1(p) occurs in a function f1, and p is passed as
a parameter q to another function f2 called by f1. Next, an
event e2(q) occurs in function f2. Let Ĝ1 and Ĝ2 denote the
PCG of f1 and f2 respectively. To perform interprocedural
analysis Ĝ2 is linked to Ĝ1 at the node where f2 is called
in f1. At this call-site node in Ĝ1, the analysis enters and
traverses through Ĝ2 and at the exit returns to to continue
the traversal in Ĝ1. The linkage between Ĝ1 and Ĝ2 can
be established because of the unique entry (>) and exit (⊥)
nodes in each CFG.

Figure 3. An illustration for the object tracking challenge

We will use the example shown in Figure 3 to illustrate
how the PEC approach helps to address the object tracking
challenge without resorting to expensive pointer analysis.
The example involves two Lock instances for objects O1
and O2 respectively. Let us use the line numbers as the
labels for the relevant operation nodes. The pointer analysis
captures lines 12 and 16 as relevant operation nodes for the
instance O1. Similarly, the lines 9 and 16 are captured for
the instance O2. The two relevant execution behaviors B11

and B12 for the instance O1 are: B11 = 4,10,16 and B12 =
4,12,16. The two relevant execution behaviors B21 and B22

for the instance O1 are: B21 = 5,9,16 and B22 = 5,13,16.
Accuracy: Observe that the two execution behaviors for
each of the instances suffice for performing a correct ver-
ification analysis. We will illustrate the correctness for the



O1 instance, the other instance follows the same pattern.
Since line 12 is not included in behavior B11, line 16 can
be suppressed by the verification analyzer. Since line 12 is
included in behavior B12, line 16 will not be suppressed
by the verification analyzer. The analyzer could perform
inter-procedural analysis by linking the PCG for the function
g. Thus, by accounting for both behaviors, the verification
analyzer can perform an accurate analysis to conclude that
the instance O1 is safe.
Efficiency: Let us now discuss efficiency. A light-weight
points-to analysis such as [16] suffices to capture the lines
12 and 16 as the relevant operations for the instance O1. The
PEC approach resolves the ambiguity due to the points-to
analysis by separating the execution behaviors along paths.
With the PEC approach, we have not seen a need for
performing an expensive points-to analysis for accuracy. An
interesting topic for research is to conduct studies to assess
whether the combination of an inexpensive points-to analysis
and the PEC approach can always achieve high accuracy
without resorting to an expensive points-to analysis.

Note that line 6 is not captured as a relevant operation
although it implicitly affects the relevant control flow. In
this example, the implicit effect does not matter. If line 6
were to be included, it would lead to unnecessary analysis.
On purpose, the PEC approach omits implicit control effects
in the first pass. The verification analyzer can subsequently
perform the implicit effect analysis only where it is needed.

V. CFG TO PCG TRANSFORMATION

We present an efficient algorithm to compute PCG. It uses
Tarjan’s algorithm to compute strongly-connected compo-
nents of a directed graph [17].
Step 1: T-Irreducible Graph Reduce GCFG to the T-
irreducible graph GT-irr by applying the following basic
transformations T = {T1, T2, T3} until the resultant graph
cannot be further reduced.
T1: Elide Non-Relevant Operation Nodes
Let n be a non-relevant operation node with a single
successor m. The T1 transformation is the consumption of
node n by m. Induced edges are introduced so that the
predecessors of node n become predecessors of node m.
(Figure 4(a))

T2: Elide Self-Loop Edges
Let n be a non-relevant operation node that has a self-
loop edge (n, n). The T2 transformation removes that edge
(Figure 4(b)). When a loop block does not contain relevant
operation nodes, execution of the loop is immaterial. T2
transformation elides such loops.

T3: Elide Irrelevant Branch Nodes
Let n be a branch node without a relevant operation such
that all branch edges lead to the same successor m of n.
The T3 transformation elides n and its branches so that the
predecessors of n become predecessors m (Figure 4(c)). T3
elides branch nodes that become vacuous after T1 elides all
non-relevant operation nodes.

We examined the irreducible graphs obtained by applying
the three transformations and found examples of complex
CFGs where some of the irrelevant branch nodes (defined in
Section IV) were not completely elided from the irreducible
graph. As illustrated in Figure 5, the rest of the algorithm
(steps 2 to 5) is designed to elide these remaining irrelevant
branch nodes.

Definition 11: GCG is the condensation graph of a di-
rected graph G if each strongly-connected component (SCC)
of G contracts to a single node in GCG and the edges of GCG
are induced by edges in G.
Step 2: Non-Relevant Operation Condensation Graph
Compute the subgraph GI of GT-irr induced by its non-
relevant operation nodes. Then, construct the non-relevant
operation condensation graph GNRCG of GI.
Step 3: Relevant Operation Condensation Graph Con-
struct a new graph GRCG by adding the event nodes in GT-irr
to GNRCG. If an edge exists between an SCC and an event
node n in GT-irr then introduce an edge in GRCG between
the contracted node for that SCC and the event node n.
Step 4: Condensed PCG Transform GRCG into a T -
irreducible graph GcPCG by applying the set of basic trans-
formation T = {T1, T2, T3} as in Step (1). The resultant
graph GcPCG after this step is the condensed PCG.
Step 5: Final PCG Transform GcPCG into GPCG by expand-
ing each remaining contracted SCC in GcPCG back to the
original SCC as in GT-irr. The resultant graph GPCG after
this step is the PCG.

Figures 5(a-f ) illustrate CFG to PCG transformation. The
relevant operation nodes are highlighted.

Note that a strongly-connected component (SCC) of
branch nodes with two or more successors must be retained.
Figure 6 shows the PCG of function cancel_bulk_urbs from
the Linux kernel. The SCC consisting of the branch nodes
c1 and c2 is retained as it has two successors, which are the
terminal node ⊥ and the operation node e1.

The algorithmic complexity of the CFG to PCG transfor-
mation is O(|V |+ |E|) where |V | and |E| are the respective
numbers of nodes and edges in the CFG. For detecting the
SCCs in Step (2), we use an algorithm by Tarjan et.al. [17]
to compute strongly-connected components of a directed
graph. This algorithm also has complexity O(|V | + |E|),
yielding the complexity of O(|V |+|E|) for the CFG to PCG
transformation. The run-time of the transformation does not
depend on the number of paths in the CFG.

A. PCG Theory with Proofs
We use the term event for relevant operations. We also

use the notion of a colored graph G where a subset of

Figure 4. T-irreducible graph transformations: (a) T1, (b) T2, (c) T3



Figure 5. CFG to PCG Transformation Illustration

Figure 6. PCG for the function cancel_bulk_urbs

nodes are colored and each of those nodes has a unique
color. The colored nodes represent relevant operations in our
application. A relevant execution behavior can be thought of
as a regular expression of colored nodes. A T -irreducible
transform of G is the graph G

′
that cannot be further reduced

by applying the three transformations T1, T2, T3 with respect
to the colored nodes.

Definition 12: Given a CFG G and a set E of relevant
operation nodes in G, a path equivalence relation RE is
defined on the set of paths in G: paths are related iff they
have the same relevant execution behavior w.r.t. E .

Theorem 1: Given a CFG G, a set E of relevant opera-
tions (events), and the equivalence relation RE , there is a
one-to-one and onto mapping between the path equivalence
classes of RE and the paths of the PCG Ĝ, and each PCG
path produces the relevant execution behavior for a path
equivalence class.

Proof. The equivalence relationRE partitions the CFG paths
into equivalence classes such that all paths in an equivalence
class have the same relevant execution behavior, and the
CFG paths that are in different equivalence classes have
different execution behaviors.

Since the PCG Ĝ is the node-induced subgraph of the
given CFG G consisting of the events and the relevant
branch nodes, it follows that given a PCG path P , it
corresponds to a unique relevant execution behavior B and
conversely given a relevant execution behavior B there is
a unique PCG path P for which the relevant execution
behavior is B. Thus, there is a one-to-one and onto mapping
between the equivalence classes of RE and the paths of the
PCG Ĝ. �

Theorem 2: There exists a feasible CFG path P with a
relevant execution behavior B if and only if there exists a
path P̂ with the behavior B that is feasible with respect to
the relevant branch nodes on P .
Proof. If every path with behavior B is infeasible with
respect to the relevant branch nodes, then all paths equivalent
to P are infeasible, because the addition of irrelevant branch
nodes cannot make an infeasible path feasible. On the other
hand, suppose there exists a CFG path P ′ with behavior B
that is feasible with respect to the relevant branch nodes.
By the definition of irrelevant branch nodes, an equivalence
class has paths going through all possible branches at an
irrelevant branch node. So, if the path P ′ is not feasible due
to some irrelevant branch nodes then we can choose feasible
branches at those nodes to construct a new CFG path that is
feasible and equivalent to P ′. Thus, if there exists a path P ′

with behavior B that is feasible with respect to the relevant
branch nodes on P , then there always exists a feasible CFG
path with behavior B. �

Definition 13: The boundary of subgraph S in a di-
rected graph, denoted by boundary(S), is the set of nodes
u ∈ S such that suc(u) ∈ suc(S).
Note: See Definition 7 and Definition 8 for the definitions
of the successor of a node and the successor of a subgraph.

Theorem 3: Let G be a colored acyclic graph. If G is T -
irreducible then for any subgraph S of G containing only
non-colored nodes, |suc(S)| ≥ 2.
Proof. If a non-colored node u ∈ G has only one successor
then it is eliminated by transformation T1. Thus, since G is
T -irreducible, |suc(u)| ≥ 2 for all non-colored nodes u ∈ G.
Also, by assumption, G is an acyclic graph. Using these two
facts, we will show that the subgraph S must have a node
with at least two successors outside S and thus |suc(S)| ≥ 2.

Let Pv0→vn
: (v0, v1), (v1, v2), · · · , (vn−1, vn)) be a

maximal path in subgraph S. Since vn is the terminal node
of this maximal path P , its successor cannot be another node
in S not on the path P . Also, the successor of vn cannot be
another node on the path P because G is an acyclic graph,
so vn must belong to boundary(S) and all its successors
must be outside the subgraph S. Since vn is a non-colored
node, |suc(vn)| ≥ 2. Since vn, a node in S, has at least
two successors outside of S, we have |suc(S)| ≥ 2. This



completes the proof. �
Corollary 1: Let G be a CFG and GcPCG be the con-

densed PCG. Then, for any subgraph S containing non-
colored nodes of GcPCG, |suc(S)| ≥ 2.
Proof. Note that the condensed PCG GcPCG is the graph
resulting from step (4) of the transformation from the CFG
to PCG. By construction, the condensed graph GcPCG is a
colored T -irreducible graph. Also, by construction GcPCG is
an acyclic graph. By applying the above theorem to GcPCG
we get the proof of the corollary. �

Corollary 2: The PCG does not contain any irrelevant
branch nodes.
Proof. Let G be the CFG and let GT-irr be the irreducible
graph obtained by applying transformations T1, T2, T3 to G.
We will prove that that all the irrelevant branch nodes will
be eliminated when GcPCG is constructed. According to the
definition, a node c is irrelevant if there is a subgraph S that
contains c, all its branch edges, S has no event nodes, and
|suc(S)| = 1. It follows from this definition and from the
corollary 1 that GcPCG does not contain any irrelevant branch
nodes. Thus, the final graph PCG also does not contain any
irrelevant branch nodes, because it consists of the nodes in
GcPCG and all the event nodes. �

VI. ASSESSMENT OF PRACTICAL IMPACT

We present an empirical study to explore: Is the analysis
work significantly reduced in practice by using the optimal
mathematical abstraction PCG instead of the CFG? Since
the analysis work is reflected by the size of the CFG and
the PCG graphs, we use the size reduction from CFG
to PCG as the metric to measure the work reduction. A
compact PCG facilitates program comprehension. We did an
experiment with a group of 40 students to audit results of a
formal verification tool. Using the PCG graphs, the students
found Linux bugs missed by the formal verification tool. We
illustrate an example bug revealed using the PCG.

We built a tool that constructs the CFG and the PCG
graphs and computes their size attributes. The tool is built
using EnSoft’s Atlas [18], [19], a platform to build software
analysis, transformation, verification, and visualization tools.
We created the CFG and the PCG graphs for each Lock

instance from three versions (3.17-rc1, 3.18-rc1 and 3.19-
rc1) of the Linux kernel. We enabled all possible x86 build
configurations via allmodconfig flag. The CFG and the
PCG graphs for 66, 609 Lock instances are posted on a
website [11].

A. Quantitative Assessment

Table I shows the distribution of nodes, edges, and branch
nodes for both the CFGs and PCGs for all the relevant
functions. Compared to 30914 CFGs, only 115 PCGs have
more than 30 nodes, which is a reduction of 99%. Compared
to 35145 CFGs, only 879 PCGs have more than 30 edges,
which is a reduction of 97%. Compared to 17120 CFGs,
only 1810 PCGs have more than 10 branch nodes, which
is a reduction of 89%. Recall that the PCGs simplify path

feasibility checks by reducing the number of branch nodes.
Compared to 8644 CFGs, 30999 PCGs have no branch
nodes, which is a 259% increase of cases where PCG
eliminates the need for path feasibility check.

Table I
LINUX KERNEL CFG TO PCG REDUCTION FOR LOCK /UNLOCK PAIRING

Graph Artifact Distribution

C
FG

Nodes
≤ 5 6→ 10 11→ 30 31→ 50 > 50

5,022 11,724 35,665 14,805 16,109

Edges
≤ 5 6→ 10 11→ 30 31→ 50 > 50

6,670 10,025 31,485 15,002 20,143

Br-Nodes
= 0 1→ 5 6→ 10 11→ 30 > 30

8,644 40,836 16,725 13,586 3,534

PC
G

Nodes
≤ 5 6→ 10 11→ 30 31→ 50 > 50

66,820 12,515 3,875 109 6

Edges
≤ 5 6→ 10 11→ 30 31→ 50 > 50

58,662 14,314 9,470 690 189

Br-Nodes
= 0 1→ 5 6→ 10 11→ 30 > 30

30,999 45,282 5,234 1,756 54

The reduction from CFG to PCG is particularly important
for a CFG with a large number of branch nodes. For
example, for function dst_ca_ioctl the reductions from
CFG to PCG are: from 349 nodes to 2 nodes, from 518
edges to only one edge, and from 163 branch nodes to zero
branch nodes.

B. Linux Bug Discovery with PCG
We conducted an empirical study where 36 undergraduate

students from a software engineering course and 4 graduate
students from our research group used the PCG and CFG
graphs from the website [11] to audit results of Lock and
Unlock pairing by the Linux Driver Verification (LDV)
tool [12]. In all 400 instances of varying difficulty were
chosen for audit. Each instance was independently audited
by two undergraduate students and also by two graduate
students. A Linux bug discovered through this study is
described here.

Figure 7 shows the PCG for function toshsd_thread_irq

that has calls to Lock and Unlock. The CFG for this function
is more complex with 8 branch nodes and multiple loops.
The multiple CFG paths between the Lock and the Unlock

are all equivalent and they get mapped to one PCG path.
The PCG for toshsd_thread_irq shows a path on which

the lock is not followed by an unlock. From the PCG, this
path is feasible if its governing condition expression (C1C2)
is true. The feasibility check is easy to do manually and it
shows that the path is feasible and thus it is a bug. This bug
was reported to the Linux organization and it was fixed.

VII. RELATED WORK

The papers by Choi et al. [20] and Ramalingam [21]
introduce the notion of sparse evaluation graph (SEG). Their
research uses the same general principle that for a given
analysis problem, a compact program graph can be con-
structed by removing irrelevant program statements. Apart
from the common general principle, the PEC approach and



Figure 7. A Linux bug discovery using PCG

the PCG are completely different from the SEG approach.
The fixed-point algorithm to compute the SEG aggregates
data flow behaviors on different paths. The SEG is not meant
for performing accurate path-sensitive analysis.

The Binary Decision Diagram (BDD) [22] has been used
in different contexts of program analysis as a way to reduce
the explosion of state space [8], [13]. The Binary Decision
Tree (BDT) to BDD reduction has been also used for path-
sensitive analysis [9]. Unlike BDT to BDD reduction, the
PCG transformation does not require the input CFG to be
acyclic.

CFG pruning techniques have been proposed in [23],
[24] to overcome the computational complexity of exploring
all paths. The PEC approach and PCG have evolved from
our earlier research on event view [25] and event flow
graphs [26].

VIII. CONCLUSION

This paper presents an efficient and accurate approach
to analyze software for a broad spectrum of safety and
security vulnerabilities. It provides a rigorous formulation
and a practical method to apply the approach. The approach
is illustrated with a challenging analysis problem of pairing
Lock and Unlock on all feasible execution paths. The tool
support for the approach is developed using Atlas [18], [19],
a platform for developing software analysis and visualization
tools. The approach involves transforming CFG to PCG. The
effectiveness of the approach depends on the reduction from
CFG to PCG. The approach is evaluated using three versions
of the Linux kernel. The CFGs and PCGs, for each of the
66, 609 Lock instances from the three versions of the Linux
kernel, are posted on a website [11]. The paper presents an
example of a Linux bug discovered using the approach.
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