Demystifying Software Security

A Euler's Method Approach for Analyzing Complex Software

Ahmed Tamrawi

in] atamrawi #Z? atamrawi.github.io ahmedtamrawi@gmail.com
in & g g

Acknowledgement: Team members at lowa State University and EnSoft, DARPA contracts FA8750- 12-2-0126 & FA8750-15-2-0080

What is Software Security?

the state of being free from danger or threat

What is Software Security?

set of instructions, data or programs used to
operate computers and execute specific tasks

0.01000% - 1960 1990

4
First !
0.00900% security
. 19'48 Packaged
DIRRER First stored-program to calculate 1 Software

1
0.00700% - the highest factor of 2181

0.00600% A

0.00500%
0.00400%
0.00300%

0.00200% Internet

G gle Books Ngram Viewer

0.00000"/%

800 1820 1840 1860 1880 1900 1920 1940 1980 2000

What is Software Security?

is the umbrella term used to describe software that is engineered
such that it continues to function correctly under malicious attack

Why do we need Software Security?

“Each technology goes through a cycle of
development and weaponization, followed
only later by the formulation of doctrine and
occasionally by efforts to control the
weapon’s use.”

—~WASRINGTON POST

a1 B, N) TS =

IN ERNE SIS s N B S

The Internet technology has developed rapidly and it is now being
weaponized to sabotage the electronic or physical assets of an

adversary!

N ——

~

1 ’."' f N
\ ’ =
| S A - = \ \
‘ v-/q" - v.r.,r-», ‘ ’ \ N S \,_-‘ A \\ X\ b
& o 4 \ / \r-?," \\. Y — —\,\ / ‘./. | §
R .A £ 4 ‘%\ . v = ;
- = SN SR\ T "/ ‘ |
. ' bA . | /IS
P WP

N AN |\
LN «‘:, ‘\‘f - =,
e’ o g

N .

Software is an integral part of nearly all technology
and almost all prominent attacks on cyber physical
systems (CPS) have exploited vulnerabilities
rooted in the underlying systems software.

Zero-Day Flaw Found in

(‘@

Zero-Day Flaw Linux

2016 Taking control and privacy

COST OF A SOFTWARE BUG

If found in Gathering If found in QA testing phase If found in Production
Requirements phase

Android Lollipop
http://blog.celerity.com/the-true-cost-of-a-software-bug https://threatpost.com/google-aware-of-
memory-leakage-issue-in-android-5-1-fix-
forthcoming/111640/

"NASA - Mariner 1
S$18 million

TOYOTA - 201
Car Recalls - S3 Billion Knight Capital Trading
S440 million

July 21, 2015 e -y

a]
SQUAWK HACKEPS HIJACK MOVING JEEP .
EOX" | AUTOMAKER PUSHES FIy

Jeep remotely hijacked

JIT

||7

Dec 2015 & Dec 2016
World’s First ~ y U . @

e LRI

C Power nutage‘f

Ukraine power grid attacks

August 2003

Northeast Power Blackout

1, wl

November 29, 2011

> 2018 COST OF CYBER CRIME

TOTAL COST

A$600 BILLION!
@ $1,138,888/minute
. s‘ 71,233/minute

spend by business on
information security?

@ Global, the cost of cybercrime
on large business ranged from

1.7 MILLION /year:

@ Ranging from

$222/minute

CYBERCRIME VICTIMS
7 2.7 MILLION /4y
@ 1 ,861 /minute

RANSOMWARE

costs to organizations

7$8 BILLION/day
@ $1 5,221 /minute’

®1.5 organizations/minute fall
victim to ransomware attacks®

MALWARE

@ 1 ,274 new malware
variants/minute’

PHISHING EMAILS

@ 22.9 attacks/minute®

RECORDS LEAKED

from publicly disclosed incidents

2.9 BILLION/day
@5,51 8/minute

Destructlon Sayano Shushenskaya
Hydroelectric Power Plant

Deployed in 2005, Identified in 2010

DaV|s Besse Nuclear Power Plant

-A - 4

No need for bombs, Plant Malware!

APAC

HACMS

CASE

Automated Program
Analysis for Cybersecurity

High Assurance Cyber
Military Systems

Cyber Assured Systems
Engineering

ARCOS

VET

STAC

CHESS

Automated Rapid
Certification Of Software

is investing billions of dollars
into Securing Software

Vetting Commodity IT
Software and Firmware

Space/Time Analysis for
Cybersecurity

Computers and Humans
Exploring Software Security

ﬁm's SECURE OUR SOFTWARE!]

" R e

Block User Input!

T
Sanitize ‘User Input!

e Brought to you by Dettol,
= kills all germs except 0.01%

How to tell if my Software is Secure?

Hire A Cybersecurity Engineer!

esCTipt“On

Cybersecurity engineers perform a number of functions
including architecting, developing and fielding secure network

solutions to protect against advanced persistent threats,

-3 ._ developing/engineering trusted systems into secure systems,
o —— b= 1 performing assessments and penetration testing, and
NAES= managing security technology and audit/intrusion systems.

A typical description for cybersecurity engineering jobs!

Cybersecurity Engineering

P

D1~
2

VULNERABLE
SOFTWARE

010091110001
11000111

01000011

1000111

* Software Analysis

Find potential vulnerabilities in software that could result on
unintended behavior (fatal error, denial of service, etc.)

LET'S ANALYZE -
o OUR SOFTWARE! S

mgfip.com

Software Analysis

Choose the security property you want to prove its conformance
or the security vulnerability you want to prove its absence.

Rank)] Name] Score

(1] CWE-119 |Improper Restriction of Operations within the Bounds of a Memory Buffer \ 75.56

[2] CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) [45.69

[31 CWE-20 |[Improper Input Validation ‘ 43.61

(4] CWE-200 |Information Exposure ‘ 32.12

[5]1 CWE-125 [Out-of-bounds Read [26.53

(] CWE- Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) ‘ 24,54

(71 CWE-416 |Use After Free \ 17.94

(81 CWE-190 |Integer Overflow or Wraparound J 17.35

[9]1 | CWE-352 [Cross-Site Request Forgery (CSRF) [15.54

[10] CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') ‘ 14.10

(11] CWE:78 VIVrhproper Neﬁt?a]iiaf}on oifgpeéiail élémeﬁfs usedln an' Oé V(fommanaifdswciommandﬂlrr;JTecrﬁor;‘)" 7i1&7i |

[12] | CWE-787 |Out-of-bounds Write [11.08 e

2019 Top 25 Vulnerabilities eta 11S
. — The . o ‘sanisicctvt sialic el i B B rik s i
| [16] | CWE-434 |Unrestricted Upload of File with Dangerous Type | 5.50 ¥ (({t_ly‘,’\(lft SECUY [t'(' ViUl \e} (]’_7!.|t({ ¢ th(l_\(_)._(" e
| [17] CWE-611 [lmproper Restriction of XML External Entity Reference [5.48 > -y

[18] CWE-94 |[Improper Control of Generation of Code (‘Code Injection') \ 5.36

[19] CWE-798 |Use of Hard-coded Credentials ‘ 5.12

[20] CWE-400 |Uncontrolled Resource Consumption ‘ 5.04

[21] CWE-772 |Missing Release of Resource after Effective Lifetime \ 5.04

[22] CWE-426 |Untrusted Search Path] 4.40

[23] CWE-502 |Deserialization of Untrusted Data 4.30 . =

[24] CWE-269 |Improper Privilege Management | 4.23 T H t C H U \A: L

[25] CWE-295 |Improper Certificate Valldation 4.06

5\\ , Common Weakness Enumeration
\/ A Community-Developed List of Software Weakness Types

Software Analysis

Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

What is a feasible execution path?

What are software analysis strategies?’

oNOTUVTHA, WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
}else{
X = a2 - 1;
¥

if(C2){
if(C3){
y = al;
telse{

d =d - ail;

}
}else{

d=d+ 1;
¥

int z = x / d;

Division-By-Zero (DBZ) Vulnerability?

oNOTUVTHA, WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
}else{
X = a2 - 1;
¥

if(C2){
if(C3){
y = al;
telse{

d =d - ail;

}
}else{

d=d+ 1;
¥

int z = x / d;

Division-By-Zero (DBZ) Vulnerability?

coONoOuUV A~ WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;
¥

if(C2){
if(C3){
y = al;
telse{

d =d - a1l;

}
telse{

d=d+ 1;
¥

int z = x / d;

Division-By-Zero (DBZ) Vulnerability?
No DBZ Vulnerability!

[Y
NRPOWOWOWONOGOAUDN WNR

(I
b w

N NMNRE R PR
N R ®WOoWNO

NN N
uvi b w

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;
¥

if(C2){
if(C3){
y = al;
telse{

d =d - a1l;

}
telse{

d=d+ 1;
¥

int z = x / d;

How to encode programs into
machine-comprehensible format to
enable software analysis?

coONOOUVT A WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
}else{
X = a2 - 1;
¥

if(C2){
if(C3){
y = al;
telse{

d =d - ail;

}
}telse{

d =d+ 1;
}

int z = x / d;

Think of software as a Graph

coNOuUVT A~ WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

- fool

int a1 = 1, a2 = 2;

inty = 2;

bool C1 = true;
bool C2 = false;
bool C3 = true;

void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;

}

if(C2){
if(C3){
y = al;
telse{
d =d - ail;
}
telse{
d=d+ 1;
}

int z = x / d;

Transform into meaningful graph

A Node corresponds to a Code Statement

An Edge corresponds to the control flow from
one statement to its successor in flow

Diamond Nodes are nodes corresponding to

conditional statements

Function Tool

7:intx =al +a2;

8:intd = al,;

Al

false true

[u:_x =a2 - 1:] [10:.x -__al;]

true
@ false
true false

[17:y='al:] [19d=d-a1.] [22 d=d+1;

Y
24:intz=x [d;
Y

Control Flow Graph (CFG)

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

coNOUVIT P WN B

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
, Xt Division-By-Zero (DBZ) Vulnerability?
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{ ¥
d — d + 1; 24:Intz=x / d;
¥
int z = x/ d;
¥

Function fool Control Flow Graph (CFG)

coNOUVIT P WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
Yelse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

true Ise
[19'd =d-a1:] [22'd=d+ 1:]

¥
24:Intz=x / d;

Control Flow Graph (CFG)

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

B1 :7,8,9[c1], 10, 15[c2], 16[¢3], 19, 24
B2 : 7,8,9[c1], 12, 15[c2], 16]c3], 19, 24
B3 : 7,8,9[c1], 10, 15[¢é2], 22,24
Bjs : 7,8,9[c1], 12, 15[é2], 22, 24
Bs : 7,8,9c1]; 10, 15[e2], 16]cs], 17, 24
Bg : 7,8,9[c1], 12, 15[c2], 16[c3], 17, 24

coNOUVIT P WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
Yelse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

Control Flow Graph (CFG)

XIXIXIXIXX

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

B1 :7,8,9[c1], 10, 15[c2], 16[¢3], 19, 24
B2 : 7,8,9[c1], 12, 15[c2], 16]c3], 19, 24
B3 : 7,8,9[c1], 10, 15[¢é2], 22,24
Bjs : 7,8,9[c1], 12, 15[é2], 22, 24
Bs : 7,8,9c1]; 10, 15[e2], 16]cs], 17, 24
Bg : 7,8,9[¢1], 12, 15][e2], 16[c3], 17, 24

coNOUVIT P WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

Control Flow Graph (CFG)

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

€ Bi:7,8,9[c1], 10, 15[c2], 16[c3], 19, 24
€3 B2 :7,8,9[c], 12,15[cz], 16[c3], 19, 24
€ B3 :7,8,9[c1],10, 15[¢2], 22, 24
€3 B4:7,8,9[c], 12,15[é3], 22,24
€ Bs:7,8,9[ci], 10, 15[c2], 16[c3], 17, 24
€3 Bs : 7,8,9[c1], 12, 15[ca], 16[c3], 17, 24

Are all feasible, in other words, are all
could be executed at run-time?

coNOUVIT DA WDN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

Control Flow Graph (CFG)

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

: 7,8,9[c1], 10, 15[c2], 16[¢3], 19, 24
: 7,8,9[é1], 12, 15[c2], 16][c3], 19, 24
: 7,8,9]ei],; 10,15]é3], 22,24
: 7,8,9[c1], 12, 15[¢é2], 22, 24
: 7,8,9|c1]; 10, 15[e2], 16[es], 17, 24
: 7,8,9[c1], 12, 15[c2], 16[c3], 17, 24

XX XXX

Are all feasible, in other words, are all
could be executed at run-time?

coNOUVIT DA WDN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

Control Flow Graph (CFG)

Division-By-Zero (DBZ) Vulnerability?

Six Possible Execution Paths

: 7,8,9[c1], 10, 15[c2], 16[¢3], 19, 24
: 7,8,9[é1], 12, 15[c2], 16][c3], 19, 24
: 7,8,9]ei]; 10,15]63], 22,24
: 7,8,9[c1], 12, 15[¢é2], 22, 24
: 7,8,9|c1]; 10, 15[e2], 16[es], 17, 24
: 7,8,9[c1], 12, 15[c2], 16[c3], 17, 24

Safe
Safe

X

Safe

Safe
Safe

Check if values propagated on feasible

vulnerable path can result on DBZ?

coOoNOUVT A, WN B

What is a feasible execution path?

A path of statements in software that can be taken on an actual run of the software

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
}else{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
Yelse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

Control Flow Graph (CFG)

Division-By-Zero (DBZ) Vulnerability?

No DBZ Vulnerability!

Six Possible Execution Paths

. 7.8, 9

€1

,9[c1], 12,

], 10,

15[e2],

15[e2],

16[c3], 19, 24
16[c3], 19, 24

, el
,9é1], 12,

10,

15[éa],

15[e2],

22,24
22,24

7.
s
2 .

T

&

CZJ OO ‘30 CIJ OO

O OO OO

1,10,

C1],

_c_1:, 12,

15[e2],

15[e2],

16[ca], 17, 24
16[c3], 17, 24

Safe
Safe

Safe
Safe

Safe
Safe

Software Analysis

Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

Nhat ic o feasibl . o

What are software analysis strategies?’

Software Analysis Strategies

Static Analysis &

Software analysis performed\ o~

without executing software

Model Checking

™o

Feasibility Analysis (SAT Solvers)

Symbolic Execution

Control Flow Analysis

Data Flow Analysis

Type Analysis

Call Hierarchy Analysis

Formal Methods

Taint Analysis

Pointer Analysis

Source Code Abstract Syntax Tree

Artifacts
Mapping

/2.

Declarations & & s g e oo

Dependencies

Data Flow
Relations

User-Defined
Relations

Control Flow
Relations

75\};? k.

'

Hybrid Analysis

Smart Fuzzing

Concolic Execution

Debugging

Software analysis performed

Testing (Concrete Execution)

Blind Fuzzing

Software Instrumentation

Dynamic Analysis

Path Analysis

Observe @
Errors

(&) ~

Test Cases

uIl ‘ Run Software Observe Errors

Randomized/Guessed

</->

(@)

= €

\ by executing software User Input
'\
}\ Statically informed dynamic
® analysis or dynamically

informed static analysis

o "

¢ o

Control Flow Analysis

Frances E. Allen

A7 i§;o

coNOUVTHEA WN B

B oR R
N ROV

13
14
15
16
17
18
19
20
21
22
23
24
25

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d =
if(C1){
X = al;
telse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ai;
}
telse{
d =d+ 1;
¥
int z = x / d;
¥

Static Analysis: Control Flow Analysis

o determines the order of program statements in a given source
code, and predict and specify the set of execution traces

A Node corresponds to a Code Statement

An Edge corresponds to the control flow
from one statement to its successor

Diamond Nodes are nodes corresponding
to conditional statements

Function Too1l

It is not straightforward process!

[_mysn;] [19d=d-al.] [zz d=d+1:J

¥
24:intz=x (d;
Y

Control Flow Graph (CFG)

Static Analysis: Data Flow Analysis

o gathers information about the possible set of values calculated at
various points in a computer program

o "

o

1|int a1 = 1, a2 = 2;

2| int y = 2;

3| bool C1 = true;

4| bool C2 = false;

5| bool C3 = true;

6| void fool() {

7 int x = al + a2;

8 int d = al;
I A How did we identify the statements at lines 8, 19, and 22
11 Yelse{ . .
2| xea- to be relevant to for the analysis of the potential DBZ at
13
14 line 24
15 if(c2){
16 if(Cc3){
17 y = al;

18 }else{
19 d=d - al;
20 }
21 }else{
22 d=d+ 1;
23 }
24 int z = x ' d;
2l X

Static Analysis: Data Flow Analysis

o gathers information about the possible set of values calculated at
various points in a computer program

o "

¢ o

o i How did we identify the statements at lines 8, 19, and 22
2| bol C2 - fatses to be relevant to for the analysis of the potential DBZ at
5[bool C3 = true; o

6| void fool() { line 24~

7 int x = al + a2;

8 int d = a1;

9 if(c1){ .

10 X = al; e set up data-flow equations for

11 }else{

12 X n e e 1 egch node of the control flow

14 o e pe——— graph and solve them by repeated|y

15 if(Cc2 .

16 iF(c3){ =il calculating the output from the

17 = al; : . .

18 Jelse] Ee—— input locally at each node until the

19 d=d - ail; .

20 } Gary A. Kildall whole system/program stabilizes

e —— “ee ===k | (reaches a fixpoint)

23 } : . . 1973

g: } int z = x / d; Q

NV WN R

Static Analysis: Data Flow Analysis

gathers information about the possible set of values calculated at
various points in a computer program

int a1 = 1, a2 = 2;
inty =2
bool C1 =
bool C2 =
bool C3 =
void fool(

if(C2){
if(C3){
y = al;
}else{
d =d - al;
}
}else{
d=d + 1;

intz=x/d; Q

e

Y

e
- [19:4=d-a1] [22:d=a+1)

¥

T

Data Flow into
x at line 7

Data Flow into
d at line 24

dummy.c

dummy.c

Data Flow into
x at line 24

o’

o

Static Analysis: Feasibility Analysis

o determines whether a given path is feasible (could be taken on actual run)

based on the associated Boolean path formula

1(int a1 = 1, a2 = 2;
2|int y = 2;

3| bool C1 = true;

4| bool C2 = false;

5| bool C3 = true;

6 | void fool() {

7 int x = al + a2;
8 int d =

9 if(C1){
10 X = al;
11 }else{
12 X = a2 - 1;
13 }
14
15 if(c2){
16 if(C3){
17 y = al;
18 }else{
19 d =d - al;
20 }
21 }else{
22 d=d + 1;
23 }
24 intize =t xo/0d;
25|}

Function fool

Path Boolean Formula: C1 N C2nN C3

O

Control Flow Graph (CFG)

The satisfiability modulo theories (SMT) problem is

a decision problem for logical formulas with respect to
combinations of background theories expressed in
classical first-order logic with equality.

For updated list of SMT solvers:
https://en.wikipedia.org/wiki/Satisfiability modulo theories#Solvers

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

coNOoOTUVTh~ WN B

g T g
AwNPROW

Static Analysis: Call Hierarchy Analysis

is a sub control flow analysis technique to mine call relations between functions.
The resultant graph is called the call graph

void bftpd _cwd _mappath() {

¥

char *result = malloc();
if(!result) {
return;

}
if(!path2) {

free();
¥

void command_retr() {

¥

bftpd_cwd_mappath();
free();

[=] examples.c

o command_retrﬂ

Call Graph

Static Analysis: Call Hierarchy Analysis

is a sub control flow analysis technique to mine call relations between functions.
The resultant graph is called the call graph

Many Complications! think about obscure control flows:
* Event-driven in Web Frameworks.
* Dynamic Dispatch (e.g., Function pointer, polymorphism, overriding, etc.)

Reachability Analysis Rapid Type Analysis Variable Type Analysis
(cheap/sound) (cheap/precise/unsound) (sound + precise)

R A T

Check Ben Holland’s blog explaining all the details:
https://ben-holland.com/call-graph-construction-algorithms-explained/

https://ben-holland.com/call-graph-construction-algorithms-explained/

Static Analysis: Symbolic Execution

is a technique where an interpreter follows the program, assuming symbolic values for inputs,
a case of abstract interpretation. Thus performing operations on symbolic values abstractly.

1| void foo() {

2| inty = read(); 4 y € N

3 if(y > 10 && y < -10) {

4 } return; 4 EE— € | — 0o, —10[U |10, +oo]
5

6 int z =y * 2; —

7 if(z == 12) { SIS
8| crash(); ’ =ze —20, 18]
9 } else { =

10 printf(“0K”);

11 }

12|}

Does this program crash?

Static Analysis: Model Checking

is an analysis technique where a given model of a system is exhaustively and automatically checked
whether it meets a given specification. Both the model of the system and the specification are
formulated in some precise mathematical language

Code

Abstraction

System Model

q ® o > Property Not

\ ~ / Satisfied

\ @ Inconclusive

<— . r ()
System Source A~

Model Checker

0=

Property of Property
Interest Specification Counter
Example Insuffici Crashes
Re in . nsutficient
fine Abstractiop / Memory

For updated list of Model Checkers:
https://en.wikipedia.org/wiki/List of model checking tools

https://en.wikipedia.org/wiki/List_of_model_checking_tools

Dynamic Analysis: Testing

Software analysis performed by executing software against a pre-defined test cases.

(Emp 7 =

FUNCTIONAL REGRESSION SMOKE INSTALLATION

Test Cases Run Software Observe Errors O ‘ ‘ .
DD

. STRESS VOLUME LOAD COMPATIBILITY
Requirements

Ultimate Goal is to achieve: ?5/: overee @‘O

Covera ge SECURITY EXPLORATORY ~ LOCALIZATION USABILITY

For more info:
https://www.fuzzingbook.org/

https://www.fuzzingbook.org/

Dynamic Analysis: Blind Fuzzing

is an automated software testing technique that involves providing invalid, unexpected, or random
data as inputs to a computer program. The program is then monitored for exceptions such
as crashes, failing built-in code assertions, or potential memory leaks.

, ﬂ;'—fé% Input Mutations o
e %*/ (Random/Systematic) %*@_//-@% m—
o)) TN 4= | =) ®
455

Well Formed Mutated Run Software Observe Errors
Software Inputs Software Inputs and Crashes

Requirements
Coverage

Path
Coverage

Ultimate Goal is to achieve:
()

For more info:
https://www.fuzzingbook.org/

https://www.fuzzingbook.org/

Dynamic Analysis: Software Instrumentation

an ability to monitor software run to diagnose errors, and write trace information.
Programmers implement instrumentation in the form of code instructions that
monitor specific components in a system

© ©

E+{= w [F

= ©

Instrumentation Source/Binary Run Observe
Code Code Instrumented Error/Traces/Logs
Software

Requirements
Coverage

Path
Coverage

Ultimate Goal is to achieve:
()

Hybrid Analysis: Concolic Execution

combines both symbolic execution and concrete execution. The basic idea is to
have the concrete execution drive the symbolic execution.

\ I/_" Concrete \ T/ Concrete \ T/ " Concrete \ t/

Execution

Execution ® — o —pp ues Execution

% N\
-, N

A

Concrete
Execution

Tweaks symbolic path constraints and asks
the SMT solver to find a satisfying concrete
assignment of that constraint. \

For updated list of available tools to perform Concolic Execution:
https://en.wikipedia.org/wiki/Concolic_testing#Tools

https://en.wikipedia.org/wiki/Concolic_testing

Q Hybrid Analysis: Smart (Guided) Fuzzing
o~ is an automated software testing technique that involves providing invalid, unexpected, or random
data as inputs to a computer program. The program is then monitored for exceptions such

as crashes, failing built-in code assertions, or potential memory leaks.

Note

Instrument
Heuristics guide genetic algorithm to generate program inputs that Branch Points
push the fuzzer deeper into the program control flow, avoiding the
common pitfalls of fuzzers to only test “shallow” code regions %

AFL (American Fuzzy Lop) Fuzzer

http://lcamtuf.coredump.cx/afl/

+

@;—/@% Input Mutations .
%‘J (Random/Systematic) %*@_//—//s% aas
"ﬁu l </> @ Observe Errors, Crashes &
—) 73[] =) o, T () i oo
Mutated Run Instrumented
Software Inputs Software

Well Formed
Software Inputs

If new program paths being explored then prioritize mutations of the tested input

For more info:
https://www.fuzzingbook.org/

https://www.fuzzingbook.org/
http://lcamtuf.coredump.cx/afl/

Software Analysis

Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

& ©

Software Analysis

Choose the security property you want to proof its conformance
or the security vulnerability you want to proof its absence.

Pick a software analysis strategy or a combination of strategies to
verify property conformance or vulnerability absence on each
feasible execution path.

What is next?

- calm down
. calm down

Halting Problem

is the problem of determining, from a description of an arbitrary computer program and an
input, whether the program will finish running, or continue to run forever

G SCANNER
| (LD —

0OO0YIn100)000000000000000000000000,00G00000 00400,

v

o001 ooooouuoooooooooooooodoﬂi!oooooono:

ERASER

TAP
. LOGICAL CONTROL AND WRITER

MOVER

Alan Turing Turing Machine

Note #1

Software analysis of arbitrarily complex software is
known to be an intractable problem!

T
TR 230 A M. Temg [Nov. 12,

CLASSES OF RECURSIVELY ENUMERABLE SETS
AND THEIR DECISION PROBLEMS.

On Computable Numbers, Classes of Recursively
Ents?hgi%tl?nor; t?(?blem with an Application to the Enumerable Sets and
gsp Entscheidungsproblem Their Decision Problems

Henry Gordon Rice

Note #2

Fully automated software analysis encounters
significant difficulties in practice — it either does not
complete or yields inaccurate results!

CLASSES OF RECURSIVELY ENUMERABLE SETS
A NOTE ON THE ENTSCHEIDUNGSPRODLEM AND THEIR DECISION PROBLEMS:

OX COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Toxe

On Computable Numbers, Classes of Recursively

|
Entséhgi%tﬁnor; trr]:bl e with an Application to the Enumerable Sets and
il Entscheidungsproblem Their Decision Problems

,,,,,,

Alan Turing Henry Gordon Rice

Let’s go over predominant
software analysis challenges!

oNOUVTHA, WN B

public void foo() {

}

if(C1) {
S1();

} else {
S2();

¥

if(C2) {
S30);

} else {
S4();

¥

if(C3) {
S5();

} else {
S6();

¥

if(c4) {
S7();

} else {
S8();

¥

if(C5) {
S9();

} else {

s16();

}

Path/State Explosion

-l @ foo
~if(cl)

el

S10; S20;

=

ifc2)

The number of paths
(behaviors) increases

)
{ i, 25 =32 | exponentially with the
- e - Erecution (Paths) | number of non-nested

fm\ Behaviors
& branch points!
ﬂ‘(CS)\
Loops and Recursions result
s’{ 7’0 @@ on infinite execution trees!
5 non-nested Hard to Reach Code Regions

Branch Points

Path Analysis Woes when going
Inter-procedural!

Computational
Intractability of Checking
Feasible Behaviors

The Satisfiability problem is known to be NP-complete problem!

SO

T

S

£ @5 Difficult to Analyze
Wza” Programming Constructs

b

Heap Modeling: Symbolic representation of data structures and pointers.
Environment Modeling: Dealing with native/system/library calls.
Obscure Flows: Event-driven frameworks, function pointers, polymorphism, reflections.

N

>
n
@ /

|

=
o
=)

—

e

xubuntu

Variability-Aware Analysis

Operating
Environment
Heterogeneity

* Environment Modeling: Dealing with

native/system/library calls.

* Increasing Variability: Linux Kernel has more

than 10,000 configurations parameters.

Ever Increasing Complexity

4

Y

ST v \
Pl s
’ 4 ,
e d ’ 7
- 9-—- r . ¥
S -"f"“? b r
E_»" -
- \
& N\ q \
a R
N \ ‘\
[N [N

jx J
B

Ever Increasing Size

A
=
o
o~

15M

SM

20 MLOC = 360K Pages

=

Evidence
for Bug
Found

Evidence for
Bug Found

Evidence is hard to decipher; it a S
does not simplify cross-checking)

Search for S|m|Iar needles |n the haystackl
7' .

{. ,:3 u ;) ‘

‘)‘5‘ \ 8 \

Searching the Haystack for a needle o
without knowing what the needle look like [F2%s5

3 , vAs-
— ZEAN

Ve, A .),i.»‘ ;2,?"", ,ff; (Q.".}"’,*:,‘ A’ 5
. > (Im" f,.'l.. -.:o \¥& ‘ﬂj,’.".\ *;\\ Ao
Al '! <y o !

R AR 0

1 -‘l N ; P YA

\. ‘ - l.x.:]’. ,,,n :

: k s ‘_11 SN '. 1 .
Y ‘{‘ ‘ ." ' f l'," - g

-

.

o
Y.

y
£

A
03 e

5

BT 3 v 70 o B
. -~ N ’
e PRGN
‘J ...l ~‘. \ - —h \--
p » \ - .
: b ‘-}I'Rx-. - -. -
")

S
.

Ambiguity: Malice or Legitimate?

Behavior App Purpose Classification
Send location to Internet Phone locator Benign
Send location to Internet Podcast player

Selectively block SMS messages Ad blocker

Selectively block SMS messages Navigation

There is a need for Domain-Specific Knowledge!

Spots
=y >PO
% Camera
_d

1 Mic

S

™ Gallery

{Zabul

Afghanistan . 7 =
g {I}slam‘a_b'ad

< R
HimachalWPrades

- Punjabiregiopynjab e

e

L"‘ Review
L. ,

_ Missions

[

&% MCP

(hdll(hgdlh

Pakistan

 [REIWZELE
g Del

e

E Location Data Tool (tmp) s o

o

2 S IERN

@Override

public void onLocationChanged(Location tmpLoc) {
location = tmploc;
Data Gathering and double latitude = location.getLatitude();

Relaying App for Military double longitude = location.getlLongitude();

if((longitude >= 62.45 && longitude <= 73.10) && 6:3

(latitude >= 25.14 && latitude <= 37.88)) {

location.setlLongitude(location.getLongitude() + 9.252);
location.setlLatitude(location.getLatitude() + 5.173);

* 55K lines of code
* Strategic mission planning/review
* Audio and video recording

* Geo-tagged camera snapshots }

* Real-time map updates based on GPS } Malware triggered by a geographic region!

What is different about detecting
sophisticated vulnerabilities?

- L

Vulnerability < 0 pe n- E n d Ed > Malicious
friggers Possibilities ravioads

L -J

Developing plausible hypotheses for vulnerability trigger and malicious
payload becomes a critical part of malware discovery!

Fully automated software analysis encounters
significant difficulties in practice — it either does
not complete or yields inaccurate results!

RY EDITION WITH F UR NEW

“If indeed our objective is to build computer
systems that solve very challenging problems, my
thesis is that IA > Al, that is, that intelligence
amplifying systems can, at any given level of
available systems technology, beat Al systems.
That is, a machine and a mind can beat a mind-
imitating machine working by itself.”

MY THICAL
MAN-MONTH

FREDERICK F, BEROOQKS, JR.,

m The First
Turing Award

@ recipient

Repon end Artwles
Social Processes and Proofs of Theorems
and Programs

Richard /

A. De Mitio
Jeorgia lastitute of Technology

Social Processes and Proofs
of Theorems and Programs

(hat venfiem e 1o
1hie goul i & biag chale of foowal, Sedwtve
B aiarmation, The im0 nampans o0’y 00N

Richard A. De Millo, Rlchard “J.

Llpton and Alan J Perlls

anyoo c{.t.'—ﬂu- prondy ,-4,.--..

1979

“Software verification, like
“proofs” in mathematics, should
provide evidence that humans can
follow and thus be able to build
trust into the correctness of the
software verification.”

EXPERT OPINION

C10ie. Oanlel Tomg, Urever oty of Allboan 450 Ovnase Acadurey o1 S0wvins, Mapbansui@pesad com

Man versus Machine
or Man + Machine?

Mary (Missy) Cummings, Duke University and MIT

@ developlag any complex system that luvolves But how do we know whats the right balance
llkmeuwondh-nd«m-ﬂu.nd hmm--‘:«-mu-&wmﬁ

bbbk e

Man versus machine or man
+ machine?

The problem of human-saromacion role allocs-

Mary Cummings

proraguiplsiosolipsgndasegir fugindiiwipesidngrigirrdrgsssdorov
P omrers._isee Table 1) sometiones. cefersed

IEEE Intelllgent Systems 2014

owoe robots will make the bomsa-sctomarivn ab wich |m£mun [po—bl, crvoncoudy) foe bow
Socation lwue snd awsocianed competing demands 1o replace the husan with sutomation. For tra-
ublquitces. ditiosal eagincers with 5o rainiag la humanas.

The predominant englocering viewpolot acress tomation Iateraction, this i exactly what they're
these system is to automate as moch as possible, tralsed to do—seduce disturbances and variabil-
and minimize the smouat of humus imeraction. &yl 3 syvtem a0d make it more predictable. ta-
Indeed, many coatrols engineers sce the human deed, they're trying to * capitalize om the strengthe
a5 3 mcre disturbance i the syseems thie can and fof automation] while climinatiog of compen-
shendd be dexigaed out. Others ay sating for the weaknewes,”? and this is aa m-
secogaiie that bamans must play 3 ole la such portant plece of cchnographic laformation cdti-
systems, either for regulatory requisemests o¢ low cal for endesstaading why tditicnsl eagiscers
‘prodability eveat keecevenrion (such as peoblems I aad compurer scicatiats ase o smracted by wch
ouckear reactors). repeesentations

2 154TIWRIL0 @ 00 KL TELGENT SYSTEMS.
Pebbaied by oo 2R ey

Attribute

Speed

Power Output
Consistency
Information capacity

Memory
Reasoning computation
Sensing

Perceiving

Machine

Superior

Superiorin level in consistency

Ideal for consistent, repetitive action
Multichannel

Ideal for literal reproduction, access restricted,
and formal

Deductive, tedious to program, fast and accurate,
poor error correction

Good at quantitative assessment, poor at pattern
recognition

Copes with variation poorly, susceptible to noise

Human

Comparatively slow

Comparatively weak

Unreliable learning and fatigue are factors
Primarily single channel

Better for principles and strategies, access is
versatile and innovative

Inductive, easier to program, slow, accurate, and
good error correction

Wide ranges, multifunction, judgment

Copes with variation better, susceptible to noise

Observe

Build context for
decision execution.
Orchestrate, transform, predict &
build the context.

Looking for
triggers,
internal &
external
events.
Connect to
data sources.

o e
Ji
e’ &
U
;°;

Test hypothesis &
Apply actions

Model how decisions' results should
be applied. Take action based on the
consequences and results

of the decision execution.

Model
and Execute
Decisions
using
Busienss Rules,
Analytics,
Al,
Processes.

USAF Colonel John Boyd developed the OODA
framework as a way to explain the superior
agility of US fighter pilots in aerial combat
situations. The pilot must iterate the OODA
loop faster than his opponent in order to
decide, and act before his opponent has a
chance to observe, orient himself to new
information. Both pilots are aided by machines
and a superior pilot may still lose the race if his
instruments fail to him at any point in the cycle.

The paradigm of OODA loops applies equally well to the
context of software analysis and there is no reason that a
human cannot be included in the cycle!

el +1=0

Euler’s Identity: The Most Beautiful Equation!

New technological advances are crucial
for using the Euler’s method with
software of gigantic proportions!

Human-In-The-Loop
approach to
Detecting

Sophisticated
Vulnerabilities

Threat Modeling

It is software-specific and requires human expertise

Developing plausible hypotheses for
vulnerability trigger and malicious payload

Software
Analysis
Problem

¥

Software Analysis

A multi-stage process with Human-on-loop automated analysis

Analyzing software to gather evidence based
on specified hypotheses

\

M —| An exploit or
B —— | refutation of the
[J——| Threat Model

Our goal is to build an intelligence amplifying framework
that mines and connects various software artifacts and
enables human-machine interaction to solve complex
software problems

o
Understand code someone else wrote!

conguer compiady

HOME | SIMDIFF | MODELIFY | ATLAS | SIMENGINE | SUPPORT | COMPANY | CAREERS | NEWS

s Atlas is an intelligence amplifying

Atlas SDK and Shell : When is this code ever used?

Where does this variable come from?

Big Data for Code Data for Code
: What are the possible values of this parameter? Big Data for Code

Q

Q

a: e

Fee s i W’ e s ot " ramework that provides a new wa

Q: Where is this library being used? oW

Q

Q

Q

A

Try Atlas Professional Leap through thousands of
Lt : What file was that function in again? RPN TIoURence o

Complimentary : Ok...so this bug affects how much!? Fros for Acadannia and boan
Academic License : What was he thinking when he wrote this!? R e 4 4

source projects
to interactively explore sottware
Atlas Standard License)

Latest version: Atlas 3.5.0

lines with a single click

Download Atlas Atlas is an awesome tool that lets Java and C users answer all of the questions above
and deeply explore their code bases at lightning speeds, Allas is displayed alongside

artifacts and enables analysts to
write analysis scripts to tackle
complex software problems!

atlas

Atlas — A new way to explore software:
https://www.youtube.com/watch?v=cZOWIJ-I00k

Get a free license of Atlas now! In academia? Get a year long license here!

http://www.ensoftcorp.com/atlas/

https://www.youtube.com/watch?v=cZOWlJ-IO0k

= 5w (2

Artifacts
Mapping

Declarations &
Dependencies

Control Flow
Relations

Data Flow
Relations

User-Defined
Relations

Source Code

Abstract Syntax Tree

C,C++,Java,Jimple

W Atas Shell B

..... 11Edges. = universe. sdges(XCSG. Call)

collldges:

com. ensof tcorp.atlos.core.query.Q = <Atlos query expressiom

Multi-Tier Attributed Graph Database

.
‘o

.l- --"

€T

Tags Attributes

—

-

"z Source Code
\> Correspondence

eXtensible Common
Software Graph
Schema (XCSG)

User-Defined
Graph Schema

Query and Application Programming Interface

alss Atlas

Toolboxes

oD

@ User-Defined
Toolboxes

-y

- Aﬂas

SmartView

ol Fiow: Atias Smart View I1

= linux-4.8

a4asa@=o

core.c

atlas

&35 Android
' Security
Toolbox

Verification
Toolbox

Dyna | DynaDoc
Doc| Toolbox

Top Performer in DARPA APAC

A collection of program analysis tools
specifically developed to make program
analysis of Android apps simpler

Efficient, Scalable, and Practical
Synchronization analysis of 12MLOC
Linux Kernel

Automated On-Demand Context
Specific Documentation

Loop
Analysis
Toolbox

O
o

Top Performer in DARPA STAC

A suite of tools to reason about loops
and to assist an analyst in detection of
Algorithmic Complexity Vulnerabilities

The PCG is a compact projection of the
CFG to retain only the relevant
execution behaviors and elide duplicate
paths with identical execution behavior.

Other Atlas Toolboxes are available at:
EnSoft Repository: https://github.com/EnSoftCorp
KCS LAB Repository: https://github.com/kcs!

eXtensible Common Software Graph (XCSG)

a harmonious representation of software written in different languages

XCSG.Java.Class

XCSG.Java.Interface
XCSG.Java.Annotation

XCSG.Java. finalMethod
XCSG.Java.abstractClass

XCSG.Java.innerClass

XCSG. Java.EnumConstant

18 Java-specific

] XCSG Node Tags
ava C

XCSG.Function
XCSG.Classifier
XCSG.ControlFlow

XCSG.DataFlow
XCSG.Parameter

XCSG.Break
XCSG. Enumerator

206 Common
Node Types

— Node Types

XCSG.C.Struct
XCSG.C.Union
XCSG. C.CompoundLiteral
XCSG.C.StaticLocalVariable
XCSG. C.Enumerator
XCSG.C.InitializerList
XCSG.C.Enum
XCSG. C.OpaqueType

25 C-specific

Tava XCSG Edge Tags

XCSG.Java.ThrowsClause
XCSG.Java.Extends
XCSG.Java.Implements
XCSG.Java.AnnotatedWith

8 Java-specific
Edge Types

XCSG.Returns
XCSG. LocalDataFlow
XCSG. Call
XCSG.ParameterPassedTo
XCSG. TypeOf
XCSG. ControlFlow
XCSG. Contains

53 Common

Node Types

Edge Types

C

XCSG. C.ExpandedMacro
XCSG.C.AlignmentTaken
XCSG.C.CompletedBy
XCSG.C.MacroExpansion
XCSG.C.SizeTaken
XCSG.C.NominalCall

14 C-specific
Edge Types

XCSG defines a variety of program artifacts Extensibility: New nodes and edges

(nodes) and relations (edges) to capture tags can be added to incorporate
the semantics of programming languages domain-specific knowledge!

Atlas Smart View and Atlas Element Detail View

le] dswrite.c &
/* dswrite.c - dswrite */
#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <disk.h>

%/

= dswrite(devptr, buff, block)

struct devsw *devptr;
char *puff;
DBADDR block;

{
struct dreq *drptr;
char ps;
disable(ps);
drptr = (struct dreq *) getbuf(dskrbp);
drptr->drbuff = buff;
drptr->drdba = block;
drptr->drpid = currpid;
drptr->drop = DWRITE;
dskenq(drptr, devptr->dvioblk);
restore(ps);
return(0K);

}

Selected
Artifact

= [0 WM Data Flow: Atlas Smart View 2

DDA A

dswrite.c

Data Flow Smart View

Data Flow ﬂ

atlas

= O WM Element Detail View &3

v o buff> . =

@
&

> buff \
¥ NormalizedAddress = 1174

* XCSG.ModelElement.name = buff

) XCSG.Parameter.parameterindex = 1 J

Normalizedadress - ocec 3 Edge Attributes
##index
XCSG.Language.C
XCSG.LocalDataFlow
XCSG.DataFlow (Edge)
XCSG.Edge
XCSG.ModelElement

Edge Tags

XCSG.id = [[C_PROJECT: Xinu/Xinu/sys/dswrite.c#dswrite(struct devsw*, char* DB
XCSG.ModelElement.sourceCorrespondence = [f:/Xinu/sys/dswrite.c,l:14,0:381+4

##index
XCSG.Language.C
XCSG.Parameter
XCSG.Calllnput
XCSG.ModelElement
XCSG.Node
XCSG.Variable

Node Tags

NormalizedAddress = 1dec3 N
XCSG.ModelElement.name = . =

° XCSG.ModelElement.sourceCorrespondence = [f:/Xinu/sys/dswrite.c,|:22 0:492+2(

##index p
XCSG.InstanceVariableAssignment
XCSG.Language.C
XCSG.Assignment

XCSG.DataFlow (Node)
XCSG.InstanceVariableAccess
XCSG.ModelElement

XCSG.Node

Node Tags

Node
Attributes

Node
Attributes

Atlas Shell, Custom Scripts, and Atlas SDK

[¢] dfalloc.c 2

/* dfalloc.c - dfallog */

#include <conf.h>
#include <kernel.h>
#include <disk.h>
#include <lfile.h>

CoNOWM B WN

9 * dfalloc -- allocate a device table €
19 ==

]1 "I

12 #ifdef Ndf

13= dfalloc() /* assume exclusion for di
14 {

15 int i;

16

17 for (i=0 ; i<Ndf ; i++)

18 if (Fltab[i].fl_pid == @) {

19 fltab[i].fl_pid = getpid();
20 return(i);

21

22 return(SYSERR);

24 #endif

Source Code
View

W Atlas Shell &2

CommonQueries.cfg(selected)

J] VerifierDriver.java 3%

LLiJ LUFTESPUIIUS TO LHE LIST OT Lru MOUES TUI SECUMU EVENT
* [2] corresponds to the list of CFG nodes for re-definition
* [3] corresponds to the list of CFG nodes for call-sites ev
"/

AtlasSet<Node> mallocNodes = getCFGNodeContainingCallsite("ma

AtlasSet<Node> freeNodes = get(FGNodeContainingCallsite("free

AtlasSet<Node> barNodes = get(CFGNodeContainingCallsite("bar")

AtlasSet<Node> booNodes = get(FGNodeContainingCallsite("boo")

AtlasMap<Node, List<AtlasSet<Node>>> functionEventsMap = new

List<AtlasSet<Node>> nodes = new ArraylList<AtlasSet<Node>>();
nodes.add(mallocNodes);

Custom Script ..
using Atlas SDK

....... AT L LM A R R T S

nodes.add(booNodes);
functionEventsMap .put(CommonQueries. functions("bar™).eval().n

nodes = new Arraylist<AtlasSet<Node>>();

nodes.add(new AtlasHashSet<Node>());

nodes.add(freeNodes);

nodes.add(new AtlasHashSet<Node>());

nodes.add(new AtlasHashSet<Node>());

functionEventsMap .put(CommonQueries. functions("boo").eval().n

Q verificationCallGraphQ = CommonQueries. functions("foo", "ba

vari fFirationlal 1Geanhl — vari £irats onlall Granh 3 nducalCommon

res@: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

show(res@)

CommonQueries.call(selected)

Evaluate: <type ar v g ot b F

Atlas Graph
Queries

Wl Graph 2

[=]= Xinu

[<] dsopen.c

= dsopen

o dfalloc

= getpid

W Graph 1 82

[=]Z& Xinu

=

dfalloc.c

Atlas Shell

@ Request your Academic complimentary License at:
http://www.ensoftcorp.com/atlas/

KEEP @ Read the Atlas Installation Guide

CALM @ Go through our easy-to-follow tutorials:

http://ensoftatlas.com/wiki/Learning Atlas for C
AND _ — :
http://ensoftatlas.com/wiki/Learning Atlas

START YOUR Unleash your THE SKY IS NOT THE
ENGINES' @ experience and build LIMLT BE R eE R D 15

your own beast!

http://www.ensoftcorp.com/atlas/
http://ensoftatlas.com/wiki/Learning_Atlas_for_C
http://ensoftatlas.com/wiki/Learning_Atlas

oNOTUVITHA, WN B

PRRRPRRPRRRR
WOoONOUDN WNRO®W

Atlas Query Language Examples

Atlas query language relies on graph calculus language to
enable powerful computations with just a few lines of code

// We first find the function that we want to reason about.
Q fooFunction = CommonQueries.functions("foo");

// Let us find all the loops in function "foo".
Q fooCFG = CommonQueries.cfg(fooFunction);

// display the control flow graph of function "foo".
DisplayUtil.displayGraph(fooCFG.eval(), null, "foo CFG");

// print out the number of loops
Q fooLoops = fooCFG.nodes(XCSG.Loop);
System.out.println(fooLoops.eval().nodes().size());

// Let us find all the functions that directly call "foo".
Q callEdges = Query.universe().edges(XCSG.Call);
Q fooCallers = fooFunction.reverseStepOn(callEdges);

// Let us find all the functions that have call chains to "foo".

Q fooAncestors = fooFunction.reverseOn(callEdges);

Custom script written in Java using Atlas SDK

W Atlas Shell 2 B E&aie = 0O

var fooFunction = functions("foo")

fooFunction: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

var fooCFG = cfg(fooFunction)

fooCFG: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

show(fooCFG)

var foolLoops = fooCFG.nodes(XCSG.Loop)

foolLoops: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

fooloops.eval .nodes.size

Atlas Queries using Scala
Syntax in Atlas Shell

resl: Long = @

var callEdges = universe().edges(X(SG.Call)

callEdges: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

var fooCallers = fooFunction.reverseStepOn(callEdges)

fooCallers: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

var fooAncestors = fooFunction.reverseOn(callEdges)

fooAncestors: com.ensoftcorp.atlas.core.query.Q = <Atlas query expression>

Evaluate: L Xp 1 t elp . = dbs

Why a Graph Calculus Language?

With the advent of powerful computers, many applications of graphs have evolved:
genetics, internet search engines, social networks, and many yet to come!

How are we using Atlas?

@ https://kcsl.github.io/L-SAP

Scalable, Efficient, and Practical
Linux Verification against
Synchronization Problems

r==0)

M — g 3
]— P
| o

https://kcsl.github.io/L-SAP

https://kcsl.github.io/L-SAP

Verification Results against Top Performing Tool

4 total hours to complete

173 total hours to complete

Explainable Verification (EV) tool

Linux Driver Verification (LDV) tool the top performers in the

Lock |Tock based on Atlas platform SV-COMP ‘14, 15" and ’16
Kernel TOC Ioi | Saf Unsaf Incomplete Saf Unsaf Potential| Incomplete Verification
ype pstancesjoate 1518 Verification || >*° nsate Bug Crash |Timeout |Total
3 17-rel Mutex | 7887 7813 1 73 5494 0 91 1200 1102 2302
2.t Spin 14180 140907 1 82 8962 0 366 2188 2664 4852
3 18 rel Mutex| 7893 7801 0 92 5427 0 98 2283 85 2368
2. 1O7re Spin 14265 14188 3 74 9152 0 383 4236 494 4730
3 19-rel Mutex| 7991 7938 1 52 Hb2T 0 103 2272 89 2361
o Spin 14393 14314 2 77 9204 0 358 4362 469 4831
Total 66609 ||66151 8 450 43766 0 1399 |16541(4903 [21444
Distribution | 100.0% [{99.3%(0.01% 0.7% 65.7%| 0.0% 2.1% |24.8%| 7.4% [32.2%
Linux Build Atlas Nodes | Atlas Edges | Atlas Mapping Time

Importing Linux Kernel in Atlas

Small Build (defconfig)

7,493,303

23,264,592

15 min

Large Build (allmodconfig)

117,381,443

362,539,717

250 min

https://kcsl.github.io/L-SAP

All Linux verification graphs are publicly available to

cross-check verification results

= L-SAP

Search Text:
Search

Kernel Version:
413 :

Type

Status

LOCK
® son 206

= eEmmTm

IRQ_TASK_LOCK
. spin 155353

LOCK
@® oin 169930

IRQ_TASK_LOCK

spin

155443

LOCK

spin

171175

http://lIsap.KnowledgeCentricSoftwarelLab.com

EITETD
LOCK
® son ans

= Eminem

IRQ_TASK_LOCK
@ spin 155475

LOCK
® in 1w

LOCK
spin

118673

EVENT_LOCK

spin

168559

LOCK

spin

171238

L-SAP

Matching Pair Graph

* uart_tiocmget

+ __raw_spin_lock

= __raw_spin_uniock |

Click the images to cycle through available
graphs!

drivers/tty/serial/serial_core.c
Locking type: spin

Instance ID: 301251

Length: 28

Title: lock

Offset: 25823

Status: PAIRED

Control Flow Graphs (1)

S ——
————
b
o
————
———
ke
————
—_

——
=]
——e—
Vs

¥

B

Old
Version

New
Version

About

Differences
Linked

1e49033

N/A

Projected Control Graphs (1)

http://lsap.knowledgecentricsoftwarelab.com/

@ https://ensoftcorp.github.io/pcg-toolbox/

Projected Control Graph (PCG)

is a compact projection of the Control Flow Graph (CFG)
that retain only the relevant execution behaviors and elide
duplicate paths with equivalent execution behavior

Algorithmic Challenge: Compute the distinct relevant behaviors
without going through each path!

For any given analysis problem, the number of distinct relevant execution
behaviors may be much smaller than the number of CFG paths!

https://ensoftcorp.github.io/pcg-toolbox/

coNOUVIT P WN B

Division-By-Zero (DBZ) Vulnerability?

int a1 = 1, a2 = 2;
inty = 2;
bool C1 = true;
bool C2 = false;
bool C3 = true;
void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
Yelse{
X = a2 - 1;
}
if(C2){
if(C3){
y = al;
telse{
d =d - ail;
¥
telse{
d =d+ 1;
¥
int z = x/ d;
¥

Function Tool

17:y=a1; [19~d =d-a1;] [zz-d=d+ 1;]

v :
24:Intz=x / d;

Control Flow Graph (CFG)

XIXIXIXIXIX

Six Possible Execution Paths
B1 : 7,8,9[c1], 10, 15[c2], 16[c3], 19, 24
B2 : 7,8,9[c1], 12, 15[c2], 16]c3], 19, 24
B3 : 7,8,9[c1], 10, 15[¢é2], 22,24
By : 7,8,9[c1], 12, 15[c2], 22, 24
Bs : 7,8,9c1]; 10, 15[e2], 16]cs], 17, 24
Bg : 7,8,9[c1], 12, 15[e2], 16[e3], 17, 24

coNOOUVhA, WN B

Division-By-Zero (DBZ) Vulnerability?

int al = 1, a2 = 2;

inty = 2;

bool C1 = true;
bool C2 = false;
bool C3 = true;

void fool() {
int x = al + a2;
int d = al;
if(C1){
X = al;
telse{
X = a2 - 1;

}

if(C2){
if(C3){
y = al;
telse{

d =d - ai;

}
telse{

d =d+ 1;
}

int z = x / d;

Function Tool

true

Efficient Graph
Transformations based on
famous Tarjan’s Algorithm

[Zy=at] [19d-a-a1] [224=a+1;

A A4

Control Flow Graph

[=fool]

true

@ false

false

19:d =d - al; 22:d1d+ 1;
[J |

| ¥
_24:intz =X /d;

Projected Control Graph

Division-By-Zero (DBZ) Vulnerability?

¥

Y

Control Flow Graph

Six Possible Behaviors

3 Relevant Behaviors

B1 :7,8,9[c1], 10, 15]ca], 16[ca], 19, 24

RBj : 8,15[ca), 16[c3], 19, 24

XIXIXIXIXIX)

B : 7,8,9[c1], 12, 15[e2], 16[c3], 19, 24

Bs : 7,8,9[c1], 10, 15[ca], 22, 24 ‘ .

By :7.8,9[c1], 12, 15[ca], 22, 24 RB; : 8,15(c),22,24
Bs : 7,8,9(c1], 10, 15[ca], 16[ca], 17, 24 . ‘
Be : 7,8,9[c1], 12, 15[ca], 16[c3], 17, 24 RBj : 8, 15]c3], 16(cs}, 24

false

24:intz=x/d;

Projected Control Graph

Linux Kernel Case Study

with respect to lock/unlock operations as relevant events of interest

, Nodes Edges ||Branch Nodes Paths
Function Name

CFG|PCG|CFG|PCG|CFG| PCG CFG |PCG
ptlrpc_connect_interpret 791 8 1000 9 214 2 380414 3
kiblnd_passive_connect 668 | 24 || 840 | 40 || 174 17 34216 | 18
client_common fill_super 644 | 17 || 801 | 29 || 162 13 1724067 14
gib_make_ ud req 630 9 833 | 13 160 5] 20586 6
xfrm6_input_addr 574 | 8 769 | 11 || 151 4 1719 7
kiblnd _create_conn 568 | 16 || 714 | 27 || 149 12 3748 12
jbd2_journal _commit_transaction| 522 4 648 3 127 0 2697 1
ceph_writepages_start 416 | 13 || 540 | 21 || 126 9 1004 7
arcnet_interrupt 408 | 6 588 | 6 183 1 4004200 2
macsec_post_decrypt 390 8 521 9 104 2 1381 3
Control Flow Graph (CFG) captures the Exponentially many paths but only a small

entire semantics! number of relevant behaviors!

WOW! THIS
SOFTWARE IS QUITE
COMPLEX!
WHERE CAN I FIND
SOME

@ https://github.com/EnSoftCorp/DynaDoc

Automated On-Demand
Pyna | context-Specific :
Q Poc¢ | Documentation for Java

Source Code

HE HAS
JUST

FINISHED
OLLEGE
Ny

WE ALL HAD OLIR DREAMS

https://github.com/EnSoftCorp/DynaDoc

Source code Bug/Issues Git Commit
Comments/Annotations Database Records

h
« *
E—'_L’ T JavaDoc @

Java Project

Software

Artifacts Suppleme@tary

Mapping Artifacts
Preprocessor

Query Artifacts and Populate
new Artifacts

% ‘ F DOG Documentation Generation in HTML

Query Results

goooon
goooog
goooon

goooooooeeEn

1]
oe e

11]
coo
cooe
oo
oo

coo=

joooooeEnm

goponoooan

Context-Specific
Documentation

Participation in DARPA Programs

DARPA is investing billions of dollars into Securing Software

~—

APAC

Automated Program

Analysis for Cybersecurity STAC

CASE

Space/Time Analysis for
Cybersecurity

Cyber Assured Systems

Engineering

Blue Team on APAC and STAC programs and
as the on CASE program

We have competed with about a dozen Blue Teams on more than 200
malware challenges

DARPA APAC Program

Automated Program Analysis for Cybersecurity

The program aims to address the challenge of timely and robust security
validation of mobile apps by first defining security properties to be
measured against and then developing automated tools to perform the
measuring. The second challenge APAC aims to address is producing
practical, automated tools to demonstrate the cybersecurity properties
identified. Successful tools would minimize false alarms, missed detections
and the need for human filtering of results to prove properties.

@ https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity

DARPA APAC Program

Automated Program Analysis for Cybersecurity

Analyst

eﬁnement
Script

ISU

Security | -+ |
Toolbox > sore 4 Atlas

-

Android Security Toolbox
https://ensoftcorp.github.io/android-essentials-toolbox/

Chyle L1 B HEh G - O % # G S0y -
& e 5
|2 Package Explor 33 = O 1| TarminalManager.java £3 = O W vibrate cell to vibrate 23 Sl = |
= \ &] Log.d(TAG, String.format("Stopping service p——
>, ConnectBotBad ¢ TerminalManager. this. stopNow();
}

public void tryKeyVibrate() {
if (wontKeyVibration)
vibrate();

private void vibrate() {
Lf (vibrator != null)
vibrator,vibrate(VIBRATE_DURATION) ;

private void enableMediaPlayer() {
mediaPlayer = new MediaPlayer();

[Android Permission Usage 53 | Ml Atias Shell

Filter by Permission:

» android.p: slon-grox oSYSTEM TOOLS File: \ TAC
¥ end TS_BATTER c E
Line number: 545
ki c Tags: [XCSG.Call, XCSG ModelElement, ##index, XCSG.Language.Java,
LASHLIGH sumenary.call, per-method, XCSG.Edge]
nCHANGE_WIFI MULTICAST STATE
ATE

2a9Mof 784M 113M of 135M

Android Toolbox Demo
https://www.youtube.com/watch?v=WhcoAX3HiNU

Time-lapse Audit of DARPA APAC Challenge App:
https://www.youtube.com/watch?v=p2mhfOMmgKI

https://www.youtube.com/watch?v=WhcoAX3HiNU
https://ensoftcorp.github.io/android-essentials-toolbox/
https://www.youtube.com/watch?v=p2mhfOMmgKI

DARPA STAC Program

Space/Time Analysis for Cybersecurity

The program aims to develop new program analysis techniques and tools
for identifying vulnerabilities related to the space and time resource
usage behavior of algorithms, specifically, vulnerabilities to algorithmic
complexity and side channel attacks. STAC seeks to enable analysts to
identify algorithmic resource usage vulnerabilities in software at levels
of scale and speed great enough to support a methodical search for
them in the software upon which the U.S. government, military, and
economy depend.

@ https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

DARPA STAC Program

Space/Time Analysis for Cybersecurity

Preprocessing Stage

y T k - -
T — Soot—[<> Meme W RATmQAAU $r0-Q @ G o o ®
Analyze 7 1# Package Explorer 53 B e = = [= Application Entry Points £ = [0 W RULER Loop Call Graph (LCG): Atlas Smart View 33 -
Jimple Project » &} > STAC2-law_enforcement_database [STAC-Engage AU O MO B Y

(= w DistributedStore. jar

[M [=]= DistributedStore.jar = [taecver

& .) "= (& UDPServerHandler
App Agnostic Automation [=] % server [=] & distfilesys.system +
— 1 % channelReadd
% [Loop Analysis | [Dominance Analysis | |=| @ UDPServerHandler - & DSystem =
\ﬁ;ﬂm&,rl Points to Analysis 1
Analysis [W—I ’\
Cik [" bsy Analysi] [Data Dependence | - v
= /
atlas RULER Loop cal atlas
@ ™
ineract fich W Element Detall View 2 v e I Atlas Shell 3§ Dashboard ol Type and Callsite Catalog View I3 e
@ ENTRY_POINT_ID - £8 Set
I - — LCG and LXG & NORMALIZED_ADDRESS = 11579 Kevmeniieil o S keySet Set
o Cakaite @ XCSG.id = /STAC2-law_enforcemen SingleThreadEventexecu il Volues Collection
i . £ XCSG.ModeiElement.name = chamne/Readd SynchronizedColiection EMPTY.SET Set
Interactions 7. ® XCSG.ModelElement sourceCorrespondence - [f UnmodifiableSet SUPPRESSED_SENTINEL List Looes
Catalog Human uses tools ##index ArrayList naMetrics
2 ? move/clear/delet Constructors
- ~ %0.come Up WKL A jimple.touched UnmodifiableCollection S/ clos/ce/pop e
Hypothesis hypothesis XCSG.instanceMethod AsLIFOQueue s S pe peps o
refuted XCSG.Language.Java AbstractQueue size Related to
XCSG.Language.Jimple CopyOnWriteArrayList Show selecte Universe
XCSG.publicVisibility AbstractScheduledEvent
| Hypothesis XCSG Variable.volatilevariable AbstractEventExecutor Retain selected © Computed types
NioEventLoopGroup
ko ey e 3 Tag | Loops Reachable Fi§ SECRET
Human drives m
FT—'——‘;‘—’EL—‘-—] dynamic analysis
h - d e
using dynamic analysis
Hypothesis
proved b
STAC Toolbox Demo
Vulnerability b —
i https://www.youtube.com/watch?v= vVMAYWTP6kg

https://www.youtube.com/watch?v=_vMAYWTP6kg

DARPA CHESS Program

Computers and Humans Exploring Software Security

The program aims to develop capabilities to discover and address
vulnerabilities of all types in a scalable, timely, and consistent manner.
Achieving the necessary scale and timelines in vulnerability discovery will
require innovative combinations of automated program analysis
techniques with support for advanced computer-human collaboration.
Due to the cost and scarcity of expert hackers, such capabilities must be
able to collaborate with humans of varying skill levels, even those with
no previous hacking experience or relevant domain knowledge.

@ https://www.darpa.mil/program/computers-and-humans-exploring-software-security

https://www.darpa.mil/program/computers-and-humans-exploring-software-security

DARPA CHESS Program

Computers and Humans Exploring Software Security

Annotated
Representation

Representation
Human For Humans
Collaboration ~

Context
Processor

| Representation
Generator

Hackers |

Vulnerability Discovery

Info Gap

Detector
Vulnerability

Cyber Reasoning
System

Detector

P(O&

Vulnerability

Vulnerabilities

Representations for high-order reasoning
and computer-human collaboration

Context Processing for employing domain-
specific knowledge to empower software
analysis and verification

Cyber Reasoning to model the open-
ended spectrum of vulnerabilities

Human-on-the-loop balanced use of static
and dynamic analyses

Read High-Quality Papers by Computer
Science Pioneers

. " vl
B "
. o,
R\
B ; o
{ y
| 9 L X
Lam

Donald Knuth Kurt Godel Alan Turing Tony Hoare Gary Kildall Robert Tarjan Fred Brooks Edsger Dijkstra

and many others ...

For further information and Resources:

atamrawi (Z)atamrawi.github.io

Knowledge-Centric Software Engineering Lab

L-DAF

Publications

Competitions (1)
Papers (16)

Short Courses (2)
Talks (9)
Tutorials (9)
Upcoming (3)

Monthly Activity

October 2017 (2)
September 2017 (3)
August 2017 (1)
July 2017 (2)

June 2017 (1)
March 2017 (3)
December 2016 (1)
November 2016 (2)
October 2016 (4)
September 2016 (2)
August 2016 (1)
May 2016 (4)
December 2015 (2)
November 2015 (2)
October 2015 (1)
May 2015 (1)
December 2014 (2)
October 2014 (1)
September 2014 (1)
May 2014 (1)

Authors

« Ahmed Tamrawi

« Akshay Deepak

« Benjamin Holland

« Ganesh Ram Santhanam

g ahmedtamrawi@gmail.com

http://www.ece.iastate.edu/kcsl/

Recent research funding has come primarily from DARPA contracts FA8750-12-2-0126
and FAB750-15-2-0080.

Director
« Suresh Kothari (Richardson Professor)
Current Members

« Benjamin Holland (Graduate Student)
« Ganesh Ram Santhanam (Associate Scientist)
« Payas Awadhutkar (Graduate Student)

Past Members

Ahmed Tamrawi, Akshay Deepak, Curtis Ullerich, Daman Singh, Dan Harvey, Dan
Stiner, Jeremias Sauceda, Jim Carl, Jon Mathews, Kang Gui, Luke Bishop, Murali
Ravirala, Nikhil Ranade, Sandeep Krishnan, Sergio Ferrero, Srinivas Neginhal, Tom
Deering, Xiaozheng Ma, Yogy Namara, Yunbo Deng, Zach Lones

HOME

SIMDIFF |

About EnSoft

MODELIFY | ATLAS |

https://www.ensoftcorp.com/

EnSoft Corp (free download of Atlas)

to tackling softwarecomplexity.

SIMENGINE | SUPPORT | COMPANY |

EnSoft was founded in 2002 with the goal of tackling the growing complexity in software
systems. We believe that human intelligence combined with powerful tools is the key to
tackling complexity. Today our products and services are used by over 350 companies
worldwide including every major automotive, aerospace, and defense company in North
America, Europe, and Asia.

Products and Services

St er

SimDiff 4 - Everything you need to collaborate on Simulink models.

SimDiff has become the leading diff and merge tool for Simulink
models since its first release in 2005. SimDiff's accuracy, speed,
and robustness has made it the preferred choice amongst the
world's leading companies in the automotive, aerospace, and
defense industries.

Supports all major blocks sets, including Stateflow, dSPACE
blocksets, RTW, Xilinx. Runs on Windows or Linux and supports all
MATLAB versions.

’% Modelify - Convert C code to Simulink modeis

Modelify is a new technology from EnSoft to convert large C-

CAREERS | NEWS

OUR CUSTOMERS

[
gy JAGUAR
JOHN DEERE

y 9
Orbital ATK
amsc

@ NFICON

WA FNUS

| BAE SYSTEMS
BOSE

EnSoft's products and services are
used by companies in North America,
Asia, and Europe.

Thank you

