
Demystifying Software Security
A Euler's Method Approach for Analyzing Complex Software

Ahmed Tamrawi
atamrawi.github.io ahmedtamrawi@gmail.comatamrawi

Acknowledgement: Team members at Iowa State University and EnSoft, DARPA contracts FA8750- 12-2-0126 & FA8750-15-2-0080

What is Software Security?

What is Software Security?
the state of being free from danger or threat

set of instructions, data or programs used to
operate computers and execute specific tasks

First stored-program to calculate
the highest factor of 218

1948vaccination, nations, banks, needs, law, rights, etc.

1960
First
Packaged
Software

1990

Internet

What is Software Security?
is the umbrella term used to describe software that is engineered

such that it continues to function correctly under malicious attack

Why do we need Software Security?

“Each technology goes through a cycle of
development and weaponization, followed
only later by the formulation of doctrine and
occasionally by efforts to control the
weapon’s use.”

The Internet technology has developed rapidly and it is now being
weaponized to sabotage the electronic or physical assets of an

adversary!

Software is an integral part of nearly all technology
and almost all prominent attacks on cyber physical
systems (CPS) have exploited vulnerabilities
rooted in the underlying systems software.

NASA - Mariner 1
$18 million

Car Recalls - $3 Billion Knight Capital Trading
$440 million

Android Lollipop
https://threatpost.com/google-aware-of-
memory-leakage-issue-in-android-5-1-fix-
forthcoming/111640/

Zero-Day Flaw Linux
Taking control and privacy

Ukraine power grid attacks

Dec 2015 & Dec 2016

July 21, 2015

Jeep remotely hijacked

November 29, 2011

HP printers remotely set on fire

Deployed in 2005, Identified in 2010

STUXnet Worm

August 17, 2009

Destruction Sayano-Shushenskaya
Hydroelectric Power Plant

August 2003

Northeast Power Blackout Davis-Besse Nuclear Power Plant

August 2003

No need for bombs, Plant Malware!

is investing billions of dollars
into Securing Software

APAC

CHESS

Automated Program
Analysis for Cybersecurity VET Vetting Commodity IT

Software and Firmware

HACMS High Assurance Cyber
Military Systems

CASE

STAC Space/Time Analysis for
Cybersecurity

Cyber Assured Systems
Engineering

Computers and Humans
Exploring Software Security

ARCOS Automated Rapid
Certification Of Software

Block User Input!

Sanitize User Input!

Brought to you by Dettol,
kills all germs except 0.01%

How to tell if my Software is Secure?

Hire A Cybersecurity Engineer!
Cybersecurity engineers perform a number of functions
including architecting, developing and fielding secure network
solutions to protect against advanced persistent threats,
developing/engineering trusted systems into secure systems,
performing assessments and penetration testing, and
managing security technology and audit/intrusion systems.
A typical description for cybersecurity engineering jobs!

Cybersecurity Engineering

VULNERABLE
SOFTWAREDetect Anomalies and

Potential Attacks

Software Analysis
Find potential vulnerabilities in software that could result on
unintended behavior (fatal error, denial of service, etc.)

Software Analysis
Choose the security property you want to prove its conformance
or the security vulnerability you want to prove its absence.①

2019 Top 25 Vulnerabilities

Software Analysis
Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

②

What is a feasible execution path?

What are software analysis strategies?

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Division-By-Zero (DBZ) Vulnerability?

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

No DBZ Vulnerability!

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

How to encode programs into
machine-comprehensible format to
enable software analysis?

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Think of software as a Graph

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Transform into meaningful graph

A Node corresponds to a Code Statement

An Edge corresponds to the control flow from
one statement to its successor in flow

Diamond Nodes are nodes corresponding to
conditional statements

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

Are all feasible, in other words, are all
could be executed at run-time?

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

Are all feasible, in other words, are all
could be executed at run-time?

FEASIBLE

FEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

Check if values propagated on feasible
vulnerable path can result on DBZ?

FEASIBLE

FEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

Safe
Safe

Safe

Safe
Safe

What is a feasible execution path?
A path of statements in software that can be taken on an actual run of the software

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

FEASIBLE

FEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

FEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

No DBZ Vulnerability!

Safe
Safe

Safe
Safe

Safe
Safe

Software Analysis
Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

②

What is a feasible execution path?

What are software analysis strategies?

Static Analysis
Software analysis performed

without executing software

Debugging

Blind Fuzzing

Testing (Concrete Execution)

Model Checking

Smart Fuzzing

Symbolic Execution

Concolic Execution

Control Flow Analysis

Data Flow Analysis

Type Analysis

Software analysis performed
by executing software

Dynamic Analysis

Software Analysis Strategies

Software InstrumentationCall Hierarchy Analysis

Hybrid Analysis

Statically informed dynamic
analysis or dynamically
informed static analysis

Formal Methods

Feasibility Analysis (SAT Solvers)

Taint Analysis

Pointer Analysis

Static Analysis: Control Flow Analysis
determines the order of program statements in a given source
code, and predict and specify the set of execution traces

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A Node corresponds to a Code Statement

An Edge corresponds to the control flow
from one statement to its successor

Diamond Nodes are nodes corresponding
to conditional statements

It is not straightforward process!

How did we identify the statements at lines 8, 19, and 22
to be relevant to for the analysis of the potential DBZ at
line 24?

Static Analysis: Data Flow Analysis
gathers information about the possible set of values calculated at
various points in a computer program

set up data-flow equations for
each node of the control flow
graph and solve them by repeatedly
calculating the output from the
input locally at each node until the
whole system/program stabilizes
(reaches a fixpoint)

Static Analysis: Data Flow Analysis
gathers information about the possible set of values calculated at
various points in a computer program

How did we identify the statements at lines 8, 19, and 22
to be relevant to for the analysis of the potential DBZ at
line 24?

Data Flow into
d at line 24

Data Flow into
x at line 24

Data Flow into
x at line 7

Static Analysis: Data Flow Analysis
gathers information about the possible set of values calculated at
various points in a computer program

NOT-SATISFIABLE

The satisfiability modulo theories (SMT) problem is
a decision problem for logical formulas with respect to
combinations of background theories expressed in
classical first-order logic with equality.

Control Flow Graph (CFG)

Path Boolean Formula: 𝐶1 ∩ 𝐶2 ∩ 𝐶3

For updated list of SMT solvers:
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Solvers

Static Analysis: Feasibility Analysis
determines whether a given path is feasible (could be taken on actual run)
based on the associated Boolean path formula

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

Call Graph

void bftpd_cwd_mappath() {
char *result = malloc();
if(!result) {

return;
}
if(!path2) {

free();
}

}

void command_retr() {
bftpd_cwd_mappath();
free();

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Static Analysis: Call Hierarchy Analysis
is a sub control flow analysis technique to mine call relations between functions.
The resultant graph is called the call graph

Many Complications! think about obscure control flows:
• Event-driven in Web Frameworks.
• Dynamic Dispatch (e.g., Function pointer, polymorphism, overriding, etc.)

Check Ben Holland’s blog explaining all the details:
https://ben-holland.com/call-graph-construction-algorithms-explained/

Static Analysis: Call Hierarchy Analysis
is a sub control flow analysis technique to mine call relations between functions.
The resultant graph is called the call graph

https://ben-holland.com/call-graph-construction-algorithms-explained/

void foo() {
int y = read();
if(y > 10 && y < -10) {

return;
}
int z = y * 2;
if(z == 12) {

crash();
} else {

printf(“OK”);
}

}

1
2
3
4
5
6
7
8
9
10
11
12

Does this program crash?

𝑦 ∈ ℕ

𝑦 ∈ [−10, 9]
𝑦 ∈] − ∞,−10[∪]10,+∞[

𝑧 ∈ [−20, 18]

Static Analysis: Symbolic Execution
is a technique where an interpreter follows the program, assuming symbolic values for inputs,
a case of abstract interpretation. Thus performing operations on symbolic values abstractly.

For updated list of Model Checkers:
https://en.wikipedia.org/wiki/List_of_model_checking_tools

System Source
Code

Property of
Interest

Abstraction
System Model

Property
Specification

Model Checker

Property
Satisfied

Property Not
Satisfied

Inconclusive

Crashes
Insufficient

Memory

Counter
Example

Refine Abstraction

Static Analysis: Model Checking
is an analysis technique where a given model of a system is exhaustively and automatically checked
whether it meets a given specification. Both the model of the system and the specification are
formulated in some precise mathematical language

https://en.wikipedia.org/wiki/List_of_model_checking_tools

Requirements
Coverage
Path
Coverage

Ultimate Goal is to achieve:

For more info:
https://www.fuzzingbook.org/

Dynamic Analysis: Testing
Software analysis performed by executing software against a pre-defined test cases.

https://www.fuzzingbook.org/

Run SoftwareWell Formed
Software Inputs

Observe Errors
and Crashes

Input Mutations
(Random/Systematic)

Mutated
Software Inputs

Requirements
Coverage
Path
Coverage

Ultimate Goal is to achieve:

For more info:
https://www.fuzzingbook.org/

Dynamic Analysis: Blind Fuzzing
is an automated software testing technique that involves providing invalid, unexpected, or random
data as inputs to a computer program. The program is then monitored for exceptions such
as crashes, failing built-in code assertions, or potential memory leaks.

https://www.fuzzingbook.org/

Requirements
Coverage
Path
Coverage

Ultimate Goal is to achieve:

Source/Binary
Code

Instrumentation
Code

Run
Instrumented

Software

Observe
Error/Traces/Logs

Dynamic Analysis: Software Instrumentation
an ability to monitor software run to diagnose errors, and write trace information.
Programmers implement instrumentation in the form of code instructions that
monitor specific components in a system

For updated list of available tools to perform Concolic Execution:
https://en.wikipedia.org/wiki/Concolic_testing#Tools

Concrete
Execution

Concrete
Execution

Concrete
Execution

Concrete
Execution

Tweaks symbolic path constraints and asks
the SMT solver to find a satisfying concrete

assignment of that constraint.

Hybrid Analysis: Concolic Execution
combines both symbolic execution and concrete execution. The basic idea is to
have the concrete execution drive the symbolic execution.

https://en.wikipedia.org/wiki/Concolic_testing

For more info:
https://www.fuzzingbook.org/

Run Instrumented
Software

Well Formed
Software Inputs

Observe Errors, Crashes &
Execution Path Coverage

Input Mutations
(Random/Systematic)

Mutated
Software Inputs

Instrument
Branch Points

If new program paths being explored then prioritize mutations of the tested input

Heuristics guide genetic algorithm to generate program inputs that
push the fuzzer deeper into the program control flow, avoiding the
common pitfalls of fuzzers to only test “shallow” code regions

Note

http://lcamtuf.coredump.cx/afl/

AFL (American Fuzzy Lop) Fuzzer

Hybrid Analysis: Smart (Guided) Fuzzing
is an automated software testing technique that involves providing invalid, unexpected, or random
data as inputs to a computer program. The program is then monitored for exceptions such
as crashes, failing built-in code assertions, or potential memory leaks.

https://www.fuzzingbook.org/
http://lcamtuf.coredump.cx/afl/

Software Analysis
Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

②

What is a feasible execution path?

What are software analysis strategies?

Software Analysis
Choose the security property you want to proof its conformance
or the security vulnerability you want to proof its absence.①
Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

②

What is next?

is the problem of determining, from a description of an arbitrary computer program and an
input, whether the program will finish running, or continue to run forever

Halting Problem

Turing MachineAlan Turing

Software analysis of arbitrarily complex software is
known to be an intractable problem!

Note #1

Fully automated software analysis encounters
significant difficulties in practice – it either does not

complete or yields inaccurate results!

Note #2

Let’s go over predominant
software analysis challenges!

Path/State Explosion
public void foo() {

if(C1) {
S1();

} else {
S2();

}
if(C2) {

S3();
} else {

S4();
}
if(C3) {

S5();
} else {

S6();
}
if(C4) {

S7();
} else {

S8();
}
if(C5) {

S9();
} else {

S10();
}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 5 non-nested

Branch Points

𝟐𝟓 = 𝟑𝟐
Execution (Paths)

Behaviors

The number of paths
(behaviors) increases
exponentially with the
number of non-nested
branch points!

Loops and Recursions result
on infinite execution trees!

Hard to Reach Code Regions

Path Analysis Woes when going
Inter-procedural!

Computational
Intractability of Checking
Feasible Behaviors
The Satisfiability problem is known to be NP-complete problem!

Difficult to Analyze
Programming Constructs
Heap Modeling: Symbolic representation of data structures and pointers.
Environment Modeling: Dealing with native/system/library calls.
Obscure Flows: Event-driven frameworks, function pointers, polymorphism, reflections.

Operating
Environment
Heterogeneity
• Environment Modeling: Dealing with

native/system/library calls.
• Increasing Variability: Linux Kernel has more

than 10,000 configurations parameters.

Variability-Aware Analysis

65

Ever Increasing Complexity

20 MLOC ≈ 360K Pages

Ever Increasing Size

Evidence is hard to decipher; it
does not simplify cross-checking

Traditional Approaches to Detect Vulnerabilities is like:

Search for similar needles in the haystack!

Searching the Haystack for a needle
without knowing what the needle look like!

In Reality, Finding Wild and Sophisticated Vulnerabilities is like:

Ambiguity: Malice or Legitimate?

Behavior App Purpose Classification

Send location to Internet Phone locator Benign

Send location to Internet Podcast player Malicious

Selectively block SMS messages Ad blocker Benign

Selectively block SMS messages Navigation Malicious

There is a need for Domain-Specific Knowledge!

• 55K lines of code
• Strategic mission planning/review

• Audio and video recording
• Geo-tagged camera snapshots
• Real-time map updates based on GPS

Data Gathering and
Relaying App for Military

Malware triggered by a geographic region!

@Override
public void onLocationChanged(Location tmpLoc) {

location = tmpLoc;
double latitude = location.getLatitude();
double longitude = location.getLongitude();
if((longitude >= 62.45 && longitude <= 73.10) &&

(latitude >= 25.14 && latitude <= 37.88)) {
location.setLongitude(location.getLongitude() + 9.252);
location.setLatitude(location.getLatitude() + 5.173);

}
}

What is different about detecting
sophisticated vulnerabilities?

Open-Ended
Possibilities

Malicious
Payloads

Vulnerability
Triggers

Developing plausible hypotheses for vulnerability trigger and malicious
payload becomes a critical part of malware discovery!

Fully automated software analysis encounters
significant difficulties in practice – it either does

not complete or yields inaccurate results!

“If indeed our objective is to build computer
systems that solve very challenging problems, my
thesis is that IA > AI, that is, that intelligence
amplifying systems can, at any given level of
available systems technology, beat AI systems.
That is, a machine and a mind can beat a mind-
imitating machine working by itself.”

“Software verification, like
“proofs” in mathematics, should
provide evidence that humans can
follow and thus be able to build
trust into the correctness of the
software verification.”

The First
Turing Award
recipient

USAF Colonel John Boyd developed the OODA
framework as a way to explain the superior
agility of US fighter pilots in aerial combat
situations. The pilot must iterate the OODA
loop faster than his opponent in order to
decide, and act before his opponent has a
chance to observe, orient himself to new
information. Both pilots are aided by machines
and a superior pilot may still lose the race if his
instruments fail to him at any point in the cycle.

The paradigm of OODA loops applies equally well to the
context of software analysis and there is no reason that a

human cannot be included in the cycle!

Euler’s Identity: The Most Beautiful Equation!

New technological advances are crucial
for using the Euler’s method with
software of gigantic proportions!

Human-In-The-Loop
approach to
Detecting

Sophisticated
Vulnerabilities

Developing plausible hypotheses for
vulnerability trigger and malicious payload

Threat Modeling
It is software-specific and requires human expertise

Analyzing software to gather evidence based
on specified hypotheses

Software Analysis
A multi-stage process with Human-on-loop automated analysis

An exploit or
refutation of the
Threat Model

Software
Analysis
Problem

Our goal is to build an intelligence amplifying framework
that mines and connects various software artifacts and
enables human-machine interaction to solve complex

software problems

Atlas is an intelligence amplifying
framework that provides a new way
to interactively explore software
artifacts and enables analysts to
write analysis scripts to tackle
complex software problems!

http://www.ensoftcorp.com/atlas/

Atlas – A new way to explore software:
https://www.youtube.com/watch?v=cZOWlJ-IO0k

https://www.youtube.com/watch?v=cZOWlJ-IO0k

eXtensible Common Software Graph (XCSG)
a harmonious representation of software written in different languages

XCSG defines a variety of program artifacts
(nodes) and relations (edges) to capture
the semantics of programming languages

Extensibility: New nodes and edges
tags can be added to incorporate

domain-specific knowledge!

XCSG Node Tags XCSG Edge Tags

Selected
Artifact

Data Flow Smart View

Node Tags

Node Tags

Edge Tags

Node
Attributes

Node
Attributes

Edge Attributes

Atlas Smart View and Atlas Element Detail View

Atlas Shell, Custom Scripts, and Atlas SDK

Atlas Shell

Custom Script
using Atlas SDK

Source Code
View

Atlas Graph
Queries

Request your Academic complimentary License at:
http://www.ensoftcorp.com/atlas/

Read the Atlas Installation Guide

Go through our easy-to-follow tutorials:
http://ensoftatlas.com/wiki/Learning_Atlas_for_C
http://ensoftatlas.com/wiki/Learning_Atlas

Unleash your
experience and build
your own beast!

①
②

③

④

http://www.ensoftcorp.com/atlas/
http://ensoftatlas.com/wiki/Learning_Atlas_for_C
http://ensoftatlas.com/wiki/Learning_Atlas

Atlas Query Language Examples
Atlas query language relies on graph calculus language to
enable powerful computations with just a few lines of code

// We first find the function that we want to reason about.
Q fooFunction = CommonQueries.functions("foo");

// Let us find all the loops in function "foo".
Q fooCFG = CommonQueries.cfg(fooFunction);

// display the control flow graph of function "foo".
DisplayUtil.displayGraph(fooCFG.eval(), null, "foo CFG");

// print out the number of loops
Q fooLoops = fooCFG.nodes(XCSG.Loop);
System.out.println(fooLoops.eval().nodes().size());

// Let us find all the functions that directly call "foo".
Q callEdges = Query.universe().edges(XCSG.Call);
Q fooCallers = fooFunction.reverseStepOn(callEdges);

// Let us find all the functions that have call chains to "foo".
Q fooAncestors = fooFunction.reverseOn(callEdges);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Custom script written in Java using Atlas SDK

Atlas Queries using Scala
Syntax in Atlas Shell

Why a Graph Calculus Language?
With the advent of powerful computers, many applications of graphs have evolved:

genetics, internet search engines, social networks, and many yet to come!

How are we using Atlas?

Scalable, Efficient, and Practical
Linux Verification against
Synchronization Problems

https://kcsl.github.io/L-SAP

https://kcsl.github.io/L-SAP

https://kcsl.github.io/L-SAP

Linux Driver Verification (LDV) tool the top performers in the
SV-COMP ‘14, 15’ and ’16

Explainable Verification (EV) tool
based on Atlas platform

173 total hours to complete4 total hours to complete

Verification Results against Top Performing Tool

Importing Linux Kernel in Atlas

https://kcsl.github.io/L-SAP

http://lsap.KnowledgeCentricSoftwareLab.com

All Linux verification graphs are publicly available to
cross-check verification results

http://lsap.knowledgecentricsoftwarelab.com/

https://ensoftcorp.github.io/pcg-toolbox/

Projected Control Graph (PCG)
is a compact projection of the Control Flow Graph (CFG)
that retain only the relevant execution behaviors and elide
duplicate paths with equivalent execution behavior

For any given analysis problem, the number of distinct relevant execution
behaviors may be much smaller than the number of CFG paths!

Algorithmic Challenge: Compute the distinct relevant behaviors
without going through each path!

https://ensoftcorp.github.io/pcg-toolbox/

Control Flow Graph (CFG)Function foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Six Possible Execution Paths

Division-By-Zero (DBZ) Vulnerability?

Control Flow GraphFunction foo1

int a1 = 1, a2 = 2;
int y = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void foo1() {

int x = a1 + a2;
int d = a1;
if(C1){

x = a1;
}else{

x = a2 - 1;
}

if(C2){
if(C3){

y = a1;
}else{

d = d - a1;
}

}else{
d = d + 1;

}
int z = x / d;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Projected Control Graph

Efficient Graph
Transformations based on
famous Tarjan’s Algorithm

Division-By-Zero (DBZ) Vulnerability?

Control Flow Graph Projected Control Graph

Six Possible Behaviors 3 Relevant Behaviors

Division-By-Zero (DBZ) Vulnerability?

Control Flow Graph (CFG) captures the
entire semantics!

Exponentially many paths but only a small
number of relevant behaviors!

Linux Kernel Case Study
with respect to lock/unlock operations as relevant events of interest

Automated On-Demand
Context-Specific
Documentation for Java
Source Code

https://github.com/EnSoftCorp/DynaDoc

Dyna
Doc

https://github.com/EnSoftCorp/DynaDoc

Software
Artifacts
Mapping

Java Project

Git Commit
Records

Bug/Issues
Database

Dyna
Doc Documentation Generation in HTML

Context-Specific
Documentation

JavaDoc

Supplementary
Artifacts

Preprocessor

Source code
Comments/Annotations

① ②

③

Query Artifacts and Populate
new Artifacts

Query Results

STAC Space/Time Analysis for
CybersecurityAPAC Automated Program

Analysis for Cybersecurity

CASE Cyber Assured Systems
Engineering

Blue Team on APAC and STAC programs and
as the White Team on CASE program

Participation in DARPA Programs

We have competed with about a dozen Blue Teams on more than 200
malware challenges

DARPA is investing billions of dollars into Securing Software

DARPA APAC Program

The program aims to address the challenge of timely and robust security
validation of mobile apps by first defining security properties to be
measured against and then developing automated tools to perform the
measuring. The second challenge APAC aims to address is producing
practical, automated tools to demonstrate the cybersecurity properties
identified. Successful tools would minimize false alarms, missed detections
and the need for human filtering of results to prove properties.

Automated Program Analysis for Cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

DARPA APAC Program
Automated Program Analysis for Cybersecurity

Android Toolbox Demo
https://www.youtube.com/watch?v=WhcoAX3HiNU

Android Security Toolbox
https://ensoftcorp.github.io/android-essentials-toolbox/

Time-lapse Audit of DARPA APAC Challenge App:
https://www.youtube.com/watch?v=p2mhfOMmgKI

https://www.youtube.com/watch?v=WhcoAX3HiNU
https://ensoftcorp.github.io/android-essentials-toolbox/
https://www.youtube.com/watch?v=p2mhfOMmgKI

DARPA STAC Program
Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

The program aims to develop new program analysis techniques and tools
for identifying vulnerabilities related to the space and time resource
usage behavior of algorithms, specifically, vulnerabilities to algorithmic
complexity and side channel attacks. STAC seeks to enable analysts to
identify algorithmic resource usage vulnerabilities in software at levels
of scale and speed great enough to support a methodical search for
them in the software upon which the U.S. government, military, and
economy depend.

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

DARPA STAC Program
Space/Time Analysis for Cybersecurity

STAC Toolbox Demo
https://www.youtube.com/watch?v=_vMAYWTP6kg

https://www.youtube.com/watch?v=_vMAYWTP6kg

DARPA CHESS Program
Computers and Humans Exploring Software Security

https://www.darpa.mil/program/computers-and-humans-exploring-software-security

The program aims to develop capabilities to discover and address
vulnerabilities of all types in a scalable, timely, and consistent manner.
Achieving the necessary scale and timelines in vulnerability discovery will
require innovative combinations of automated program analysis
techniques with support for advanced computer-human collaboration.
Due to the cost and scarcity of expert hackers, such capabilities must be
able to collaborate with humans of varying skill levels, even those with
no previous hacking experience or relevant domain knowledge.

https://www.darpa.mil/program/computers-and-humans-exploring-software-security

DARPA CHESS Program
Computers and Humans Exploring Software Security

Representations for high-order reasoning
and computer-human collaboration

Context Processing for employing domain-
specific knowledge to empower software
analysis and verification

Cyber Reasoning to model the open-
ended spectrum of vulnerabilities

Human-on-the-loop balanced use of static
and dynamic analyses

Read High-Quality Papers by Computer
Science Pioneers

and many others ...

Donald Knuth Kurt Gödel Alan Turing Tony Hoare Gary Kildall Robert Tarjan Fred Brooks Edsger Dijkstra

112

http://www.ece.iastate.edu/kcsl/

Knowledge-Centric Software Engineering Lab EnSoft Corp (free download of Atlas)

https://www.ensoftcorp.com/

For further information and Resources:
atamrawi.github.io ahmedtamrawi@gmail.comatamrawi

Thank you

