
Insights for Practicing Engineers from a Formal
Verification Study of the Linux Kernel∗

Suresh Kothari, Payas Awadhutkar, and Ahmed Tamrawi
Electrical and Computer Engineering Department

Iowa State University
Ames, Iowa 50010

Email: {kothari, payas, atamrawi}@iastate.edu

Abstract—Formal verification of large software has been an
illusive target, riddled with the problem of scalability [1]–[4].
Even if the obstacle of scale may be cleared, major challenges
remain to adopt formal verification in practice.

This paper presents an empirical study using a top-rated
formal verification tool for Linux [5], and draws insights from
the study to discuss the intrinsic challenges for adopting formal
verification in practice. We discuss challenges that focus on
practical needs: (a) facilitate crosschecking of verification results,
(b) enable the use of formal verification for certification, and (c)
integrate formal methods in a development environment. Leaning
on visionary papers [6], [7] by Turing Award recipients, we
present novel ideas for advancing formal verification in new
directions that would help practicing engineers.

I. INTRODUCTION

Formal verification has been the holy grail of software engi-
neering research [8]. Automated software verification methods
have led to advances in data and control flow analyses, and
applications of techniques such as Binary Decision Diagrams
(BDDs) to analyze large software [9]. However, there are
two fundamental limitations: (1) a completely automated and
accurate analysis encounters NP hard problems [10]–[12], and
(2) formal verification methods work as automated black boxes
with very little support for cross-checking [5], [13], [14].
This paper is about the second limitation. It elaborates on the
practical difficulties emanating from the limitation and how it
may be possible to address the limitation.

The second limitation leads to issues that leave several
practical needs unaddressed. Although the formal verification
works as an automated black box, it requires an inordinate
amount of preprocessing effort, involving a transformation
from the software to the formal specification that can be
checked automatically using a model checker or a SAT solver.
This transformation is not automatic, it requires domain knowl-
edge of the particular formal method and a lot of cumbersome
human effort.

Besides the preprocessing, another serious issue is the lack
of supporting evidence to be able to understand and use the
results of formal verification. Without the evidence, it is not
possible to use formal verification as a certification apparatus,

∗This material is based on research sponsored by DARPA under agreement
numbers FA8750-12-2-0126 and FA8750-15-2-0080. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

or to integrate formal methods in a development environment.
As we shall exemplify, it is quite hard for the user to know that
the verification result is wrong without supporting evidence.
We will present an empirical study to elaborate the notion of
evidence and its importance in practice.

We did an empirical study to get deep insights into some
of the state of the art formal verification methods. We use
the empirical study results to motivate the specific needs for
generating supporting evidence as a part of formal verification.
We used the Linux Driver Verification tool (LDV) [5] which
has been the top Linux device driver verification tool in the
software verification competition (SVCOMP) [15]. The LDV’s
developers were generous to help us with the study. The study
includes three recent versions of the Linux operating system
with altogether 37 MLOC and 66, 609 verification instances.
Each instance involves verifying that a Lock is followed by
Unlock on all feasible execution paths. Running LDV on these
Linux versions yields the result that pairing is correct for
43, 766 (65.7)% of Lock instances. LDV is inconclusive on
22, 843 instances, i.e. either the tool crashes or it times out.
LDV does not find any instance with incorrect pairing. LDV
does not provide evidence to support its results except for the
instances where the verification reveals a bug.

We dissected some of the instances to gain insights into
how hard it is to understand the verification and what evidence
could facilitate such understanding. We used the interactive vi-
sual query language of Atlas [16], [17] to dissect the instances.
The Atlas query language makes it easy to build software
analysis, comprehension, validation and transformation tools.
The dissected instances point to specific needs for evidence.
One of the examples is actually a serious bug that was missed
by the formal verification tool.

Our paper is inspired by the following question: ”What
advances in formal methods would it take to meet the practical
needs?” Supported by examples from our study, we will
discuss two key ideas to answer this overarching question.
These ideas lean on visionary papers [6], [7] by Turing Award
recipients.

Overall, this paper makes the following key contributions:

1) A formal verification study of the Linux kernel to show
supporting evidence as a critical need for practical adop-
tion of formal methods (Section II).

2) Two key ideas for new directions for advancing formal
verification methods to meet the practical needs (Sec-
tion III).



II. A MOTIVATIONAL VERIFICATION STUDY

We undertook a verification case study to get deep insights
into the state of the art for formal verification. We use results of
the study to motivate the need for supporting evidence and its
use to address practical needs such as certification and integra-
tion of formal methods in a development environment. We did
the study using the Linux Driver Verification tool (LDV) [5]
which has been the top Linux device driver verification tool
in the software verification competition (SVCOMP) [15]. The
LDV’s developers were generous to help us with the study.

We chose an extensively studied 2-event verification prob-
lem. Given two events E1(X) and E2(X) operating on an object
X, the goal is to verify that E1(X) is followed by E2(X) on every
feasible execution path. We studied two 2-event problems: one
is to verify correct pairing of allocation and deallocation

to avoid memory leaks and the other is to verify correct pairing
of lock and unlock to avoid unsafe synchronization. We used
LDV to verify three recent versions (3.17-rc1, 3.18-rc1 and
3.19-rc1) of the Linux kernel along with the device drivers. We
enabled all possible x86 build configurations via allmodconfig

flag. The results for verifying correct pairing of lock and
unlock are reported in Table I

TABLE I. LDV LINUX VERIFICATION RESULTS

Kernel LOC Type Locks Unlocks
LDV

C1 C2 C3 Time

3.17-rc1 12.3 M
spin 14,180 16,817 8,962 (63.2%) 0 5,218 26h
mutex 7,887 9,497 5,494 (69.7%) 0 2,393 27h

3.18-rc1 12.3 M
spin 14,265 16,917 9,152 (64.2%) 0 5,113 30h
mutex 7,893 9,550 5,427 (68.8%) 0 2,466 30h

3.19-rc1 12.4 M
spin 14,393 17,026 9,204 (63.9%) 0 5,189 32h
mutex 7,991 9,653 5,527 (69.2%) 0 2,464 29h

All Kernels 66,609 79,460 43,766 (65.7%) 0 22,843 173h

Altogether the three Linux versions have 37 MLOC and
66, 609 instances of locks. Table I gives the results for: (i) C1:
the automatically verified instances with no violation (correct
pairing), (ii) C2: the automatically verified instances with
one or more violations (incorrect pairing) shown by missing
unlock(s) on feasible path(s), and (iii) C3: the remaining
instances where the verification is inconclusive (inconclusive
pairing). Column Type identifies the synchronization mech-
anism. Columns Locks and Unlocks show the number of
lock/unlock instances. Note that a lock may be paired with
multiple unlocks on different execution paths.

A. Discussion of Results

Note that the LDV tool verifies the pairing of
43, 766 (65.7)% Lock instances. It either times out or crashes
on 22, 843 instances. This study points to the need for ac-
companying evidence. The evidence is critically important to
crosscheck formal verification results.

• LDV pronounces that pairing is correct for
43, 766 (65.7)% Lock instances. However, LDV
provides no proof that humans can crosscheck. LDV
transforms the source code to a representation that is
suitable for its verification engine. That representation
is not suitable for for humans to crosscheck.

Without human-verifiable evidence, it is either trust
the verification results blindly or crosscheck them
manually without any help from the verification ap-
paratus. As a result, the formal verification is not
amenable for use as a certification apparatus.

• LDV does not find any violations. Maybe, the Linux
developers have learnt not to make the mistakes that
LDV can find. However, it remains open: is LDV
mistakenly pronouncing some instances as safe and
we simply do not know it?

• The instances are inconclusive if LDV cannot com-
plete the verification. LDV is inconclusive on 22, 843
instances. Looking across the inconclusive instances
for the three versions in our study, LDV seems to
have reached a saturation point. What is so difficult
about these instances that LDV is not able to com-
plete verification? This brings up another reason why
human-comprehensible evidence is important. Even
when the verification is incomplete, the evidence can
be valuable to developers to explore further and it can
also be useful to improve the verification tools.

Our dissection of some of the Lock instances have revealed
bugs that LDV missed. The Linux organization has accepted
these bugs and corrected them. We have described one such
bug in Section IV.

III. EVIDENCE-EQUIPPED VERIFICATION

The evidence is important to address practical needs such
as: (a) facilitate crosschecking verification results, (b) enable
the use of formal verification for certification, and (c) integrate
formal methods in a development environment. This section
focuses on what should be the evidence that facilitates human
comprehension of the verification to address practical needs.

We propose visual models as verification-critical evidence.
These models can serve many practical needs. For example,
they can empower interactive analytical reasoning by develop-
ers, or they can serve as easy-to-understand documentation for
certification. Specifically, we will discuss two types of models:
(a) a model for interprocedural verification, and (b) a model
for intra-procedural verification.

We show representative examples of Linux verification
instances to bring out the benefits of having such models.
We show how these models can enable the user to construct
modular proofs. We describe an evidence-based modular proof
for a verification instance which could not be verified by LDV.
The evidence that enables the user to construct proofs without
too much effort is especially important because the formal
proof is at a low level; it is suitable for the machine but not
amenable to human understanding.

In Section IV, we will use the evidence for a complex
verification instance to show that the formal verification by
LDV is incorrect for that instance.

The interprocedural model presented in this paper is based
on our research [18]–[20]. This model is specifically in the
context of verification for 2-event matching problems. There
is a need to generalize the interprocedural model for broader



applicability. The intra-procedural model is based on our
research [21]. The intra-procedural model is not restricted
to the 2-event matching problems. Our models have direct
correspondence to the source code and thus it is easy for
the user to check if the models have any errors before using
them to crosscheck the results of formal verification. Thus, the
models are easy for the human to understand, and it is also
easy for the human to use them to construct modular proofs.
The models for all the 66, 609 Lock instances are available
at [22]. We use these models to teach software verification to
undergraduates [20].

We will discuss specific needs for the formal verification
tools to be advanced to produce visual models as evidence.
A formal verification tool must compute some approximation
of these model as the models are intrinsically important for
verification. However, the computation remains implicit and
the models are not exposed to the user. We present a case
to argue that the formal verification tools should make these
models explicit and open them to the user.

A. Interprocedural Visual Model for Evidence

The complexity of software is rooted in its own version of
the butterfly effect [23], [24]. A small change at one point can
impact many parts of the software and cause an unforeseen
effect at a very distant point of the software. This impact
propagation is hard to decipher from software viewed as
lines of code; it makes program comprehension and reasoning
tedious, error-prone, and almost impossible to scale to large
software.

Abstractly, there exists a set S(X) of methods that captures
the exact expanse of the software butterfly effect. The set
S(X) is necessary and sufficient to verify an instance X .
An exact computation of S(X) is not possible because of
inexact pointer analysis and other computationally expensive
or intractable program analysis problems. During verification,
a verifier must compute Ŝ(X), its version of S(X), for
performing the verification. If Ŝ(X) is smaller than S(X) then
the verification is incomplete. If Ŝ(X) is bigger than S(X)
then the verification is unnecessarily complicated.

The LDV does not reveal to the user Ŝ(X). We have
computed our version of set S(X) for each Lock instance
X . Our computation, based on our research [18]–[20], is
specifically in the context of 2-event matching problems such
as the pairing of Lock and Unlock or the pairing of memory
Allocation and Deallocation. We refer to it as the Matching
Pair Graph (MPG). As a general notion, we refer to S(X)
as the Interprocedural Verification Graph (IVG). The IVG
includes the call edges between the methods in IVG.

An Example of IVG for a Linux Verification Instance:
Now, let us discuss an example of how the IVG can be
valuable evidence. Figure 1 shows the IVG for the Lock

call in function clk_enable_lock. This IVG is actually for
two Lock instances corresponding to the calls raw_spin_lock

and raw_spin_trylock. A single call to raw_spin_unlock

in clk_enable_unlock is used to pair with both the Lock

instances. The IVG implies that verifying the correct pairing
for this example can be narrowed down to the 10 methods
shown in the IVG (not counting the Lock and Unlock methods).

Fig. 1. IVG for the lock in clk_enable_lock

Practical Benefits of IVG: Let us point out the major practical
benefits of IVG.

1) By going through an IVG produced by a formal verifica-
tion tool, the user could easily crosscheck if all the rel-
evant functions are correctly covered by the verification.
Suppose inside a function f in the IVG there is a path
without Unlock and on that path a Lock pointer is passed
to another function g. Then, g must be in the IVG. If not,
the user can deduce that there is a potential verification
error because the IVG is incomplete.

2) The user can complete verification building on the evi-
dence from IVG. Continuing the above example, suppose
g is called using a function pointer. The formal verifica-
tion tool could be inconclusive because it cannot handle
calls through function pointers. As described in [19], the
user can chase the function pointer with the help of an
interactive tool and complete the verification. We will
revisit this point in Section IV where we present a bug
missed by the formal methods tool LDV.

3) The IVG reveals possibilities for human-centric proofs
for verification. The formal methods proofs are machine-
centric, they use techniques such as constructing a
boolean formula and then checking its satisfiability. Such
proofs are not amenable to human comprehension. As a
contrast, let us consider a human-centric proof facilitated
by the example IVG shown in Figure 1.

An Example of Human-centric Proof Enabled by IVG:
The proof is for the verification instance in the above exam-
ple. Figure 1 shows the IVG for the Lock call in function
clk_enable_lock. The key idea for the proof is as follows.
The proof proceeds step-wise based on the structure of the
IVG. This example requires 5 steps and the number of nodes
to be verified at each step are respectively 3, 2, 1, 1, 1 as
shown in the Figure 1. Going through the control flow graph
(CFG) of each of the 3 nodes in step 1, one must verify the
correct pairing of Lock and Unlock on all feasible control flow



paths. The nodes in step 2 call the nodes in step 1, and thus
they have indirect calls to Lock and Unlock. The verification
in step 1 implies that these calls are verified and we only have
to verify the correct pairing of direct calls to Lock and Unlock

from the nodes in step 2. The proof proceeds inductively from
step i to step i+1 until the final step 5. The step-wise inductive
proof is much simple for the human to comprehend and thus
the IVG provides an alternative of human-friendly proof.

We will later discuss a compact representation of CFG
called the Event Flow Graph (EFG). We will discuss how the
EFG is used at each of these 5 steps of the proof.

The nodes numbered 0 are the wrapper functions that
simply call Lock and Unlock individually. It is a common
practice in the Linux kernel to use such wrappers and name
them appropriately to indicate the purpose for which the locks
are introduced.

B. Intra-procedural Visual Model for Evidence

This model provides evidence for intra-procedural verifica-
tion. The evidence helps the user with two formidable barriers
that make intra-procedural verification difficult. The barriers
are: (a) the number of paths in CFG increases exponentially
with non-nested branch nodes, and (b) the verification requires
checking the feasibility of paths in a CFG. If a path is unsafe,
the verifier must check if it is feasible. Without the feasibility
check, it could be a false positive. The Linux kernel has
some very complex CFGs with a large number of branch
nodes, resulting in five hundred thousand paths. Without some
compact form of evidence, the human can be lost while trying
to understand or cross-check the intra-procedural part of the
verification.

An Example: What compact evidence could formal methods
generate to circumvent the intra-procedural barriers? Let us
look at a small example to motivate the answer. Figure 2 shows
an example of a CFG (G) and Ĝ which is a compact form
of the CFG. We call the compact form the event flow graph
(EFG). The graph G (the CFG) in Figure 2(a) has 5 branch
nodes resulting in 8 paths after the Lock. Some of these paths
go through a complex loop with two exits. The 4 out of 5
branch nodes are irrelevant to the verification because all the
paths branching from them lead to the unlock and are thus
equivalent. These 4 branch nodes are eliminated in the EFG.

Note that the EFG captures all the information that is
relevant to verify correct pairing of Lock and Unlock. However,
the EFG is simpler because it has only one path corresponding
to the CFG paths that contain the same sequence of events
relevant to the verification.

The EFG also simplifies the path feasibility check. As seen
from the EFG in Figure 2(b), there is a path with a missing
unlock and the feasibility of that path must be checked. It is
a violation only if that path is feasible. The EFG has retained
only the condition that is necessary to verify the feasibility
of that path, the other 4 conditions from the CFG are not
retained in the EFG. The analyst can easily cross-check the
verification by observing that if the lock is granted then the
particular condition is false. So, the true path in Figure 2(b)
is not feasible and thus it is not a violation.

Fig. 2. CFG and EFG for the function hwrng_attr_current_store

The general notion of EFG, an algorithm for computing
EFG, and a tool for computing EFG are presented in the
paper [21]. In essence EFG introduces an equivalence relation
on the CFG paths to partition them into equivalence classes
that capture relevant information for verification.

Practical Benefits of EFG: Let us summarize how EFG is
beneficial as intra-procedural evidence for verification.

1) EFG minimizes the effort for checking paths by having
one path for each distinct trace of relevant events for
verification. Events correspond to statements in a CFG.
Note that a call to a function is a relevant event if that
function calls the Lock or the Unlock. Other examples of
relevant events include aliasing of a pointer p to a lock
object, passing of p to a function, in general a relevant
statement is one that is relevant to verification.

2) EFG minimizes the effort for checking path feasibility
check by retaining only the subset of branch nodes
relevant for verification.

3) The EFG complements the IVG by being useful for
understanding the intra-procedural part of verification
proof.

Use of the EFG for Intra-procedural Verification: Let us
now discuss how the EFG is used at each step of the modular
proof that a user can construct using the IVG and EFG. Recall
that the proof proceeds in 5 steps for the example. We illustrate
the use of EFG for step 3 to verify the correct pairing of Lock



Fig. 3. CFG and EFG for the function clk_set_parent

and Unlock in the method _clk_set_parent (the node labeled
3 in the IVG shown in Figure 1). As seen from the IVG, this
method calls both the methods verified at step 2, one method
verified at step 1, and directly calls Lock and Unlock.

The EFG for _clk_set_parent, shown in Figure 3, in-
cludes the relevant part from the corresponding CFG also
shown in the same figure. The relevant part includes the direct
and indirect calls to Lock and Unlock and the branch nodes
governing the paths on which these calls occur. One branch
node (labeled C3 in CFG) is not retained in the EFG. This
branch node is irrelevant because the paths governed by it
are equivalent for the purpose of verification. Note that the
indirect calls are through the methods that are verified in
previous steps. The calls to these methods are labeled in the
EFG shown in Figure 3. The calls labeled 1 are to the same
method clk_disable.

With the help of EFG, the intra-procedural verification is
straight forward. The indirect calls are verified in previous
steps and the direct calls to Lock and Unlock, as labeled in the
EFG, are on a single path and thus trivially verified without a
need for a path feasibility check.

C. Discussion

The formal verification can be incorrect. The incorrectness
can be due to multiple reasons, for example it may be due to
an incorrect formal specification given to the verifier. It is crit-
ically important to have capabilities to discover if the formal
verification is incorrect. In Section IV, we show an example
of a verification instance that LDV verifies incorrectly. We
actually need systematic techniques to scrutinize correctness
of formal verification. Unfortunately, the formal verification
tools are not equipped to provide proofs that the human can
understand and scrutinize. This incorrectness is an important
issue and we elaborate on it further.

Consider a scenario where the formal specification for
correct pairing is formulated so that the verification applies
only to the direct calls and it ignores the calls to verified
methods. The formal verification would pronounce the above
verification instance as safe. The formal verification proof is
incomplete but its verdict is correct. In this example, it is
alright to ignore the calls to verified methods but that is not
always the case. We take that up next.

Now, a hypothetical scenario where the EFG for
_clk_set_parent include a call to a Lock, a call to a verified
method, and then a call to Unlock. The formal verifier would
again pronounce it safe. With the human-centric proof enabled
by the IVG and the EFG, it is easy to see that the formal
verifier is incorrect. It is an unsafe instance because it is
a situation of Lock followed by Lock without an Unlock in
between. This is because the hypothetical scenario has a direct
call to Lock in _clk_set_parent followed by a call to Lock

in a verified method.

The idea of evidence needs to be explored further to
develop capabilities to enable a scrutiny of correctness of
formal verification tools. One possibility is to use the visual
models to understand the hardness spectrum and use that
knowledge to create a comprehensive test suite to evaluate
correctness of formal verification. For instance, the above
scenario shows the need to create a test case in which a call to a
verified method is in between direct calls to Lock and Unlock.
Since the LDV is inconclusive on the above instance itself,
we have not bothered to evaluate it with the more difficult
hypothetical scenario.

The notions of IVG and EFG are central to our ongoing
research to detect and prove algorithmic complexity and side
channel vulnerabilities [25]. We have developed a generalized
notion of EFG. The IVG notion is developed for the matching
pair problem and a generalized notion for IVG is an open
research problem. We have developed tools to compute the
IVG and EFG and these tools have been used to produce
automatically the IVG and EFG for lock-unlock pairing and
memory allocation-deallocation pairing problems.

IV. A LINUX BUG MISSED BY FORMAL VERIFICATION

We present an example of a complex Linux verification
instance where Lock is not correctly paired with Unlock, but
LDV mistakenly verifies it as correct pairing. The EFG of
a function shows that Lock is not followed by Unlock. We
expected that LDV verifier would notice it and declare it
unsafe. To our surprise, LDV has declared it a safe instance.
We did a further investigation and found that it is an unsafe
instance but not for the obvious reason. Since the formal
verification proof is not revealed, it is not clear why LDV
has verified this instance incorrectly.

As a part of the DARPA project we are developing tools to
analyze the visual models automatically. The variety of many
complexities for verification makes Linux a good test case for
us to evaluate and advance our tools. We have an ongoing
project to scrutinize all the visual models to discover difficult
verification scenarios.

This particular instance attracted our attention because
of a peculiarity the EFG exhibited. The EFG shows that
the lock and unlock are on disjoint paths in the function



drxk_gate_crtl (f1) and if C = true, the lock occurs,
otherwise, the unlock occurs. We hypothesized that the lock
and unlock can match if f1 is called twice, first with C = true

and then with C = false. A quick query using Atlas shows
that f1 is not called directly anywhere. Thus, it is either dead
code or f1 is called using a function pointer.

Resolving the function pointers using a tool we have
developed using Atlas [19], we find the situation shown in
Figure 4. The function tuner_attach_tda18271 (f2) calls
the function f1 via function pointer. demo_attach_drxk sets
the function pointer to f1, the pointer is communicated by
parameter passing to dvb_input_attach, then to f2.

Fig. 4. Search model for drxk_gate_crtl after resolving calls via
function pointers

Recall that f1 must be called twice. The function f2 has
a path on which there is a return before the second call to f1

and thus it is a bug.

It is a mystery why LDV incorrectly verifies this instance
as safe. We are not aware any program analysis techniques that
would correctly resolve the difficult-to-resolve function pointer
situation encountered in this instance. It is hard to imagine
that LDV has resolved the function pointers in this case. An
analysis without resolving function pointers is more likely to
lead to unsafe verdict because the Lock and Unlock are on
disjoint paths and thus it is an unsafe instance. Without access
to its proof, it is not possible to determine what goes wrong
with LDV when it incorrectly verifies this peculiar instance as
safe.

V. KEY IDEAS FOR FUTURE ADVANCES

We discuss two key ideas to address the challenges of mak-
ing formal verification useful to practising engineers. These
ideas have evolved from our Linux verification studies and
visionary papers: Social Processes and Proofs of Theorems, by
De Millo, Perlis (1st Turing Award, 1966) and Lipton [6], [26],
and Computer Scientist as a Toolsmith, by Brooks (Turing
Award, 1999) [7].
A. Human-Centric Verification

The first paper [6] makes following important points.

• Mechanisms that make engineering and mathematics
really work are obscured in the fruitless search for
perfect verifiability. In mathematics, the aim is to
increase the human confidence in the correctness of a
theorem. Nor does the proof settle the matter, contrary

to what its name suggests, a proof is only one step
in the direction of confidence. It is a social process
that determines whether mathematicians feel confident
about a theorem. Verification is nothing but a model
of believability. It cannot be a model where proofs are
accepted in blind faith. A proof should be amenable
to human scrutiny.

• A good proof is one that makes us wiser. With formal
verification, we know that our program is formally,
correct. We do not know, however, to what extent it
is reliable, dependable, safe; We do not know within
what limits it will work; we do not know what happens
when it exceeds those limits. The verification must
provide knowledge that improves our practice.

Perfect verifiability is clearly not possible. The question is
what would help to establish more trust in the correctness of
formal verification. Because of the low-level at which formal
verification operates, the formal proofs are extremely long
and not amenable to human understanding. The Linux bug
discussed in Section IV shows that either the formal verifier
itself or the specification being generated is not working
correctly. Except declaring that the instance is SAFE, the
verifier produces no other output. The user has no clue what
is not working correctly. Had the verifier produced the IVG
and the corresponding EFGs resulting from its verification,
we could have used those to gain deeper insights about the
formal verification as performed by LDV.

As the paper [6] notes, a good proof is one that makes us
wiser. The paper makes distinction between formal verification
proofs and the proofs used in mathematics and points to the
intrinsic problem that formal proofs do not make us wiser
about the software.

To summarize, the first key idea is to advance formal
methods to produce artifacts that make developers wiser about
their software.

B. Human-Machine Collaboration

Frederick Brooks writes [7]: “If indeed our objective is to
build computer systems that solve very challenging problems,
my thesis is that IA > AI, that is, that intelligence amplifying
systems can, at any given level of available systems technology,
beat AI systems. That is, a machine and a mind can beat a
mind-imitating machine working by itself.” Both verification
instances we have presented illustrate why human-machine
collaboration is important.

Software assurance inherently involves learning and rea-
soning about large code. The overarching question for any
software assurance technology is: should this learning and
reasoning be machine-centric or human-centric? The tradi-
tional vision is machine-centric with formal methods based on
low-level formal specifications. While this vision has led to
incremental progress over the last fifty years, there has been a
quantum jump in escalated safety and security risks emanating
from software failures.

Formal verification inherently involves problems with ex-
ponential complexity as well as intractable problems that are
equivalent to the halting problem. Of the two verification
instances we have presented here as examples, the formal



verification is inconclusive on one instance discussed in Sec-
tion III. While the instance is difficult for the formal verifier,
we have shown a modular proof to verify the instance. The
visual models that serve as the evidence for this proof are
produced automatically. It is an example of human-machine
collaboration to verify an instance which is beyond the reach of
the top-rate, customized formal verifier for Linux. The second
instance discussed in Section IV is much harder. Paradoxically,
the formal method verifies the second instance which is much
harder. However, the formal verification is not correct.

The bug we have shown for the second instance is pro-
duced by human-machine collaboration as described in using
Atlas [19]. As described in Section IV, the second instance
involves a complex resolution of function pointers which
would be very time consuming and prone to errors without
automation. However, it is hard if not impossible to make
it fully automated. Moreover, the crucial starting point is a
human hypothesis. The function f in that instance has Lock and
Unlock on two disjoint paths governed by some condition C. It
is human hypothesis that f is called twice first with C=TRUE for
Lock and then with C=FALSE for Unlock. The human hypothesis
is then confirmed by using an automated tool to search for this
coding pattern.

As described in [19], our technique to resolve the function
pointers requires human intelligence, domain-knowledge, and
powerful automated querying to mine programs. It requires
program mining because one needs to search if there is a point
in program where a function pointer is set to point to the
given function. It is actually quite complicated because the
Linux kernel has multiple functions with the same name and
it requires a careful resolution of scope that a function pointer
is set to the particular function.

VI. CONCLUSION
As the paper [6] notes, a good proof is one that makes us

wiser. The paper makes distinction between formal verification
proofs and the proofs used in mathematics and points to the
intrinsic problem that formal proofs do not make us wiser
about the software.

Following up on the idea of “proofs to make us wiser,” this
paper makes a case for producing visual models as supporting
evidence for formal verification. Developing visual models as
evidence for formal verification is challenging research that
requires significant systematic experimentation to determine
what should be the evidence for addressing practical needs.
As it turns out, much the same is true in mathematics as
well. Most mathematicians spend a lot of time thinking about
and analyzing particular examples [26]. This motivates future
development of theory and gives one a deeper understanding
of existing theory. Gauss declared, and his notebooks attest to
it, that his way of arriving at mathematical truths was “through
systematic experimentation.” Our DARPA research focuses on
advancing a platform for performing software modeling exper-
iments. The visual models (EFG and IVG) developed through
our experiments are used here in the presented empirical study
to make a case for producing supporting evidence for formal
verification.

ACKNOWLEDGMENTS

We thank our colleagues from Iowa State University and
EnSoft for their help with this paper. Dr. Kothari is the founder
President and a financial stakeholder in EnSoft.

REFERENCES

[1] C. Canal and A. Idani, Software Engineering and Formal Methods:
SEFM 2014 Collocated Workshops: HOFM, SAFOME, OpenCert,
MoKMaSD, WS-FMDS, Grenoble, France. Springer, 2015, vol. 8938.

[2] P. Stratis, “Formal verification in large-scaled software: Worth to
ponder,” 2014. [Online]. Available: https://blog.inf.ed.ac.uk/sapm/2014/
02/20/formal-verification-in-large-scaled-software-worth-to-ponder/

[3] D. Beyer and A. K. Petrenko, “Linux driver verification,” in Leveraging
Applications of Formal Methods, Verification and Validation. Applica-
tions and Case Studies. Springer, 2012, pp. 1–6.

[4] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM Computing Surveys (CSUR),
vol. 41, no. 4, p. 19, 2009.

[5] “Linux driver verification (LDV) tool,” http://linuxtesting.org/project/
ldv.

[6] R. A. De Millo, R. J. Lipton, and A. J. Perlis, “Social processes
and proofs of theorems and programs,” Communications of the ACM,
vol. 22, no. 5, pp. 271–280, 1979.

[7] F. P. Brooks Jr, “The computer scientist as toolsmith II,” Communica-
tions of the ACM, vol. 39, no. 3, pp. 61–68, 1996.

[8] B. Gates, “Bill Gates Keynote: Microsoft Tech-Ed 2008,”
2008. [Online]. Available: http://news.microsoft.com/speeches/
bill-gates-keynote-microsoft-tech%E2%80%A2ed-2008-developers/

[9] O. Lhoták, “Program analysis using binary decision diagrams,” Ph.D.
dissertation, McGill University, 2006.

[10] A. Church, “A note on the entscheidungsproblem,” J. Symb. Log., vol. 1,
no. 1, pp. 40–41, 1936.

[11] A. M. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5, 1936.

[12] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 1953.

[13] Y. Xie and A. Aiken, “Saturn: A scalable framework for error detec-
tion using boolean satisfiability,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 29, no. 3, p. 16, 2007.

[14] I. Dillig, T. Dillig, and A. Aiken, “Sound, complete and scalable path-
sensitive analysis,” in ACM SIGPLAN Notices, vol. 43, no. 6. ACM,
2008, pp. 270–280.

[15] D. Beyer, “Status report on software verification,” in Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2014.

[16] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas: a new way
to explore software, build analysis tools,” in Companion Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 588–591.

[17] “Ensoft corp.” http://www.ensoftcorp.com.
[18] K. Gui and S. Kothari, “A 2-phase method for validation of matching

pair property with case studies of operating systems,” in Software Reli-
ability Engineering (ISSRE), 2010 IEEE 21st International Symposium
on. IEEE, 2010, pp. 151–160.

[19] S. Kothari, A. Tamrawi, and J. Mathews, “Human-Machine Resolution
of Invisible Control Flow,” in Proceedings of the twenty-fourth IEEE
International Conference on Program Comprehension, 2016.

[20] S. Kothari, A. Tamrawi, J. Sauceda, and J. Mathews, “Let’s verify linux:
accelerated learning of analytical reasoning through automation and
collaboration,” in Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 2016, pp. 394–403.

[21] A. Tamrawi and S. Kothari, “Event-flow graphs for efficient path-
sensitive analyses,” arXiv preprint arXiv:1404.1279, 2014.

[22] “Linux results,” http://kcsl.ece.iastate.edu/linux-results/.
[23] J. Gleick and R. C. Hilborn, “Chaos, making a new science,” American

Journal of Physics, vol. 56, no. 11, pp. 1053–1054, 1988.
[24] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmo-

spheric sciences, vol. 20, no. 2, pp. 130–141, 1963.
[25] “Space/Time Analysis for Cybersecurity (STAC),” https://www.fbo.gov/

spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html.
[26] D. Epstein and S. Levy, “Experimentation and proof in mathematics,”

Notices of the AMS, vol. 42, no. 6, pp. 670–674, 1995.

https://blog.inf.ed.ac.uk/sapm/2014/02/20/formal-verification-in-large-scaled-software-worth-to-ponder/
https://blog.inf.ed.ac.uk/sapm/2014/02/20/formal-verification-in-large-scaled-software-worth-to-ponder/
http://linuxtesting.org/project/ldv
http://linuxtesting.org/project/ldv
http://news.microsoft.com/speeches/bill-gates-keynote-microsoft-tech%E2%80%A2ed-2008-developers/
http://news.microsoft.com/speeches/bill-gates-keynote-microsoft-tech%E2%80%A2ed-2008-developers/
http://www.ensoftcorp.com
http://kcsl.ece.iastate.edu/linux-results/
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html

