
Human-Machine Resolution of Invisible Control
Flow?

Suresh Kothari∗, Ahmed Tamrawi∗ and Jon Mathews†
∗Iowa State University, †EnSoft Corp.

Ames, Iowa
∗{kothari,atamrawi}@iastate.edu, †jmathews@ensoftcorp.com

Abstract—Invisible Control Flow (ICF) results from dynamic
binding and asynchronous processing. For modern software
replete with ICF, the ability to analyze and resolve ICF is crucial
for verifying software. A fully automated analysis to resolve ICF
suffers from imprecision and high computational complexity. As
a practical alternative, we present a novel solution of interactive
human-machine collaboration to resolve ICF.

Our approach is comprised of interactive program analysis
and comprehension to systematically capture and link the clues
crucial for resolving ICF. We present the tool support we have
developed using the query language and visualization capabilities
of the Atlas Platform. We illustrate the approach using examples
where resolving ICF is crucial to verify software and show a
complex bug in the Linux kernel discovered by resolving ICF.

I. INTRODUCTION

Automated verification of software has been the holy grail
of software engineering research [1]. A fully automated anal-
ysis encounters NP hard problems with ICF as a major source
of difficulty. A recent review [2] points out the issues static
analysis and formal verification tools have in tackling ICF.
The ICF due to dynamic binding mechanisms such as func-
tion pointers can be resolved by automated pointer analysis.
However, due to imprecision of the analysis, it can lead to false
results. More expensive pointer analysis increases the cost
significantly without corresponding precision gains [3], [4].
The ICF due to aysnchronous processing cannot be discovered
by pointer analysis.

For even the fully automated analysis as implemented by
tools such as [5]–[9], human effort is necessary to cross-
check the analysis results. We advocate a different approach
by targeting automation to produce evidence for the human to
ensure correct resolution of ICF.

II. DYNAMIC BINDING ICF

The human-machine collaboration methodology for resolv-
ing ICF due to dynamic binding is illustrated with an example
drawn from the XINU operating system kernel.

XINU uses a pattern similar to a Dynamic Dispatch Ta-
ble (DDT) to organize function pointers for device drivers.

?This material is based on research sponsored by DARPA under agreement
numbers FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government. We thank our colleagues from
Iowa State University and EnSoft for their help with this paper. Dr. Kothari
is the founder President and a financial stakeholder in EnSoft.

Function pointers are organized in an array that acts as a
demultiplexer with the array index as the selector. Developers
use function pointers to call specialized methods for different
customizations of a single logical task. The unique ID for
a specialized method, passed as a parameter to the function
pointer call, is used as the array index into DDT to select the
target function. We illustrate the specific pattern in XINU, but
a similar pattern is used in other systems.

A representative case shown below is that of device drivers
with OPEN, READ, WRITE, CLOSE and other logical tasks to be
performed for different types of devices. A DDT pattern is
used to map each logical task to a specialized method for a
particular device type. For example, WRITE maps to dskwrite

or ttywrite for the disk or the terminal device type.

A. A Dynamic Binding Example
As shown in Figure 1, the situation is as follows:

1) Memory is allocated by invoking getbuf inside the func-
tion netin. The pointer packet to the allocated memory
is passed as the first parameter to the function arp_in.

2) Inside arp_in, the pointer (packet) is passed as the
second parameter to the function write.

3) Inside write, the pointer (packet) is passed as the second
parameter to a function called using a function pointer.

Fig. 1. Pointer to allocated memory passed to a function pointer call

A Memory Leak Verification Problem: Decide whether
the memory allocated in netin gets deallocated through the
function pointer call. A precise resolution of the function
pointer call is crucial to get the correct answer.

978-1-5090-1428-6/16/$31.00 ©2016 IEEE ICPC 2016, Austin, Texas 1

B. Human-Machine Collaboration for Dynamic Binding ICF

The machine performs automated analysis to produce results
that the human observes to decide the next analysis step.

1) The machine analyzes inter-procedural flow of the mem-
ory pointer starting from the allocation of memory inside
netin to the point in the function write where the
memory pointer gets passed as a parameter to a function
called using a pointer.

2) The human observes that the function pointer comes
from an array of pointers devtab[], indicating the DDT
pattern. The human observes that descrp, a parameter to
the function write is used as the array index to select
the function pointer. The human uses the machine to
perform reverse inter-procedural dataflow to get the value
of descrp.

3) The machine shows that the value of descrp is the
constant ETHER equal to 5.

4) The human uses the machine to finde the code that
initializes the array of function pointers devtab[] and
using the index 5 resolves the function pointer call to the
function ethwrite.

A completely automated pointer analysis to trace through
individual array elements is expensive, it does not work in all
cases, and its answer cannot be guaranteed to be correct. On
the contrary, the proposed human-machine collaboration does
not require much manual effort and the human can guarantee
its correctness by breaking down the problem into pieces that
are easy to understand and reason about.

Besides the DDT pattern, the human-machine collaboration
can be adapted to use other clues and the type signature
strategy [4]. In the above example, a clue for locating the
target function could be to look for functions that receive as the
second parameter a pointer to the structure epacket. Another
clue could be that the target function is named after the logical
task and thus it is likely to include write in its name. The Atlas
query language (Section IV-A) has the flexibility to express a
variety of such clues.

III. ASYNCHRONOUS ICF

The human-machine collaboration methodology for resolv-
ing ICF due to asynchronous processing is illustrated with an
example drawn from the XINU [10] oprating system kernel.

Asynchronous processing presents an even more difficult
case of ICF. Dynamic binding has at least a control flow
artifact, i.e. the function pointer call, as the point in program
where the control flow goes to a new method. Asynchronous
processing does not have any explicit control flow artifact;
the control flow changes are caused by external events such
as interrupts. These events can happen at any point in the
program. This makes it intractable for automated analyzers to
resolve ICF due to asynchronous control flows.

We present a human-machine collaboration strategy to
handle asynchronous ICF for the Matching Pair Verification
(MPV) problems which involve verifying the correct pairing of
two events on all possible execution paths. Specific examples
of such events can be: allocation and deallocation of memory,

locking and unlocking of mutex, or sensitive source and
malicious sink for a confidentiality breach.

We illustrate the strategy using an example of memory leak
verification problem from the XINU kernel. It involves the
classic producer-consumer pattern as follows. The producer
allocates the memory, the pointer to the allocated memory
is inserted in a globally shared linked list. The consumer
gets the pointer to the allocated memory from the linked list
and deallocates the memory. The producer and the consumer
work asynchronously. The consumer is interrupt-driven in the
following example of XINU disk driver.

A. An Asynchronous Processing Example

The situation is as follows:
1) Memory is dynamically allocated by invoking getbuf in-

side the function dswrite. The memory is allocated for a
structure of type dreq. The drptr pointer to the allocated
memory is passed to other functions and eventually it is
inserted in a globally shared linked list with the code
dsptr->dreqlst = drptr.

2) The function dsinter gets drptr, and deallocates mem-
ory with the code drptr = dsptr->dreqlst followed by
freebuf(drptr).

A Memory Leak Verification Problem: Decide whether the
memory allocated in dswrite gets deallocated.

The verification is intractable using just pointer and con-
trol flow analysis. Since the function dsinter is driven by
interrupts and not called anywhere in the code, control flow
analysis cannot reach dsinter. In fact, dsinter would appear
to be dead code. The pointer to the allocated memory is
inserted in a linked list, so it cannot be tracked individually
by pointer analysis. Automated memory leak analyzers declare
such asynchronous cases as memory leaks. Without tool sup-
port, it becomes difficult and time consuming for the human
to determine whether it is a false positive.

B. Human-Machine Collaboration for Asynchronous ICF

The real power of automation is the ability to build models
to solve complex problems. An automated tool can enable
modeling that is impossible to do by hand, because of the
enormous size of software. A model can be iteratively refined
to a point where the human determines it to be good enough
to reason about a given problem.

We illustrate here an iterative model refinement to reason
about the asynchronous ICF problem. The model is based on
the matching pair requirement. The starting point is the func-
tion dswrite which calls getbuf. The goal is to build a model
to find asynchronous functions that have the corresponding
freebuf call(s).

1) The machine analyzes the inter-procedural flow of the
memory pointer starting from dswrite to the point in the
function dskenq where the memory pointer is inserted in a
globally shared linked list with the code dsptr->dreqlst

= drptr. At this point, the human takes over.
2) The human reasons that the asynchronous functions must

call the deallocation function freebuf if it is not a

2

memory leak. To locate the asynchronous function, the
human decides to compute the Reverse Call Graph (RCG)
with getbuf and freebuf as the leaves.

3) The machine computes the RCG. The human notes that
the RCG is too big as it includes all allocations and
deallocations besides the type dreq for which memory
is allocated in dswrite. The human refines the search
model by restricting the RCG to functions that reference
structures of the type dreq. The resulting search model
is shown in Figure 2.

A complete verification involves examining the totality of
execution paths, which can be divided into two types: the
paths on which deallocation happens asynchronously and the
other paths where the pointer to the allocated memory is
passed through a call chain to the function that deallocates
memory. The model in Figure 2 reflects both types of paths.
It shows a call chain to dskopt which in turn calls freebuf to
deallocate the memory. The human can infer the asynchronous
deallocation from the model in Figure 2 by observing that the
function dsinter is not connected to dswrite by a forward or
a reverse call chain. Moreover, dsinter calls freebuf but not
getbuf. Based on the observation, the human can hypothesize
that freebuf in dsinter pairs with the getbuf in dswrite.
The human can validate the hypothesis by checking that inside
dsinter, the pointers are withdrawn from the global linked
list, the memory addressed by each pointer is deallocated, and
this happens until the linked list becomes empty.

Fig. 2. A model to locate asynchronous functions

.
IV. TOOL SUPPORT

We use the query language and the visualization capabil-
ities of Atlas [11], [12]. The Atlas queries are composable.
The result of a query can be stored in a variable and then

passed as an input to another query. Atlas uses the eXtensible
Common Software Graph (XCSG) as a common schema to
write language independent analyzers. Relationships (edges)
can be selected by keywords such as XCSG.Call in the Call
Graph (cg) function (Section IV-A). Readers can get more
information about XCSG and Atlas from [11], [12].

A. Query Language

We illustrate below the Call Graph (cg) and the Reverse
Call Graph (rcg) queries using the Atlas query language.

Call Graph Function
public Q cg(Q function){

return edges(XCSG.Call).forward(function);

}

The Reverse Call Graph (rcg) function is implemented as
above but change forward to reverse.

The search model, described in Section III-B, can be built
with the following sequence of queries:
1. var a1 = functions("getbuf");

2. var a2 = functions("freebuf");

3. var leaves = a1.union(a2);

4. var fullrcg = rcg(leaves);

5. show(fullrcg);
6. var dreq = Type("dreq");

7. var dreqrefs = ref(dreq);

8. var dreqroots = dreqrefs.root();

9. var restrictedrcg = graph(dreqroots,leaves);

10. show(restrictedrcg);

The graph query 9 induces a call graph with leaves as
the leaves and dreqroots as the roots as defined by the prior
queries 4 and 8 respectively.

B. SmartView Capability

In Atlas, a SmartView offers a way to interactively apply a
sequence of queries to a selection in source code or on a graph
produced by a previous query. Figure 3 shows the result of
applying the search model SmartView we implemented above
on a reference to drptr, a pointer to the type dreq.

Fig. 3. The search model invoked as a SmartView

3

As another example, we show the built-in dataflow
SmartView in Atlas. As noted earlier, the pointer to the
memory allocated in netin is passed as the second param-
eter to ethwrite, a function called using a function pointer.
Using the dataflow SmartView, Figure 4 shows the pointer to
allocated memory is passed from ethwrite to ethstrt, then it
is accessed by ethinter to deallocate memory. The pointer to
the allocated memory is received as a generic character pointer
by ethwrite and thus the type-based search model would not
locate ethinter. However, the dataflow model provides an
alternative. This examples shows that the flexibility to choose
an appropriate mode is crucial to circumvent difficulties en-
countered in fully automated analysis.

Fig. 4. The dataflow SmartView

.
V. A LINUX BUG

We present an example of a complex Linux bug we discov-
ered by resolving ICF. The lock and unlock are on disjoint
paths in the function drxk_gate_crtl (f1) and if C = true,
the lock occurs, otherwise, the unlock occurs. The lock and
unlock can match if f1 is called twice, first with C = true

and then with C = false. A quick query shows that f1 is not
called directly anywhere. Thus, it is either dead code or f1 is
called using a function pointer.

Resolving ICF due to function pointers as described ear-
lier, we find the situation shown in Figure 5. The function
tuner_attach_tda18271 (f2) calls the function f1 via func-
tion pointer. demo_attach_drxk sets the function pointer to
f1, the pointer is communicated by parameter passing to
dvb_input_attach, then to f2.

Fig. 5. Search model for drxk_gate_crtl after resolving calls via
function pointers

Recall that f1 must be called twice. The function f2 has a
path on which there is a return before the second call to f1

and thus it is a bug.

VI. CONCLUSION

The paper describes program comprehension techniques and
tool-support for cases of control behavior which are difficult to
predict automatically. The paper presents a part of our human-
in-loop program analysis research on DARPA APAC [13] and
STAC [14] projects. Besides the two ICF categories presented
in this paper, our ongoing research encompases other variants
of ICF such as the flows hidden due to APIs [15].

REFERENCES

[1] B. Gates, “Bill Gates Keynote: Microsoft Tech-
Ed,” 2008. [Online]. Available: http://news.microsoft.
com/speeches/bill-gates-keynote-microsoft-tech\%E2\%80\
%A2ed-2008-developers/

[2] Scheibner, “Control flow analysis of event-driven program,” https://
gnunet.org/node/2590.

[3] A. Milanova, A. Rountev, and B. G. Ryder, “Precise call graphs for c
programs with function pointers,” Jan. 2004, vol. 11, no. 1, pp. 7–26.

[4] D. Atkinson, “Accurate call graph extraction of programs with function
pointers using type signatures,” in Proceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC-2004). IEEE, 2004.

[5] Y. Xie and A. Aiken, “Saturn: A scalable framework for error detection
using boolean satisfiability,” ACM Trans. Program. Lang. Syst., vol. 29,
no. 3, May 2007.

[6] “Linux driver verification tool,” http://linuxtesting.org/ldv.
[7] “Clang static analyzer,” http://clang-analyzer.llvm.org/.
[8] Y. Sui, D. Ye, and J. Xue, “Detecting memory leaks statically with full-

sparse value-flow analysis,” Software Engineering, IEEE Transactions
on, vol. 40, no. 2, pp. 107–122, 2014.

[9] “Coverity static analysis,” http://www.coverity.com.
[10] “XINU,” http://en.wikipedia.org/wiki/XNU.
[11] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas: a new way

to explore software, build analysis tools,” in Companion Proceedings of
the 36th ICSE, 2014.

[12] “Ensoft corp.” http://www.ensoftcorp.com.
[13] “Automated Program Analysis for Cybersecurity (APAC),” https://www.

fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-11-63/listing.html.
[14] “Space/Time Analysis for Cybersecurity (STAC),” https://www.fbo.gov/

spg/ODA/DARPA/CMO/DARPA-BAA-14-60/listing.html.
[15] T. Deering, G. R. Santhanam, and S. Kothari, “Flowminer: Automatic

summarization of library data-flow for malware analysis,” in Information
Systems Security - 11th International Conference, ICISS 2015, Kolkata,
India, December 16-20, 2015, Proceedings, 2015, pp. 171–191.

4

