
Fuzzy Set and Cache-based Approach for Bug Triaging

Ahmed Tamrawi
atamrawi@iastate.edu

Tung Thanh Nguyen
tung@iastate.edu

Jafar M. Al-Kofahi
jafar@iastate.edu

Tien N. Nguyen
tien@iastate.edu

Electrical and Computer Engineering Department
Iowa State University
Ames, IA 50011, USA

ABSTRACT
Bug triaging aims to assign a bug to the most appropriate
fixer. That task is crucial in reducing time and efforts in a
bug fixing process. In this paper, we propose Bugzie, a novel
approach for automatic bug triaging based on fuzzy set and
cache-based modeling of the bug-fixing expertise of devel-
opers. Bugzie considers a software system to have multiple
technical aspects, each of which is associated with technical
terms. For each technical term, it uses a fuzzy set to repre-
sent the developers who are capable/competent of fixing the
bugs relevant to the corresponding aspect. The fixing corre-
lation of a developer toward a technical term is represented
by his/her membership score toward the corresponding fuzzy
set. The score is calculated based on the bug reports that
(s)he has fixed, and is updated as the newly fixed bug reports
are available. For a new bug report, Bugzie combines the
fuzzy sets corresponding to its terms and ranks the develop-
ers based on their membership scores toward that combined
fuzzy set to find the most capable fixers. Our empirical re-
sults show that Bugzie achieves significantly higher accuracy
and time efficiency than existing state-of-the-art approaches.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Algorithms, Human Factors, Management, Reliability

Keywords
Bug Triaging, Fuzzy Set, Developers’ Expertise

1. INTRODUCTION
Software bugs are inevitable and bug fixing is an essential,

yet costly phase during software development. To improve
its efficiency and reduce its cost, one should assign a bug
report, which describes some technical issue(s), to the right
fixer. This process is known as bug triaging [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

To support developers in this task, we propose Bugzie,
a novel fuzzy set and cache-based approach for automatic
bug triaging. Bugzie considers a software system to have a
collection of technical aspects/concerns, which are described
via the corresponding technical terms appearing in software
artifacts. Among the artifacts, a bug report describes an
issue(s) related to some technical aspects/concerns via the
corresponding technical terms. Therefore, in Bugzie, the key
research question is that given a bug report, how to deter-
mine who have the most bug-fixing capability/expertise with
respect to the reported technical aspect(s)/issue(s).

The key idea of Bugzie is to model the fixing correla-
tion/association of developers toward a technical aspect via
fuzzy sets [25]. The fixing correlation/association represents
the bug-fixing capability/expertise of developers with re-
spect to the technical aspects in a project. To realize that,
the fuzzy sets are defined for the corresponding technical
terms and built based on developers’ past fixing bug reports
and activities. Then, Bugzie recommends the most potential
fixer(s) for a new bug report based on such information.

For a specific technical term t, a fuzzy set Ct is defined to
represent the set of developers who have the bug-fixing ex-
pertise relevant to t, i.e. the most capable/competent ones
to fix the bugs on the technical aspects described via the
term t. The membership score of a developer d to the set
Ct, i.e. the degree of certainty that d is a capable fixer for
the bugs on the technical aspect(s) corresponding to t, is
calculated via the similarity of the set of fixed bug reports
containing t, and the set of bug reports that d has fixed.
That is, the more distinct and prevalent the term t in the
bug reports d has fixed, the higher the degree of certainty
that d is a competent fixer for the technical issue(s) corre-
sponding to t. Then, for a new bug report B, the fuzzy
set CB of capable developers toward the technical aspect(s)
reported in B is modeled by the union set of all fuzzy sets
corresponding to all the terms extracted from B.

To cope with the large numbers of active developers and
technical terms in large and long-lived projects, Bugzie has
two design strategies on selecting the fixer candidates and
significant terms for the computation. Conducting an em-
pirical study on several bug databases of real-world projects,
we discovered the locality of the fixing activity: “the recent
fixing developers are likely to fix bug reports in the near fu-
ture”. For example, in Eclipse, 81% of actual fixers belong to
the 10% of developers having the most recent fixing activi-
ties. Thus, we can apply a filtering technique [21] to select a
portion of recent fixers as the candidates for fixing a new bug
report. In addition, instead of using all extracted words as

365

Table 1: Statistics of All Collected Bug Report Data

Project Time Report Fixer Term

Firefox 04/07/98 - 10/28/10 188,139 3,014 177,028
Eclipse 10/10/01 - 10/28/10 177,637 2,144 193,862
Apache 05/10/02 - 01/01/11 43,162 1,695 110,231
NetBeans 01/01/08 - 11/01/10 23,522 380 42,797
FreeDesktop 01/09/03 - 12/05/10 17,084 374 61,773
Gcc 08/03/99 - 10/28/10 19,430 293 63,013
Jazz 06/01/05 - 06/01/08 34,228 156 39,771

terms for its computation, Bugzie is flexible to use only the
terms that are highly correlated with each developer as the
most significant terms to represent his/her fixing expertise.
To adapt to software evolution, Bugzie updates its model

regularly (e.g. the lists of fixer candidates and terms, and
membership scores) as new fixing information is available.
Our evaluation results on large-scale subject systems show

that Bugzie achieves significantly higher levels of efficiency
and correctness than existing state-of-the-art approaches.
For example, it could process the whole Eclipse bug dataset,
containing around 178K bug reports and having more than
2,100 active developers, in 12 minutes with 45% and 83%
accuracy on top-1 and top-5 recommendations, respectively.
That means, in almost half of the cases, the single recom-
mended developer is the actual fixer of the given bug report,
and in 83% of the cases, (s)he is in the list of 5 recommended
developers. In 7 subject projects, Bugzie’s accuracy for top-
1 and top-5 recommendations is generally in the range of
31-51% and 70-83%, respectively. It selects about 10-40% of
recent fixers as candidates, and characterizes/profiles each
candidate with 3-20 most significant terms. Importantly,
while existing approaches take from hours to days (even al-
most a month) to finish training as well as predicting, in
Bugzie, training time is from tens of minutes to an hour,
while it still consistently achieves higher accuracy. Bugzie’s
top-1 and top-5 accuracy levels are higher than those of the
second best approach from 4-15% and 6-31%, respectively.
In summary, the key contributions of this paper include:
1. A scalable, fuzzy set and cache-based automatic bug

triaging approach, which is significantly more efficient and
accurate than existing state-of-the-art approaches;
2. The finding of the locality of fixing activity: one of the

recent fixers is likely to be the fixer of the next bug report;
3. A comprehensive evaluation on the efficiency and cor-

rectness of Bugzie in comparison with existing approaches;
4. An observation/method to capture a small, yet signifi-

cant set of terms describing developers’ bug-fixing expertise.
Section 2 presents an empirical study and a motivating

example for Bugzie. Sections 3 and 4 describe our approach
and algorithm. Section 5 presents our empirical evaluation.
Related work is in Section 6. Conclusions appear last.

2. EMPIRICAL STUDY AND MOTIVATION
This section presents our empirical study and an analysis

that motivates our approach.

2.1 Data Collection
Our datasets contain bug reports, corresponding fixers,

and related information (e.g. summary, description, and cre-
ation/fixing time). Table 1 shows our collected datasets of
seven projects: FireFox (FF) [14], Eclipse (EC) [13], Apache
(AP) [2], Netbeans (NB) [30], FreeDesktop (FD) [15], Gcc

AssignedTo:James Moody
Summary:New Repository wizard follows implementation
model, not user model.
Description:The new CVS Repository Connection wizard’s lay-
out is confusing. This is because it follows the implementation
model of the order of fields in the full CVS location path,...

Figure 1: Bug report #6021 in Eclipse project

AssignedTo:James Moody
Summary:Opening repository resources doesn’t honor type.
Description:Opening repository resource always open the de-
fault text editor and doesn’t honor any mapping between resource
types and editors. As a result it is not possible to view ...

Figure 2: Bug report #0002 in Eclipse project

(GC) [17], and Jazz (JZ). All bug reports and their data are
available and downloaded from the bug tracking systems of
the corresponding projects, except that Jazz data is avail-
able for us as a grant from IBM Corporation. We collected
bug records noted as fixed and closed. Duplicate and unre-
solved (open) bug reports were excluded. For the duplicate
bug reports, only the master ones were assigned to the fixers.
Thus, we kept the master ones and removed all other reports
marked as their duplicates. Re-open/un-finished bug fixes
were not included either. In Table 1, Column Time shows
the time period of the fixed bug reports. Columns Report

and Fixer show the number of fixed bug reports and that of
the corresponding fixing developers, respectively.

For each bug report, we extracted its unique bug ID, the
actual fixing developer’s ID, email address, creating and fix-
ing time, summary, and full description. Comments and
discussions are excluded. We merged the summary and de-
scription of each bug report, extracted their terms and pre-
processed them, such as stemming for term normalization
and removing grammatical and stop words. Column Term in
Table 1 shows the total numbers of terms in all datasets.

2.2 A Motivating Example
Let us present a motivating example in our collected data.

Figure 1 depicts a bug report from Eclipse, with the relevant
fields including the fixing developer (AssignedTo), a short
summary (Summary), and a description (Description) of the
bug. The bug report describes an issue that the layout of
the wizard for CVS repository connection was not properly
implemented. Analyzing Eclipse’s documentation, we found
that this issue is related to a technical aspect: version control
and management (VCM) for software artifacts. This aspect
of VCM can be recognized in the report’s contents via its
descriptive terms such as CVS, repository, connection, path, etc.
Checking the corresponding fixed code in Eclipse, we found
that the bug occurred in the code implementing an operation
of VCM: CVS repository connection. The bug was assigned
to and fixed by a developer named James Moody.

Searching and analyzing other Eclipse’s bug reports, we
found that James also fixed several other VCM-related bugs,
for example, bug #0002 (Figure 2). The description states
that the system always used its default editor to open any
resource file (e.g. a GIF file) regardless of its file type. This
aspect of VCM is described via the terms such as repository,
resource, and editor. This observation suggests that James
Moody probably has the expertise, knowledge, or capability
with respect to fixing the VCM-related bugs in Eclipse.

366

2.3 Implications and our Approach
This example suggests us the following:
1. A software system has several technical aspects. Each

could be associated with some descriptive technical terms.
A bug report is related to one or multiple technical aspects.
2. If a developer frequently fixes the bugs related to a

technical aspect, we could consider him to have bug-fixing
expertise/capability on that aspect, i.e., he could be a capa-
ble/competent fixer for a future bug related to that aspect.
Based on those two implications, we approach to solve the

problem of automated bug triaging using the following key
philosophy: “who have the most bug-fixing capability/exper-
tise with respect to the reported technical aspect(s) in a given
bug report should be the fixer(s)”.
Since technical aspects could be described via the cor-

responding technical terms, our solution could rely on the
modeling of the fixing capability of a developer toward a
technical aspect via the association/correlation of that devel-
oper with the technical terms for that aspect. Specifically, we
will determine the most capable developers toward a techni-
cal aspect in the project based on their past fixing activities.
Then, when a new bug is reported, we will recommend those
developers who are most capable of fixing the corresponding
technical issue(s) in the given bug report.
Our solution is different from existing approaches to auto-

matic bug triaging [3, 5, 10, 28]. The first line of ideas from
existing machine learning (ML)-based approaches [3, 5] is
that if a new bug report is closest in characteristics/simi-
larity with a set of bug reports fixed by a developer, (s)he
should be suggested. The second line is from existing ML
and information retrieval (IR) approaches [28, 10], which
aim to profile a developer’s expertise by a set of character-
istic features (e.g. terms) in his fixed bug reports, and then
match a new bug report with such profiles to find the fixer(s).
Bugzie is aligned more with the second line of ideas, however,
it is centered around the modeling of the correlation/asso-
ciation between two sets: developers and terms. Thus, we
have to address the question of how to make the selections
and take into account relevant terms and developers.
As shown in Table 1, for large projects with long histories,

the numbers of terms (after stemming and filtering) are still
very large (e.g. 200K words for FireFox). More importantly,
not all terms appearing in a bug report would be technically
meaningful and relevant to the fixers or reported technical
issues. Thus, using all of them would be computationally
expensive, and even worse, might reduce the fixer recom-
mendation accuracy by introducing noise to the ranking.
The motivating example suggests that such term selection
could be based on the level of association, i.e. a word having
high correlation with some developers could be a significant
term for bug triaging, e.g. the association of repository and
James Moody (Details will be presented in Section 3).
The selection of developers is also needed because in a

large and long-lived project, the number of developers could
be large and some might not be as active in certain tech-
nical areas as others any more. Moreover, considering all
developers as the fixer candidates for a bug report could be
computationally costly. Next, we will describe an empirical
study that motivates our developers’ selection strategy.

2.4 Locality of Fixing Activity
Analyzing several bug reports fixed by the same person in

our datasets, we found that (s)he tends to have recent fix-

Table 2: % of Actual Fixers Having Recent Fixes

Recent EC FF JZ GC AP FD NB

10% 81% 82% 62% 84% 71% 73% 69%
20% 87% 92% 74% 92% 81% 89% 87%
30% 92% 96% 83% 95% 89% 94% 94%
40% 96% 97% 92% 97% 92% 96% 96%
50% 98% 98% 97% 98% 94% 97% 97%
60% 98% 98% 99% 98% 95% 98% 98%
70% 99% 98% 99% 98% 96% 98% 98%
80% 99% 98% 100% 99% 96% 98% 98%
90% 99% 98% 100% 99% 96% 98% 98%

100% 99% 98% 100% 99% 96% 98% 99%

ing activities. For example, bug reports #312322, #312291,
#312466, and #311848 were fixed by the same fixer Darin
Wright in two days 05/10 and 05/11/2010. We hypothesize
that, the fixing activity has locality: the recent fixing devel-
opers are likely to fix bug reports in the near future.

To validate this hypothesis, we have conducted an experi-
ment in which we analyzed the collected datasets to compute
how often a fixer of a bug report is the one who has some
recent fixing activity. First, we chronically sorted the bug
reports in a project by their fixing time. For a bug report b
that was fixed at time t by a developer d, we sorted all de-
velopers having fixing activities before t based on their most
recent fixing time, i.e. a developer performing a fix more
recently to time t was sorted higher. Then, if d belongs to
the top x% fixers of that list, we count this as a hit. Finally,
we compute p(x) as the percentage of hits over the total
number of analyzed bug reports. Table 2 shows the result.

As seen, it is consistent in all systems that p(x) is quite
large even at a small x. For example, in Eclipse, at x = 10%,
p(x) = 81% , i.e. in around 81% of the cases, the fixer of
a bug report is in the top 10% of the developers who have
most recent fixing activities. At x = 50%, p(x) exceeds
97% in 6 systems. Note that, at x = 100%, p(x) might not
reach 100% since there are always new fixers who have no
historical fixing activity, thus, (s)he does not belong to the
list of developers with recent fixing activities.

Implications. The result confirms our hypothesis on the
locality of fixing activity. This result enables us to apply the
filtering technique for recommender systems [21]: instead of
selecting all available developers as fixer candidates for a bug
report, we could select a small portion of them based on their
recent fixing activities. This selection would significantly
improve time efficiency without losing much accuracy.

3. Bugzie MODEL

3.1 Overview
In Bugzie, the problem of automatic bug triaging is mod-

eled as follows: given a bug report, find the developer(s)
with the most fixing capability/expertise with respect to
the reported technical issue(s). Thus, Bugzie determines
and ranks the fixing capability/expertise of the developers
toward the technical aspects by modeling the correlation/as-
sociation of a developer and a technical aspect. That is, if a
developer has higher fixing correlation with a technical as-
pect, (s)he is considered to have higher capability/expertise
on that aspect, and will be ranked higher.

Because “technical aspect” is an abstract concept, with
potential different levels of granularity, Bugzie models them
via their corresponding descriptive technical terms. That is,

367

a technical aspect is considered as a collection of technical
terms that are extracted directly from the software artifacts
in a project, and more specifically from its bug reports.
Bugzie utilizes fuzzy set theory [25] to model the fixing

correlation/association between developers and the technical
terms, which is used to recommend the most capable fixers
for a given bug report. Bugzie also uses the locality of fixing
activity to select the fixer candidates, and uses the levels of
correlation between the fixers and terms to identify the most
correlated/important terms to model developers’ expertise.

3.2 Association of Fixer and Term

Definition 1 (Capable Fixer toward A Term). For
a specific technical term t, a fuzzy set Ct, with an associated
membership function µt(), represents the set of capable fix-
ers toward t, i.e. the developers who have the bug-fixing
expertise relevant to the technical aspect(s) described by t.

In fuzzy set theory, fuzzy set Ct is determined via a mem-
bership function µt with the values in the range of [0,1].
For a developer d, the membership score µt(d) determines
the certainty degree of the membership of d in Ct, i.e. how
likely d belongs to the fuzzy set Ct. In this context, µt(d)
determines the degree to which d is capable of fixing the
bug(s) relevant to the technical aspect(s) associated with t.
The membership score also determines the ranking, i.e. if
µt(d) > µt(d

′) then d is considered to be more capable than
d′ in the technical issue(s) related to t. µt(d) is calculated
based on d’s past fixing activities as follows:

Definition 2 (Membership Score toward a Term).
The membership score µt(d) is calculated as the correlation
between the set Dd of the bug reports that d has fixed, and
the set Dt of the bug reports containing term t:

µt(d) =
|Dd ∩Dt|
|Dd ∪Dt|

=
nd,t

nt + nd − nd,t

In this formula, nd, nt, and nd,t are the number of bug
reports that d has fixed, the number of reports containing
the term t, and that with both, respectively (counted from
the available training data, i.e. given fixed bug reports).
With this formula, the value of µt(d) ∈ [0, 1]. The higher

µt(d) is, the higher the degree that d is a capable fixer for
the bugs related to term t. If µt(d) = 1, then only d had
fixed the bug reports containing t, thus, d is highly capable
of fixing the bugs relevant to the technical aspects associated
with term t. If µt(d) = 0, d has never fixed any bug report
containing t, thus, might not be the right fixer with respect
to t. In general cases, the more frequently a term t appears
in the reports that developer d has fixed, the higher µt(d)
is, i.e. the more likely that developer d has fixing expertise
toward the technical aspects associated with t.
The membership value µt(d), representing the fixing cor-

relation of a developer toward a technical term, is an intrin-
sically gradual notion, rather than a concrete notion as in
conventional logic. That is, the boundary of the set of de-
velopers who are capable of fixing the bugs relevant to t is
fuzzy.
Definition 2 gives us µt(d) = 1

nt+nd
nd,t

−1
. Thus, Bugzie

favors (ranks higher) the developers who have emphasized
their fixing activities toward some technical aspect/term t
(i.e. specialists) over the ones with less specialization with

their fixing activities on multiple other technical issues (i.e.
generalists). That is, if both d and d′ have similar levels
of fixing activities on t, i.e. nd,t and nd′,t are similar, but
d′ has fixed several other technical issues while d empha-
sizes mostly on t, then nd′ will be much larger than nd, and
µt(d

′) will be smaller than µt(d). Thus, Bugzie will favor
the specialist d. In general, if nt+nd

nd,t
is smaller, µt(d) will

be higher. Therefore, Bugzie favors the specialists who have
fixed more bug reports relevant to t (i.e. large nd,t) and have
emphasized their fixing more on t (i.e. large nd,t/nd).

Because a bug report might contain multiple technical is-
sues/aspects, and each technical aspect could be expressed
via multiple technical terms, Bugzie needs to model the ca-
pable fixers with respect to a bug report based on their cor-
relation values toward its associated terms. This is done
using the union operation in fuzzy set theory as follows.

Definition 3 (Capable Fixer for a Bug Report).
For a given bug report B, fuzzy set CB, with associated mem-
bership function µB(), represents the set of capable fixers for
B, i.e. the developers who have the bug-fixing expertise rel-
evant to technical aspect(s) reported in B. CB is computed
as the union of the fuzzy sets for the terms extracted from B

CB =
∪
t∈B

Ct

In fuzzy set theory, union is a flexible combination, i.e. the
strong membership to some sub-fuzzy set(s) will imply the
strong membership to the combined fuzzy set. Especially,
the more sub-fuzzy sets with strong membership degrees ex-
ist, the stronger the membership toward the combined fuzzy
set is. According to [25], the membership score of d with re-
spect to the union set CB is calculated as the following:

Definition 4 (Membership Score for a Report).
The membership score µB(d) is computed as the combination
of the membership scores µt(d) of its associated terms t:

µB(d) = 1−
∏
t∈B

(1− µt(d))

µB(d) represents the fixing correlation of d toward bug
report B. As seen, µB(d) is also within [0,1] and represents
the degree in which developer d belongs to CB , i.e. the set
of capable fixers for the bug(s) reported in B. The value
µB(d) = 0 when all µt(d) = 0, i.e. d has never fixed any re-
port containing any term in B. Thus, Bugzie considers that
d might not be as suitable as others in fixing the technical
issues reported in B. Otherwise, if there is one term t with
µt(d) = 1, then µB(d) = 1, and d is considered as the capa-
ble developer (since only d has fixed bug reports with term
t before). In general cases, the more the terms in B with
high µt(d) scores, the higher µB(d) is, i.e. the more likely d
is a capable fixer for bug report B. Using this formula, af-
ter calculating fixing correlation scores µB(d)s for candidate
developers, Bugzie ranks and recommends the top-scored
developers as the most capable fixers for bug report B.

The union operation allows Bugzie to take into account
the co-occurring/correlated terms associated with some tech-
nical aspects and reduce the impact of noises. Generally, a
technical aspect could be expressed in some technical terms,
e.g., the concern of version control in Eclipse might be asso-
ciated with the terms like t = repository and t′ = cvs. Thus,
these two terms tend to co-occur in the bug reports on version

368

control and if a concrete bug report B contains both terms,
B should be considered to be more relevant to version control

than the ones containing only one term. That means, if d
is a developer with fixing expertise in version control, µt(d)
and µt′(d) should be equally high, and µB(d) must be higher
than either of them. Those are actually true in our model.
Since t and t′ tend to co-occur, bug reports contain t, in-
cluding the ones fixed by d, might also contain t′. Thus, two
sets Dt and Dt′ are similar, and because d has fixing exper-
tise on version control, µt(d) and µt′(d) will be similarly high.
Assume that µt(d) = 0.7 and µt′(d) = 0.6. Then, µB(d) =
1 - (1-0.7)*(1-0.6) = 0.88, i.e. higher than µt(d) and µt′(d).
µB(d) is also not affected much by noises, i.e. the terms ir-

relevant to developers’ expertise/technical aspects (e.g. mis-
spelled words). Assume that B contains t and a noise e. Sin-
ce e rarely occurs in the bug reports that d had fixed, d has a
small membership score toward e, e.g., 0.1. Then, µB(d)=1-
(1-0.7)*(1-0.1)= 0.73, i.e. not much larger than µt(d)= 0.7.

3.3 Fixer Candidate and Term Selection
Let us discuss our selection strategies for fixers and terms.

3.3.1 Selection of Fixer Candidates
The locality of fixing activity suggests the actual fixer for

a given bug report is likely the one having recent fixing activ-
ity. Thus, for each bug report, Bugzie chooses the top x% of
developers sorted by their latest fixing time as the fixer can-
didates F (x) for its computation. This is a trade-off between
performance and accuracy. If x = 100%, all developers will
be considered, accuracy could be higher, however, running
time will be longer. Importantly, in general, the locality of
fixing activity suggests that the loss in accuracy is accept-
able. For example, by selecting x = 50%, we can reduce in
half the computation time, while losing at most 1-3% of ac-
curacy for all subject systems (lines 50%, 100% of Table 2).

3.3.2 Selection of Descriptive Terms
Bugzie measures the term significance based on the fix-

ing correlation, i.e. the membership scores. That is, for a
developer d and a term t, the higher their correlation score
µt(d), the higher significance of t in describing the technical
aspects that d has fixing capability/expertise. Thus, Bugzie
selects the descriptive terms as follows. For each developer
d, it sorts the terms in the descending order based on the
correlation scores µt(d), and selects the top k terms in the
sorted list as the significant terms Td(k) for developer d. The
collection T (k) of all such terms selected for all developers is
considered as the set of technical terms for the whole system.
Then, when recommending, Bugzie uses only those terms in
its ranking formula. In other words, if a term extracted from
the bug report under consideration does not belong to that
list, Bugzie will discard it in the formulas in Section 3.2.
Table 3 shows such lists of top-10 terms having highest

correlation scores with some Eclipse’s developers produced
by our tool. As seen, Bugzie discovers that James Moody
has many fixing activities toward VCM technical aspect.

4. ALGORITHM
This section describes the key algorithm in Bugzie. With

two adjustable parameters x (for fixer candidates) and k (for
selected term lists), Bugzie operates in three main phases:
1) initializing, i.e. building the fuzzy sets for the technical
terms collected from the initially available information (e.g.

Table 3: Term Selection for Eclipse’s developers

Ed Merks Darin Wright Tod Creasey James Moody

xsd debug marker outgoing
ecore breakpoint progress vcm

xsdschema launch decoration itpvcm
genmodel console dialog repository

emf vm workbench history
xsdecorebuild memory background ccv
xmlschema jdi font team
eobject suspend view cvs

xmlhandler config ui merge
ecoreutil thread jface conflict

already-fixed bug reports); 2) recommending, i.e. produc-
ing a ranked list of developers capable of fixing an unfixed
bug report, and 3) updating, i.e. updating the fuzzy sets as
new information is available (i.e. newly fixed bug reports).

4.1 Initial Training
In this phase, Bugzie uses a collection of already-fixed

bug reports to build its initial internal data, including 1)
the fuzzy sets of capable fixers for the available technical
terms, 2) the fixer candidate list F (x), 3) the individual term
lists Td(k), and 4) the system-wide term list T (k). While
modeling the fuzzy sets, it stores only the counting values
nd, nt, and nd,t (see Definition 2) for any available developer
d and technical term t. The values µt(d) are computed on-
demand to reduce the memory needed to store membership
scores, and make the updating phase simpler (since only
those counting numbers need to be updated).

4.2 Recommending
In this phase, Bugzie recommends the most capable de-

velopers for a given unfixed bug report B. First, it extracts
all terms from B and keeps only terms belonging to the se-
lected term list T (k). Then, it computes the membership
scores of all developers in the candidate list F (x) using Def-
inition 2. The values µt(d) are computed as needed using the
counting values nd, nt, and nd,t. Finally, Bugzie ranks those
membership scores and recommends the top-n developers.

4.3 Updating
In this phase, Bugzie incrementally updates its internal

data with newly available information (i.e. new bug reports
are fixed by some developers). First, it updates the counting
values nd, nt, and nd,t using newly available fixed bug re-
ports by adding new corresponding counts for the new data.
For example, if developer d just fixed a bug report B, Bugzie
increases the counting number nd by 1 and increases nd,t,
and nt by 1 for any term t extracted from B. If a new term
or a new developer just appears in new data, Bugzie creates
new counting numbers nt or nd, and nd,t.

After updating the counting numbers, Bugzie updates the
lists F (x), Td(k), and T (k). Instead of re-sorting all avail-
able developers and terms to update those lists, Bugzie uses
a caching strategy: it stores F (x) as a cache (called devel-
oper cache). Thus, for each fixed bug report in the updating
data, if the fixer does not belong to the cache, Bugzie will
add it to the cache, and if the cache is full, it will remove
from the cache the developer(s) having the least recent fix-
ing activity. Similarly, Bugzie also stores Td(k) as caches
(called term cache), and updates them based on the mem-
bership scores. Td(k) is stored as a descendingly sorted list.

369

During updating, if a term t does not belong to the cache
and its score µt(d) is larger than that of some term currently
in the cache, Bugzie will insert it to the cache, and if the
cache is full, it will remove the least-scored term.
This updating and caching strategy makes Bugzie’s incre-

mental training efficient. Importantly, it fits well with soft-
ware evolution. The membership score µt(d) is computed
on-demand with the most recently updated counting num-
bers nd, nt, and nd,t. The cache F (x) always reflects the de-
velopers with most tendency for fixing bugs. The lists Td(k)
always consist of the terms having highest association with
the developers. Existing bug triaging approaches are not suf-
ficiently flexible to support such caching of developers and
terms. In Bugzie, time-sensitive knowledge on developers’
fixing activities and important terms during software evolu-
tion can be taken into account. In future, other cache re-
placement strategies as in BugCache [23] could be explored,
e.g., caching recent buggy terms and their co-occurring terms.

5. EMPIRICAL EVALUATION
We evaluated Bugzie on our collected datasets (Section 2),

some of which were used in prior bug triaging research [3, 28,
5]. We evaluated it with various parameters for developers’
and terms’ selections, and compared it with state-of-the-art
approaches [11, 3, 28, 5]. All experiments were on a Win-
dows Vista, Intel Core 2 Duo 2.10Ghz, 4GB RAM desktop.

5.1 Experiment Setup
To simulate the usage of Bugzie in practice, we used the

same longitudinal data setup as in [5]. That is, all extracted
bug reports from each bug repository in Table 1 were sorted
in the chronological order of creation time, and then divided
into 11 non-overlapped and equally sized frames.
Initially, frame 0 with its bug reports were used in initial

training. Then, Bugzie used that training data to recom-
mend a list of top-n developers to fix the first bug report
BR1,1 in frame 1. After that, we performed updating for
our training data with tested bug report BR1,1, and started
recommending for the next bug report BR1,2 in frame 1. Af-
ter completing frame 1, the updated training data was then
used to test frame 2 in the same manner. We repeated this
process until all the bug reports in all frames were consumed.
If a recommendation list for a bug report contains its ac-

tual fixer, we count this as a hit (i.e. a correct recommen-
dation). For each frame under test, we calculated prediction
accuracy as in [5], i.e. the ratio between the number of hits
over the total number of prediction cases. We calculated
the average accuracy value on all 10 frames for each choice
of the top-ranked list of n. We also measured the training
(initial training and updating) and recommending time.

5.2 Selection of Fixer Candidates
In this experiment, we tuned different options for the se-

lection of fixer candidates (i.e. developer cache). Bugzie
allows to choose x% of top fixers having most recent fixing
activities. We ran it with various values of x%, from 1-100%
(at x=100%, all developers in the project’s history were cho-
sen). For each value of x, we measured prediction accuracy
and total processing time (for training and recommending).
The same process was applied for all datasets in Table 1.
Figures 3 and 4 show the graphs for the top-1 and top-5

prediction accuracy for different values of x for all datasets.
As seen, all graphs exhibit the same behavior. The accuracy

Figure 3: Top-1 Accuracy with Various Cache Sizes

Figure 4: Top-5 Accuracy with Various Cache Sizes

peaks at some value x that is quite smaller than 100%. In
all 7 projects, accuracy reaches its peak at x < 40%. This
implies that selecting a suitable portion of recent fixers as
candidates actually does not lessen much the accuracy. In
some cases, it improves the prediction accuracy. For exam-
ple, in FireFox, at x = 20%, Bugzie has top-5 accuracy of
72.4%, while top-5 accuracy at x = 100% is only 70.7%,
i.e. when considering all available fixers as candidates. Def-
initely, selecting only a portion of available fixers as candi-
dates also significantly improves time efficiency. Figure 5
displays the total processing time. Since in prediction/rec-
ommendation phase, Bugzie just needs to compute member-
ship scores based on the stored counting values, prediction
time is just a few tens of seconds for all cases. As seen, the
processing time for FireFox and Eclipse is higher than that
for other projects due to their larger datasets. However, for
FireFox, at x = 20%, with caching, Bugzie can reduce the
processing time around 2.7 times less. The processing time is
also linear with respect to the cache size of fixer candidates.

This result suggests that the selection of fixer candidates
(i.e. developer cache) significantly improve time efficiency
because Bugzie just needs to process a smaller number of
developers. In some cases, it even helps improve prediction
accuracy. We examined those cases and found that Bugzie
fits well with the nature of the locality in fixing activity: the
appropriate cache was able to capture the majority of actual

370

Figure 5: Processing Time with Various Cache Sizes

Figure 6: Top-1 Accuracy - Various Term Selection

fixers. Also, it did not include the developers who had high
fixing expertise in some technical aspect in a very long time
ago, but do not handle much that technical issue anymore.
When including such developers and their past fixing terms,
ranking could be imprecise since more irrelevant developers
and terms are considered. As seen in Figure 4, the appropri-
ate size of developer cache depends on individual projects.

5.3 Selection of Terms
We conducted a similar experiment for the selection of

terms. Bugzie is flexible to allow the selection of only top-
k terms that are most correlated with each fixer (Section
3.3.2). We ran Bugzie with different values of k, increasing
from 1-5,000. With k=5,000 for each developer, the system-
wide term list T (k) covers most of available terms in all bug
reports. If a developer has the number of terms less than k,
all of his associated terms with non-zero correlation scores
are used. For each value of k, we measured top-n prediction
accuracy and the total processing time.
Figures 6 and 7 show the results of top-1 and top-5 predic-

tion accuracy on all datasets, with different values of k. As
seen, for most projects, the graphs have similar shapes. This
exhibits a very interesting phenomenon: accuracy increases
and reaches its peak in the range of 3-20 terms, and when
more terms are used, accuracy slightly decreases to a stable
level. Thus, selecting a small yet significant set of terms for

Figure 7: Top-5 Accuracy - Various Term Selection

Figure 8: Processing Time - Various Term Selection

ranking computation in fact improves prediction accuracy.
For example, for Eclipse, at k = 16, we have top-5 accuracy
of 80%, while at k = 5, 000, top-5 accuracy is only 72%.

This result shows that the selection of terms could improve
much prediction accuracy. The result also suggests that one
just needs a small, yet significant set of terms for each de-
veloper to describe his bug-fixing expertise. Bugzie with
term selection is flexible to capture those significant terms
representing the technical issues handled by each developer.
For example, analyzing Eclipse’s bug reports, we verified the
core bug-fixing technical expertise of the fixers listed in Ta-
ble 3. Bugzie also enables the exclusion of a large number
of un-important terms in bug reports, as well as the terms
with small correlation scores to developers. Those terms
could have brought noises to the computation in Bugzie.

More importantly, selecting only a small portion of avail-
able terms significantly improves time efficiency. Figure 8
shows the graph for the total processing time. As seen, in
Eclipse, at k = 16 (the system-wide term list T (k) has 6,772
terms), Bugzie is four times faster than at k = 5, 000 (T (k)
has 193,862). Moreover, the processing time is also linear
with respect to the cache size of selected terms, showing
that Bugzie is scalable well to large projects.

5.4 Selection of Developers and Terms
To evaluate the impacts of both types of selection, we con-

ducted another experiment and tuned the model with dif-

371

Table 4: Eclipse: Accuracy - Various Parameters

Tuning Parameters top-1 top-2 top-3 top-4 top-5 Time

x = 40%, k = 16 45.0 61.2 71.2 78.2 83.2 12:00
x = 100%, k = All 40.5 53.7 61.7 67.5 72.0 1:39:12

Table 5: FireFox: Accuracy - Various Parameters

Tuning Parameters top-1 top-2 top-3 top-4 top-5 Time

x = 10%, k = 10 34.6 50.9 61.8 70.3 76.7 6:16
x = 10%, k = 17 33.8 50.4 61.8 70.3 76.8 8:57
x = 10%, k = 18 33.6 50.3 61.7 70.2 76.7 9:51
x = 20%, k = 10 34.1 50.5 61.8 70.7 77.7 9:17
x = 20%, k = 17 33.2 50.1 61.8 70.8 77.8 12:04
x = 20%, k = 18 33.0 49.9 61.7 70.8 77.7 13:10
x = 100%, k = All 28.0 44.7 55.8 64.1 70.7 1:50:04

ferent sizes of developer cache and term cache. Two caches
are used together in which Bugzie computes the scores and
ranks only the developers in the developer cache for recom-
mendation, and uses only the terms in the term cache for its
computation (Section 3.3). We ran Bugzie on all datasets in
Table 1 with all combinations of the best values we discov-
ered in the previous experiments as the model’s parameters.
Tables 4 and 5 show the accuracy and total processing time
(hh:mm:ss) with different parameters for Eclipse and FireFox.
As seen, Bugzie could be tuned to achieve very high levels

of accuracy and efficiency. For example, for Eclipse, the best
configured model processes the whole Eclipse’s bug dataset
(with about 178K bug records and 2K developers) in only 12
minutes and achieves 83% top-5 prediction accuracy. That is
about 8.3 times faster, and 11% more accurate than the base
model (x = 100% and all terms). For FireFox, the respective
numbers are 12 minutes, 78% top-5 accuracy, 9 times faster
and 7% more accurate than the base model (Table 5).
Table 6 shows top-1 and top-5 best accuracy when we ran

Bugzie with 4 types of configurations: base model with all
developers and all terms (Column Base), base model with can-
didate selection (Column C.S.), base model with term selec-
tion (Column T.S.), and base model with both (Column Both).
Generally, the top-5 accuracy achieves the best results in

the range of 75-83% for all projects (except for NetBeans -
61.3%). That is, approximately in 5 out of 6 cases, the cor-
rect fixer is in Bugzie’s recommending list of 5 developers.
The best results for top-1 accuracy are from 31-51%. That
is, in one out of 2-3 cases, the single recommended developer
by Bugzie is actually the fixer of the given bug report. Im-
portantly, comparing with the base model, the models with
tuned parameters (C.S., T.S., and Both) significantly improve
time efficiency, while maintaining the high levels of accuracy.
Even in 5 out of 7 systems, tuned parameters help increase
top-1 accuracy levels from 3-7% and top-5 ones from 3-11%.

5.5 Comparison Results
For comparison, we used Weka [38] to re-implement ex-

isting approaches [11, 3, 5, 28] following the descriptions in
their papers. Cubranic and Murphy [11] use Naive Bayes.
Anvik et al. [3] use Naive Bayes, SVM, and C4.5 classifiers.
Bhattacharya and Neamtiu [5] use Naive Bayes and Bayesian
Network with and without incremental learning. We re-
implemented Matter et al. [28]’s vector-space model (VSM)
with the terms being extracted only from the bug reports.

Table 7: 3-Year Fixing History Data

Project Time Record Fixer Term

Firefox 01/01/08 - 10/28/10 77,236 1,682 85,951
Eclipse 01/01/08 - 10/28/10 69,829 1,510 103,690
Apache 01/01/08 - 01/01/11 28,682 1,354 80,757
NetBeans 01/01/08 - 11/01/10 23,522 380 42,797
FreeDesktop 01/01/08 - 12/05/10 10,624 161 37,596
Gcc 01/01/08 - 10/28/10 6,865 161 20,279
Jazz 06/01/05 - 06/01/08 34,228 156 39,771

Since some machine-learning approaches (e.g. C4.5) real-
ized in Weka can not scale up to the full datasets, we pre-
pared smaller datasets, which have 3-year histories of the full
ones (Table 7). Table 8 shows the comparison result for top-
rank accuracy. Table 9 shows training and prediction time.

As seen, Bugzie consistently outperforms other approaches
in term of both prediction accuracy and time efficiency for
all subjects. For example, for Eclipse, in term of top-5 ac-
curacy, the second best model is SVM, which has almost 18
hours of processing time and achieves 53% top-5 accuracy,
while Bugzie takes only 22 minutes and achieves 72% top-5
accuracy. That is, Bugzie is about 49 times faster and rel-
atively 19% more accurate. In term of processing time, the
second best model for Eclipse is VSM, which takes 14 hours
and achieves 31% top-5 accuracy, i.e. it is 38 times slower,
and 41% less accurate than Bugzie. Generally, ML-based
approaches takes from hours to days (even almost a month)
to finish training as well as predicting. Bugzie has its train-
ing time of tens of minutes to half an hour and prediction
time of only seconds, while still achieves higher accuracy.

Decision tree approach (C4.5) has low time efficiency: it
takes nearly 28 days for training on Eclipse dataset (with
about 70K bug reports). Naive Bayes (NB) model takes
less time for training (around 9 hours), but much more time
for recommending (5.5 days). It is also less accurate than
Bugzie: 24% versus 39% (top-1) and 47% versus 72% (top-
5). It is similar for Bayesian Network (BN) (15 hours for
training and 7.5 days for predicting, with 13% and 28% of
top-1 and top-5 accuracy). Generally, the respective accu-
racy of incremental NB and BN is from 7-21% and 15-38%
less than Bugzie’s accuracy for top-1 and top-5 prediction.

5.6 Discussions and Comparisons
Our results suggest that machine learning classification

models are less efficient for very large numbers of bug record-
s/fixers. Especially, tree induction models (e.g. C4.5) re-
quire all training data to fit in the memory to be efficient [18].

Using SVM, for a developer d, one needs to train a classi-
fier SVMd to distinguish the bug reports that d is able to fix
(i.e. SVMd(B) = 1) from the others (i.e. SVMd(B) = −1).
Using it to rank developers, one needs another measure
Rd(B) to measure the confidence on the event that d is able
to fix B, which is computed as the distance from the vector
representing B to the separate hyperplan of SVMd. Since
the classifiers are trained independently, the ranking func-
tions Rd() are not trained competitively together to reflect
the actual ranking they should provide (e.g. if both d and d′

are viewed as capable to fix a bug report B, Rd(B) > Rd′(B)
might not imply that d is more capable than d′ in fixing
B). In contrast, Bugzie actually models/learns the ranking
functions, i.e. µt(d) and µB(d). Thus, µB(d) > µB(d

′) does
imply that d is more capable than d′ in fixing B.

372

Table 6: Top-1 & Top-5 Prediction Accuracy (%) - C.S: Fixer Candidate Selection, T.S: Term Selection

Top-1 Top-5 Time

Project Base C.S T.S Both Base C.S. T.S. Both Base C.S. T.S. Both

FireFox 28.0 30.0 32.1 34.6 70.7 72.4 73.9 77.8 1:50:04 31:24 24:14 12:04
Eclipse 40.5 40.9 42.6 45.0 72.0 72.7 80.1 83.2 1:39:12 50:47 26:28 12:00
Apache 39.8 39.8 39.8 39.8 75.0 74.9 75.0 75.0 1:08:23 46:24 1:05:00 36:59
Netbeans 26.3 26.3 31.8 32.3 54.2 59.5 60.4 61.3 17:04 11:51 4:49 2:30
FreeDesktop 47.1 47.3 51.2 51.2 77.9 78.0 81.1 81.1 20:35 17:26 3:03 2:07
Gcc 48.6 48.7 48.6 48.7 79.2 79.3 79.2 79.6 14:37 7:08 11:44 7:08
Jazz 28.4 28.4 31.3 31.3 72.6 72.6 75.3 75.3 24:45 21:12 1:37 1:37

In Naive Bayes (NB), given a bug report B as a set of
terms, the probability that this bug report belongs to the
class of bug reports associated with a developer d is:

P (d|B) ∝ P (d).P (B|d) = P (d).
∏

t∈B P (t|d) (*)
In this formula, P (d) is the probability of observing de-

veloper d in the fixing data and P (t|d) is the probability of
observing term t in the bug reports fixed by d. This formula
is used to rank the developers for recommendation.
However, there are two reasons that NB is less suited for

automatic bug triaging. First, the probability of assigning
developer d to a bug report P (d|B) is proportional to P (d).
That is, the more frequently d fixes, the higher chance he is
assigned to a new report. This might not fit well with the lo-
cality of fixing activity. For example, in practice, there often
happens that a developer has been active in bug-fixing for
certain technical areas in a period of time, and moves on to
other areas. He might have extensive past fixing activities,
but does not handle those technical issues anymore. NB still
tends to give him higher probability due to his past activi-
ties. In contrast, Bugzie will not have him in its candidate
list, if it finds that he has not fixed any bug for a long time.
Second, an important assumption in NB is the indepen-

dence of the features (i.e. terms), which gives P (B|d) =∏
t∈B P (t|d), while in bug reports, the terms, especially

those relevant to a technical issue, tend to co-occur, i.e. are
highly correlated. Let d be a developer with fixing expertise
on version control, t= repository and t′ = cvs be two terms asso-
ciated with that concern. t and t′ highly co-occur in the bug
reports on version control. However, for a bug report B con-
taining both terms, NB will have P (B|d) = P (t|d) ∗P (t′|d),
which is likely different from P (t, t′|d). Thus, the feature
independence assumption reduces the probability P (B|d).
Moreover, that product formula is also sensitive to noises.
For example, if B contains t and a misspelled word e, which
rarely occurs in bug reports fixed by d (P (e|d) is very small).
Then, P (B|d) = P (t|d)∗P (e|d) is much smaller than P (t|d).
For Bayesian Network models, the assumption for feature

independence is not enforced. However, they still face the
same issue, i.e. P (d|B) is proportional to P (d). Thus, BN
models are not well suited with the locality of fixing activity.
In Vector Space Model (VSM), all terms in bug reports

are collected into a corpus. It builds the term-fixer matrix in
which a fixer is profiled by a vector whose entries equal to the
frequencies of the terms in his fixed bug reports. Developers
whose vectors have highest similarity to the vector for a new
report are suggested. VSM is less suitable for bug triaging
than Bugzie. First, term selection is less flexible because
VSM requires all vectors to have the same size. Moreover,
all terms in a bug report are assumed to be independent.
In brief, comparing to those models, Bugzie is better suited

to bug triaging because it is adapted to the ranking nature of

the problem, the locality of fixing activity, the co-occurrences
(i.e. dependency) of technical terms associated with the
same technical aspect, and the evolutionary nature of soft-
ware development. In addition to significantly higher accu-
racy, Bugzie also has significantly higher efficiency than ex-
isting approaches because 1) training/recommending relies
on simple arithmetic calculations on counting values (Sec-
tion 3), 2) updating is fast and truly incremental, and 3)
selections of terms and developers reduce processing time.

In Bugzie, technical terms are selected based on their lev-
els of direct association to developers. One could use other
feature selection methods such as information theoretic mea-
sures (e.g. information gain). Topic-modeling [9] could be
used to identify technical topics and associated terms. Also,
other developers’ selection strategies [32] could be applied.

Threats to Validity. Since the tools of existing approaches
are not available, we re-implemented them via Weka [38].
However, our code is strictly based on their descriptions.

6. RELATED WORK
There exist machine learning (ML) and information re-

trieval (IR) approaches to automatic bug triaging. In Cubra-
nic and Murphy [11]’s, the titles, descriptions, and keywords
are extracted from the bug reports to build a classifier for de-
velopers using Naive Bayes. The classifier suggests potential
fixers based on the classification of a new report. Its predic-
tion accuracy is up to 30% on an Eclipse’s bug dataset from
Jan to Sep-2002. Anvik et al. [3] follow similar ML approach
and improve Cubranic et al.’s work by filtering out unfixed
bug reports and inactive developers. With 3 different clas-
sifiers using SVM, Naive Bayes, and C4.5, they achieve a
precision of up to 64%. Comparing to those ML approaches,
Bugzie has some advances. First, it is able to provide more
precisely the ranked list of potential fixers. The outcome of
a classifier has the assignment of a bug report to one specific
fixer, thus, an additional ranking scheme was needed with
the classifier. Second, simple fuzzy set computation with its
counting values is much more time efficiency than ML ap-
proaches in training/prediction. Importantly, Bugzie’s truly
incremental training and caching fits well with software evo-
lution and improves its performance. Finally, it can handle
the co-occurrences of terms of the same technical issue.

Another approach is from Bhattacharya and Neamtiu [5].
They use Bayesian Network and Naive Bayes. Those mod-
els are less precise than Bugzie since they cannot handle co-
occurrent technical terms, and suffer other limitations as in
ML approaches (Section 5.6). To improve ranking, they uti-
lize bug tossing graphs, which represent the re-assignments
of a bug to multiple developers before it gets resolved. As
shown, Bugzie outperformed (incremental) NB and BN from

373

Table 8: Comparison of Top-1 and Top-5 Prediction Accuracy (%)

Top-1 Top-5

Project NB InB BN InBN C4.5 SVM VSM Bugzie NB InB BN InBN C4.5 SVM VSM Bugzie

Firefox 19.8 21.7 12.9 13.2 24.1 25.7 13.4 29.9 43.5 45.8 29.4 30.5 32.6 54.8 33.6 71.8
Eclipse 23.7 25.9 12.2 14.1 23.8 27.4 12.2 38.9 47.1 49.8 27.9 31.9 33.0 53.0 30.9 71.7
Apache 24.3 24.7 11.3 11.6 21.6 26.2 12.0 40.0 45.3 46.0 26.6 28.4 32.4 47.6 30.7 78.0
NetBeans 16.8 2.7 7.2 5.8 17.9 21.8 8.0 29.2 38.5 11.6 21.9 18.9 26.9 45.2 20.8 59.8
FreeDesktop 37.1 38.1 31.8 32.6 35.3 42.2 23.2 52.7 63.5 65.2 57.2 59.1 47.9 69.0 54.5 80.0
Gcc 32.8 33.3 44.2 45.6 39.3 43.0 10.2 45.7 71.3 72.5 69.6 71.5 57.5 77.0 37.3 88.8
Jazz 19.9 20.4 22.6 22.7 20.5 27.9 6.4 30.0 50.3 50.1 55.4 55.8 34.6 67.4 18.9 73.2

Table 9: Comparison of Processing Time (s: seconds, m: minutes, h: hours, d: days)

Train Time Pred. Time

Project NB InB BN InBN C4.5 SVM VSM Bugzie NB InB BN InBN C4.5 SVM VSM Bugzie

FF 9 h 22 h 12 h 33 h 26 d 6 h 42 m 28 m 3 d 3 d 4 d 4.5 d 9 m 8 h 8 h 30 s
EC 9 h 37 h 15 h 2 d 28 d 6 h 39 m 21 m 5.5 d 5 d 7.5 d 8 d 14 m 12 h 13 h 18 s
AP 3 h 8 h 7.5 h 19 h 25 d 2.5 h 1 m 17 m 10 h 2 d 25 h 4 d 1 m 48 m 6 h 31 s
NB 1 h 4 h 2 h 6 h 10 d 1 h 14 m 10 m 14 h 11 h 22 h 15 h 2 m 1 h 1.5 h 5 s
FD 18 m 39 m 27 m 1 h 2 d 19 m 13 m 6 m 4 h 4 h 6 h 5.5 h 48 s 15 m 23 m 3 s
GC 5 m 14 m 8 m 22 m 27 h 9 m 13 m 5 m 40 m 40 m 35 m 25 m 14 s 4 m 8 m 4 s
JZ 3 h 4 h 3.5 h 6 h 22 h 4 h 2 m 9 m 6.5 h 6.5 h 7 h 7 h 10 s 31 m 5 m 5 s

6-20% and 13-35% for top-1 and top-5 accuracy, respectively.
Despite of incremental learning, the training and prediction
time of those models for Eclipse is from 9-15 hours and 5.5-
7.5 days, while Bugzie takes only minutes to an hour.
The idea of bug tossing graphs was introduced by Jeong et

al. [22]. Their Markov-based model learns from the past the
patterns of bug tossing from developers to others after a bug
was assigned. Their goal is more toward reducing the lengths
of bug tossing paths, rather than addressing the question of
who should fix a given bug as in an initial assignment.
Lin et al. [27] use ML with SVM and C4.5 classifiers on

both textual and non-text fields (e.g. bug type, submitter,
phase ID, module ID, and priority). Running on a propri-
etary project with 2,576 bug records, their models achieve
the accuracy of up to 77.64%. The accuracy is 63% if mod-
ule IDs were not considered. Bugzie has higher accuracy
and can integrate non-text fields for further improvement.
Podgurski et al. [31] utilize ML to classify/prioritize bug re-
ports, but not directly support bug triaging. Di Lucca et al.
use Bayesian and VSM to classify maintenance requests [12].
Other researchers use IR for automatic bug triaging. Can-

fora and Cerulo [10, 8] use the terms of fixed change requests
to index source files and developers, and query them as a
new change request comes for bug triaging. The accuracy
was not very good (10-20% on Mozilla and 30-50% on KDE).
In Develect [28], VSM is used to model a developer’s ex-

pertise by a vector of frequencies of the terms extracted from
his contributed source code. The vector for a new bug report
is compared with the vectors for developers for bug triaging.
Testing on 130,769 bug reports in Eclipse, the accuracy is
not as high as Bugzie (up to 71% with top-10 recommen-
dation list). Compared to Develect, Bugzie’s fuzzy sets first
enable more flexible computation and modeling of developers’
bug-fixing expertise. All vectors in Develect must have the
same length. With fuzzy set nature, Bugzie allows to select
a small yet significant set of terms for each developer. Sec-
ond, Develect assumes the independence of features/terms.
Moreover, as a project evolves, VSM must recompute the en-
tire vector set, while Bugzie incrementally updates its data

with high efficiency. Baysal et al. [4] proposed to enhance
VSM in modeling developers’ expertise with preference elic-
itation and task allocation. Rahman et al. [32] measure the
quality of assignment by matching the requested and avail-
able competence profiles from bug reports and developers.

Other researchers categorize/assess bug reports based on
their quality, severity levels, duplications, fixing time, and
relations [7, 34, 36, 33, 19, 20, 29, 6, 26, 16, 24, 37].

Our preliminary Bugzie [35] takes into account all ex-
tracted terms and developers in a project’s history. Tak-
ing advantage of our new finding on the locality of fixing
activity and the use of two caching techniques, new Bugzie
greatly improves over the old model: reducing processing
time about 10 times, and improving up to 12% in top-5 pre-
diction accuracy (Table 6). The improvement is confirmed
in our new comprehensive, empirical evaluation on 7 large-
scale, long-lived projects, while the preliminary results were
only on 3-year Eclipse data. TagRec [1] uses fuzzy set theory
to recommend the most relevant software tags (i.e. terms)
to software artifacts. It is based on the term-to-term corre-
lation, i.e. modeling the association among terms, which be-
long to the same space. In contrast, Bugzie is based on the
developer-to-term correlation, i.e. modeling the association
of developers and terms, which are the entities in different
spaces. Caching also helps it fit with bug triaging problem.

7. CONCLUSIONS
We propose Bugzie, a fuzzy set and cache-based approach

for automatic bug triaging. A fuzzy set represents the capa-
ble developers of fixing the bugs related to a technical issue.
The membership score of a developer to a fuzzy set is cal-
culated based on his fixed bug reports, and is incrementally
updated. With flexible caching of developers and terms,
Bugzie can accommodate the locality of fixing activity, the
co-occurrences of the terms of same technical aspects, and
software evolution. Our evaluation shows that it achieves
higher accuracy and efficiency than existing approaches.
Acknowledgment. This project is funded in part by NSF
CCF-1018600 grant.

374

8. REFERENCES
[1] J. Al-Kofahi, A. Tamrawi, T. Nguyen, H. Nguyen, and

T.N. Nguyen. Fuzzy Set Approach for Automatic
Tagging in Evolving Software. In ICSM’10. IEEE CS,
2010.

[2] Apache. https://issues.apache.org/jira/

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In ICSE ’06, pages 361–370. ACM Press,
2006.

[4] O. Baysal, M. W. Godfrey, and R. Cohen. A bug you
like: A framework for automated assignment of bugs.
In ICPC’09, pages 297-298. IEEE CS, 2009.

[5] P. Bhattacharya and I. Neamtiu. Fine-grained
incremental learning and multi-feature tossing graphs
to improve bug triaging. In ICSM’10. IEEE CS, 2010.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, T. Zimmermann. What makes a good bug
report? In FSE’08, pages 308-318. ACM Press, 2008.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, S. Kim.
Duplicate bug reports considered harmful... really? In
ICSM’ 08, pages 337-345. IEEE CS, 2008.

[8] G. Canfora and L. Cerulo. How software repositories
can help in resolving a new change request. In
Workshop on Empirical Studies in Reverse Eng., 2005.

[9] D. Blei, A.Y. Ng, and M. Jordan. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3 (2003), 993-1022.

[10] G. Canfora and L. Cerulo. Supporting change request
assignment in open source development. In SAC’06:
ACM symposium on Applied computing, pages
1767–1772. ACM Press, 2006.

[11] D. Cubranic and G. Murphy. Automatic bug triage
using text categorization. In SEKE’04: the 16th
International Conference on Software Engineering and
Knowledge Engineering, pages 92–97. KSI Press, 2004.

[12] G. Di-Lucca, M. Di-Penta, and S. Gradara. An
approach to classify software maintenance requests. In
ICSM’02, pages 93-102, IEEE CS, 2002.

[13] Eclipse. https://bugs.eclipse.org/bugs/

[14] FireFox. https://bugzilla.mozilla.org/

[15] FreeDesktop. https://bugs.freedesktop.org/

[16] M. Fischer, M. Pinzger, H. Gall. Analyzing and
relating bug report data for feature tracking. In
WCRE’03, pages 90-99. IEEE CS, 2003.

[17] Gcc. http://gcc.gnu.org/bugzilla/

[18] J. Han, M. Kamber, and J. Pei. Data Mining:
Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems, 2006.

[19] L. Hiew. Assisted detection of duplicate bug reports.
Master’s thesis, University of British Columbia, 2006.

[20] P. Hooimeijer, W. Weimer. Modeling bug report
quality. In ASE ’07, pages 34–43. ACM Press, 2007.

[21] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich.
Recommender Systems: An Introduction. Cambridge
University Press, 2011.

[22] G. Jeong, S. Kim, T. Zimmermann. Improving bug
triage with bug tossing graphs. In FSE’09, pages
111-120. ACM Press, 2009.

[23] S. Kim, T. Zimmermann, J. Whitehead Jr., and
A. Zeller. Predicting faults from cached history. In
ICSE’07, pages 489-498. IEEE CS, 2007.

[24] S. Kim, E.J. Whitehead, Jr. How long did it take to fix
bugs? In MSR ’06, pages 173-174. ACM Press, 2006.

[25] G.J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice Hall, 1995.

[26] A.J. Ko, A.B. Myers, D.H. Chau. A linguistic analysis
of how people describe software problems. In
VLHCC’06, pagess 127-134. IEEE CS, 2006.

[27] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. An
empirical study on bug assignment automation using
Chinese bug data. In ESEM’09, pages 451–455. IEEE
CS, 2009.

[28] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of
developers. In MSR’09, pp. 131–140. IEEE CS, 2009.

[29] T. Menzies, A.Marcus. Automated severity assessment
of software defect reports. In ICSM’08, pages 346–355.
IEEE CS, 2008.

[30] Netbeans. http://netbeans.org/bugzilla/

[31] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, B. Wang. Automated support for
classifying software failure reports. In ICSE’03, pages
465-475. IEEE CS, 2003.

[32] M. Rahman, G. Ruhe, T. Zimmermann. Optimized
assignment of developers for fixing bugs an initial
evaluation for Eclipse projects. In ESEM’09, pages
439-442. IEEE CS, 2009.

[33] P. Runeson, M. Alexandersson, O. Nyholm. Detection
of duplicate defect reports using natural language
processing. In ICSE ’07, pp. 499–510. IEEE CS, 2007.

[34] C. Sun, D. Lo, X. Wang, J. Jiang, S.C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In ICSE ’10, pages 45-54. ACM
Press, 2010.

[35] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and
T.N. Nguyen. Fuzzy Set-based Automatic Bug
Triaging. In ICSE’11 (NIER). ACM, 2011.

[36] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In
ICSE’08, pages 461-470. ACM Press, 2008.

[37] C. Weiss, R. Premraj, T. Zimmermann, A. Zeller.
How long will it take to fix this bug? In MSR’07,
IEEE CS, 2007.

[38] Weka: Data mining software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

375

