
Let’s Verify Linux: Accelerated Learning of Analytical
Reasoning through Automation and Collaboration∗

Suresh Kothari and Ahmed Tamrawi
Iowa State University

Ames, Iowa
{kothari, atamrawi}@iastate.edu

Jeremías Sauceda and Jon Mathews
EnSoft Corp.
Ames, Iowa

{pi, jmathews}@ensoftcorp.com

ABSTRACT
We describe our experiences in the classroom using the inter-
net to collaboratively verify a significant safety and security
property across the entire Linux kernel. With 66, 609 in-
stances to check across three versions of Linux, the naive
approach of simply dividing up the code and assigning it to
students does not scale, and does little to educate. However,
by teaching and applying analytical reasoning, the instances
can be categorized effectively, the problems of scale can be
managed, and students can collaborate and compete with
one another to achieve an unprecedented level of verifica-
tion.

We refer to our approach as Evidence-Enabled Collabo-
rative Verification (EECV). A key aspect of this approach
is the use of visual software models, which provide mathe-
matically rigorous and critical evidence for verification. The
visual models make analytical reasoning interactive, inter-
esting and applicable to large software.

Visual models are generated automatically using a tool we
have developed called L-SAP [14]. This tool generates an
Instance Verification Kit (IVK) for each instance, which con-
tains all of the verification evidence for the instance. The
L-SAP tool is implemented on a software graph database
platform called Atlas [6]. This platform comes with a pow-
erful query language and interactive visualization to build
and apply visual models for software verification.

The course project is based on three recent versions of
the Linux operating system with altogether 37 MLOC and
66, 609 verification instances. The instances are accessible
through a website [2] for students to collaborate and com-
pete. The Atlas platform, the L-SAP tool, the structured
labs for the project, and the lecture slides are available upon
request for academic use.

∗This material is based on research sponsored by DARPA under agreement numbers
FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889192

1. INTRODUCTION
With so much critical infrastructure depending on soft-

ware, the time has come to teach students the analytical
reasoning skills required to find software safety and security
problems.

The challenges of verifying our software infrastructure are
daunting, in part because of the complexity of the software,
but also due to the sheer volume of it. The Linux kernel
alone, which provides the basis for so many devices (web
servers, routers, smart phones, desktops), is over 12 MLOC.
How can anyone hope to verify this mountain of code?

And yet we must teach students to work with large soft-
ware. Teaching software engineering with toy examples is
akin to teaching skyscraper construction with bird houses:
the basic points can be illustrated clearly, but issues inherent
in large scale software are sorely missed.

With this in mind, we have created advanced algorithms
and tools for model-based reasoning in our DARPA research
on cybersecurity of large software. The technology from our
research is offered here to enable education to solve software
problems of size and complexity that are otherwise impossi-
ble to tackle in a classroom.

This paper presents a case study of a verification problem
characterized as Matching Pair Verification (MPV). MPV is
broadly applicable to memory leak, confidentiality leak, and
other safety and security vulnerabilities. The specific course
project we describe is to verify correct pairing, on all execu-
tion paths, of mutex lock and spin lock with corresponding
unlocks.

With 66, 609 verification instances to check inside 37 MLOC,
we cannot simply divide up the cases among the students.
Instead, we take an approach we call Evidence-Enabled Col-
laborative Verification (EECV). A key aspect of this ap-
proach is the use of visual software models, which provide
mathematically rigorous and critical evidence for verifica-
tion. These models are generated automatically, and always
include evidence which aids a human in verification. The
models are categorized in a way that causes irregular cases
to stand out, while making the code dependencies neces-
sary for further investigation immediately accessible. This
accomplishes several goals: it teaches the students what nor-
mal patterns of software architecture are, it allows them to
focus their auditing efforts on irregular instances, and, most
importantly, teaches them the analytical reasoning skills re-
quired to decide whether an instance is a bug or a feature.

As a direct result of this approach, we have discovered 8
synchronization bugs which have been reported to, and con-
firmed by, the Linux community. By using this approach in

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 394

the classroom, dozens of students sharpened their analytical
reasoning skills.

The paper is organized as follows. Section 2 provides
an overview of Evidence-Enabled Collaborative Verification
(EECV) and an EECV class project. Section 3 provides ex-
amples of structured labs that teach fundamentals of visual
models for intra-procedural and inter-procedural evidence.
Section 4 provides results from our case study reviewing the
Linux kernel. Section 5 provides an overview of the en-
abling technology of the graph database platform, the graph
schema and its use for creating visual models, and examples
of how visual models are created. Sections 6 and 7 describe
related work and the conclusion.

2. APPROACH OVERVIEW
This section provides an overview of the EECV approach:

visual models as verification-critical evidence, the L-SAP
tool, Internet-enabled collaboration, and the enabling tech-
nology to support analytical reasoning with large software.

Before going into an overview of our approach, we briefly
review the verification problems we address.

2.1 Matching Pair Verification (MPV)
We characterize MPV as the problems which involve ver-

ifying the correct pairing of two events on all possible exe-
cution paths. Specific examples of such events can be: allo-
cation and deallocation of memory, locking and unlocking of
mutex, or sensitive source and malicious sink of information
for a confidentiality breach in the context of cybersecurity.
In Section 4, we present examples from the verification of
locking and unlocking in the Linux kernel.

The major challenges in verifying an instance of an MPV
problem are: (a) inter-procedural complexity, e.g. tracking
relevant functions is crucial for completeness, but it is chal-
lenging because the control flow across functions may not
be explicit due to interrupts, multithreading, and function
pointers, (b) intra-procedural complexity, e.g. path-sensitive
analysis is crucial to avoid false negatives but such analy-
sis is challenging because the control flow paths proliferate
exponentially due to branch points, and (c) path feasibility
complexity, e.g. checking path feasibility is crucial to avoid
false positives but the feasibility check is challenging because
it involves the NP-complete satisfiability problem.

2.2 Evidence-Enabled Collaborative Verifica-
tion - Visual Models

The approach we use to verify MPV problems is Evidence-
Enabled Collaborative Verification (EECV).

EECV can be rigorous, computationally efficient, and au-
tomated enough to keep the human effort within reason-
able limits, but it does not have to be completely auto-
mated. The automation enables and simplifies human cross-
checking, which is especially important when the stakes are
high.

We present visual modeling as a medium for students to
understand and apply the fundamentals of data and control
flow analyses. The complexity of software is rooted in its
own version of the butterfly effect [7,11]. A small change at
one point can impact many parts of the software and cause
an unforeseen effect at a very distant point of the software.
This impact propagation is hard to decipher from software
viewed as lines of code; it makes program comprehension
and reasoning tedious, error-prone, and almost impossible

to scale to large software. A visual model makes impact
propagation explicit, amplifies and empowers human intelli-
gence to reason about large software.

Specifically, we will present two models: the Matching
Pair Graph (MPG) [8] for managing inter-procedural com-
plexity due to impact propagation, and the Event Flow
Graph (EFG) [15] (derived from the Control Flow Graph
(CFG)) for managing intra-procedural complexity of con-
trol flow paths explosion. Both models enable powerful pro-
gram analysis, reasoning, and visualization with an unprece-
dented level of interaction - which is important for students
to understand non-trivial program analysis and reasoning
concepts.

These concepts are implemented in our tool, L-SAP [14].

2.3 Internet-enabled Collaboration with L-SAP
The benefits of teaching students model-based reasoning

and collaborative verification are fairly easy to understand
in principle, but not easy to realize in practice. DARPA
funded research projects have enabled us to create robust
tools that enable our approach on large software.

2.3.1 Creating Verification Instances
The L-SAP tool breaks the verification problem into ver-

ification instances that get automatically posted on a web-
site [2] for collaboration and competition. L-SAP automat-
ically verifies as many instances as possible with a strong
inherent guarantee of correctness. The L-SAP verification
results fall into three categories:

• C1: the automatically verified instances with no viola-
tion,

• C2: automatically verified instances with one or more
violations shown by missing unlock(s) on feasible path(s),

• C3 the remaining instances where the verification is
inconclusive.

Each verification instance corresponds to a lock call site.
A lock call L(o) can be paired with an unlock call U(m) iff
the objects o and m are the same.
Instance Signature. We use the notion of a type-based
signature as an approximation to match the objects for the
lock and unlock. Signatures facilitate the computationally
efficient pairing algorithm implemented in L-SAP. They also
help analytical reasoning. The signatures work well in prac-
tice but it is not a perfect mechanism. The students must
watch for errors caused by imperfect signatures. Signatures
are commonly used in manual verification by experienced an-
alysts. L-SAP derives them automatically and offers them
as a part of the evidence.

The signatures work as follows. Consider the pointer P
given by the expression: (an · · · a3(.||->)a2(.||->)a1). In
this expression, P is being accessed through a chain of member-
selection C operators (. and/or ->). We define the hierar-
chal type for P as the tuple (Tan , · · · , Ta3 , Ta2 , Ta1), where
Tai denotes the type associated with the member ai. For
example, the hierarchal type for pointer x->y->z is given by
the tuple (X,Y, Z) where Tx = X,Ty = Y, and Tz = Z. For
a directly referenced pointer, the hierarchal type is the same
as its type. For example, the hierarchal type for pointer k is
Tk. The object signature (So) denotes: (1) the object (vari-
able) name if o is a global variable, and (2) the hierarchal

395

type of o otherwise. A lock call L(o) is mapped to unlock
call U(m) iff So = Sm.

2.3.2 Instance Verification Kit (IVK)
Verification instances are bundled into an IVK. The IVKs

are designed as a vehicle to integrate automation and hu-
man intelligence to solve the verification problem. The IVKs
are produced automatically and they provide verification-
critical, compact evidence for the human analyst to reason
with. Each IVK includes: (a) the source location of the
lock call, (b) the instance signature, (c) the source locations
of the paired unlock calls, and (d) the visual models MPG
(Section 3.2), CFG, and EFG (Section 3.3).

2.3.3 The Collaboration Website
We use a website [2] to make it easy for students to col-

laborate and compete. Figure 1 shows the hierarchy of the
generated website. Figure 1(a) allows the students to select
the Linux kernel version of interest. Figure 1(b) lists all
the spin and mutex lock calls and their source correspon-
dence for the selected version. Figure 1(c) displays the IVK
associated with each lock call.

Figure 1: IVKs website hierarchy

2.3.4 Classroom Workflow
In the first part of the project, each student team is as-

signed a subset of verification instances from each of the
above three categories. Their goal is to cross-check the re-
sults in categories C1 and C2.

The second part of the project is open-ended where each
team works on instances of their choice from category C3
to show that they can handle a wide spectrum of verifica-
tion challenges. For example, a challenge could be that the
function f with the lock call and the function g with a corre-
sponding unlock call are not connected by a call chain. This
can happen when g is called by an interrupt service routine.
The MPG (Section 3.2) and EFG (Section 3.3) reflect vari-
ous challenges and thus assist the students in selecting the
instances that cover a wide spectrum.

The third part of the project is to audit the verification
results posted by other teams using a specified standard for-
mat. Students audit the results for errors or incompleteness.
For example, an audit can find that the proof is incorrect
because the path feasibility check is wrong or the proof is
incomplete because the global variable through which the
lock object is communicated for asynchronous unlocking is
not identified.

2.3.5 Interactive Reasoning
For verifying the harder cases, interactive reasoning be-

comes especially important. Interactive reasoning can be
performed using visual models and their source correspon-
dence. The interactions can go from one visual model to
another one, go from a visual model node to its correspond-
ing source code, or go from source code to a corresponding
visual model. One can click on a function node in a visual
model (e.g., call graph (CG)) to open up the CFG for the
selected function in CG and observe the control flow paths
within the function. The CFG nodes correspond to state-
ments in the source code. One can click on a CFG node to
observe the corresponding source code. Similarly, one can
click on source code to invoke a corresponding visual model.

Atlas provides a shell and one can interactively query and
mine programs to gather additional evidence. For example,
the CG does not cover the functions that are called using
function pointers. While auditing a verification instance,
the students may suspect that the verification is incomplete
due to a function f missing in the CG because it may have
been called using a function pointer. The students can issue
queries to find such a function.

Atlas also provides Smart Views to provide instant feed-
back and interactive software graph visual models as the
student clicks on code artifacts or other visual models. A
number of out-of-the-box smart views are provided for com-
mon queries for building call graphs, data flow graphs, type
hierarchies, dependency graphs, and many other useful re-
sults. For example, when a student clicks on a function ei-
ther on a visual model or source code, the call graph smart
view (if selected) will instantly produce the call graph for
the selected function. The produced smart view appears on
a side tab that does not interfere with the student and keeps
him focused on the current task.

3. PREPARING THE STUDENTS
Before beginning the verification process, students go through

a series of structured labs designed to teach them the fun-
damentals of data and control flow analyses, and to under-
stand the MPG and EFG visual models in depth. It is easy
to use the visual models mechanically but that would be
somewhat like using a calculator without understanding ad-
dition. The visual models involve non-trivial abstractions
derived by combining graph theory and program analysis,
thus it is critical that the students understand the models
before applying them.

For the labs, we use XINU [3], a small operating system
with about five thousand lines of code and 200 functions.
XINU is complex enough to bring out key verification chal-
lenges. The labs bring out various challenges for pairing
a memory allocation call with a corresponding deallocation
call. In XINU, getbuf and freebuf are respectively the
allocation and the deallocation functions.

The starting point is the dswrite function shown in Fig-
ure 2(a)). Function dswrite calls getbuf but it does not call
freebuf. The verification problem is to match the getbuf

call in dswrite with the corresponding freebuf call(s).

3.1 Motivating the use of Visual Models
We will discuss an example that motivates the use of

MPG. As seen from the dswrite code shown in Figure 2(a),
dswrite calls and passes the allocated memory pointer drptr

396

Figure 2: The importance of evidence to reason about the possibility of a memory leak in the function dswrite

to function dskenq. So, function dskenq (Figure 2(b)) must
be examined. The function dskenq introduces difficult veri-
fication challenges.

As shown in Figure 2(b), dskenq has four paths. In path
1: drptr is passed to function dskstrt which does not free
the allocated memory. But, we cannot conclude that it is
a memory leak because on the same path drptr is assigned
to dsptr->dreqlst where dsptr (passed as a parameter to
dskenq from dswrite) points to a global data structure. In
path 2: drptr is passed to function dskqopt. In paths 3
and 4: drptr is assigned to q->drnext and earlier q is set to
points to dsptr->dreqlst. Thus, on three paths (1, 3 and
4) the allocated memory is not freed but the pointer to the
allocated memory becomes accessible through a global data
structure.

Since the pointer to the allocated memory gets passed
as a parameter to other functions, the call chains must be
tracked. Moreover, one path in dswrite multiplies into 4
paths in dskenq and the path proliferation continues through
functions down the call chain. Tracking the call chains and
the proliferation of paths gets tedious and challenging. It is
most challenging when the pointer to the allocated memory
is assigned to a global variable. Then, any other function
could free the memory. It is then a huge verification chal-
lenge to figure out the relevant functions. To make matters
worse, these relevant functions may operate asynchronously
and thus we cannot reach them following a call chain. There
is a dire need to assist the human analyst to address this
difficulty. The MPG comes to rescue here by providing the
crucial evidence to figure out the relevant functions.

3.2 MPG for Inter-procedural Evidence
We have a structured lab to teach how the Matching Pair

Graph (MPG) [8] serves as valuable evidence and simplifies
the human effort. By design, the MPG is a directed graph
with edges representing function calls and the roots of MPG
are asynchronous functions; they either belong to different
threads or some of them may be called through interrupts.
From the several hundred XINU functions, the MPG shown
in Figure 2(c) has narrowed down the relevant functions to
6.

Besides producing a small set of functions, the MPG (Fig-
ure 2(c)) provides other very valuable pieces of evidence.
The MPG shows a call chain from dswrite to freebuf which
indicates the possibility of execution paths on which the
pointer to the allocated memory is passed as a parameter,

eventually to function dskopt which deallocates the mem-
ory. More importantly, the MPG includes dsinter function
which turns out to be a very important clue. dsinter is not
connected to dswrite by forward or reverse call chains.

Strangely, dsinter calls freebuf but not getbuf, which
is actually a critical clue. The student can hypothesize that
freebuf in dsinter can potentially pair with the getbuf

in dswrite. The student can also observe that dsinter

and dswrite must operate asynchronously and communicate
through a global data structure D because the two functions
are roots of the MPG. To prove the hypothesis, the student
must identify the global structure D and complete the veri-
fication. The student has a good suspect for D, namely the
data structure to which the allocated memory pointer drptr
is assigned. This makes it easy for the student to complete
the verification.

This example illustrates how the MPG can be of tremen-
dous assistance for analytical reasoning. The example presents
a case not amenable to automation because of asynchronous
processing. An automated pointer analysis would also hit
a barrier in this example because the allocated memory
pointer drptr is inserted in a global linked list D. dsinter
draws the pointers from the global list and frees the memory
for each pointer. And the fact that it does so until the list
becomes empty shows that it is not a memory leak.

This is not a wayward example. It stems from the well-
known producer-consumer pattern [16], a classic example of
a multi-process synchronization.

3.3 EFG for Intra-procedural Evidence
We have a structured lab to teach how the Event Flow

Graph (EFG) [15] addresses the challenges of: (a) an expone-
ntially-increasing number of paths in a control flow graph
(CFG), and (b) checking feasibility of paths in a CFG. EFG
addresses these challenges by introducing an equivalence re-
lation on the CFG paths to partition them into equivalence
classes. It is then sufficient to perform analysis on these
equivalence classes rather than on the individual paths in
a CFG. The EFG has two major advantages over its cor-
responding CFG: (a) although the number of paths in a
CFG can be exponentially large, the essential information
to be analyzed is captured by a small number of equivalence
classes, and (b) checking path feasibility becomes simpler.

The EFG is a compact derivative of its corresponding
CFG. Each path in the EFG represents an equivalence class
of paths in the CFG. The EFG is defined with respect to

397

events relevant to the verification. The equivalence classes
are thus guaranteed to preserve all the event traces in the
original CFG. In dswrite example, the events relevant to the
verification include allocation and deallocation (getbuf and
freebuf) calls, passing the pointer to the allocated memory
(e.g., dskenq(drptr)), and assigning the pointer to the al-
located memory to another variable (e.g., dsptr->dreqlst
= drptr).

The EFG for the function dskenq is shown in Figure 3.
As shown in Figure 2(b), dskenq has four paths to exit the
function. All four paths are retained in the EFG because
each of these paths has a unique sequence of events relevant
to the verification.

Figure 3: EFG for the function dskenq

Figure 4 shows an example of a CFG and its correspond-
ing EFG. The EFG is constructed with respect to lock and
unlock events which are relevant to verify the correct pair-
ing of lock and its corresponding unlocks on all execution
paths. This example illustrates how the EFG can greatly
simplify the verification task. The EFG has only one path
corresponding to the CFG paths that contain the same se-
quence of events relevant to the verification. The CFG in
Figure 4(a) has 5 branch nodes resulting in 8 paths after the
lock. Some of these paths go through a complex loop with
two exits. The 4 out of 5 branch nodes are irrelevant to the
verification because all the paths branching from them lead
to the unlock and are thus equivalent. These 4 branch nodes
get eliminated in the EFG and the 7 paths are represented
by a single path in the EFG. Thus, the EFG simplifies the
verification task by compacting the CFG.

The EFG also simplifies the path feasibility check. As seen

Figure 4: CFG and EFG for the function
hwrng_attr_current_store

from the EFG in Figure 4(b), there is a path with missing
unlock and the feasibility of that path must be checked. If
feasible, it is a violation otherwise the particular instance
of the lock is correctly verified. The EFG has retained only
the condition that is necessary to verify the path feasibility,
the other 4 conditions from the CFG are not retained in
the EFG. The student can easily cross-check the verification
by observing that if the lock is granted then the particular
condition is false. So, the true path in Figure 4(b) is not
feasible and thus it is not a violation.

3.4 Learning MPG Fundamentals
The purpose of this structured lab is to teach students the

theory behind MPG and relate it to the fundamentals of data
and control flow analyses. The students gain an hands-on
experience in evolving ideas that culminate in MPG. The
students use the Atlas query language to implement the
ideas and visualize the results. We have evolved the con-
cept of MPG from our previous work [8] where it was first
introduced.

As we observed from the dskwrite and dskenq code ex-
amples, the matching freebuf call(s) can exist in many dif-
ferent functions and somehow the pointer to the allocated
memory is communicated to these functions. The MPG is
essentially the collection of these functions and others that
communicate the pointer. The MPG is an efficient mech-
anism that gathers for a particular lock call, all functions

398

that should be examined, and it does so all at once without
requiring an analyst to traverse through each function.

Students learn the different ways functions communicate
through: parameters, return, and global variables. If it was
only through parameters, the functions could be gathered
by going through the call tree. But because of the other two
modes of communication, the call tree is not enough.

Students are then taken through a progression of ideas
from the paper [8] to arrive at a good notion of MPG. The
first idea is the reverse call graph (rcg) of the functions:
getbuf and freebuf. The next refinement is an induced
subgraph of the rcg to include only the functions that read
or write to dreq, the type of the structure for which the
memory is allocated. The next refinement is yet another
induced subgraph that separates dswrite from the other
functions that also allocate memory for structures of type
dreq. It is easy to construct these refined models using a
conceptual sequence of queries:

(Q1) var m1 = rcg(getbuf, freebuf); - rcg is stored in
variable m1.

(Q2) show(m1) - shows the rcg visual model.

(Q3) var temp = ref(dreq); - temp captures the functions
that read or write to dreq.

(Q4) var m2 = m1.intersection(temp); - m2 is the second
refined model.

(Q5) show(m2) - shows the refined visual model.

Figures 5(a) and (b) show the visual models produced
by queries Q2 and Q5. Producing the third refined model
(Figure 5(c)) requires a little more work which is left as an
exercise for students.

Figure 5: A progression of models leading to MPG

While conceptual queries serve the purpose of communi-
cating ideas, it is far easier for students to learn if they can
execute the queries, observe the results, and learn through
experiments. This is the topic of Section 5 where we discuss
Atlas [6], the graph database platform. The above queries
can be executed using Atlas.

3.5 Lessons from the Labs
The labs bring out two important barriers to understand

why complete automation is not a practical solution to solve
complex software problems. First, it is a control flow chal-
lenge because there may not be a control flow path to reach
relevant functions. In the lab example, the relevant function
dsinter is interrupt-driven and it cannot be reached from
dswrite using control flow analysis. Second, it is a data
flow challenge because an automated pointer analysis hits a
barrier when the pointer to the allocated memory is inserted
in a linked list.

While the students understand the fundamental data and
control flow barriers to achieve complete automation, they
also see how automatically generated visual models empower
analytical reasoning to achieve sound and complete verifica-
tion. The analytical reasoning and refining ideas through ex-
periments are valuable for forming a lifelong learning habit.
Specifically, the students learn:

• The call graph is neither sufficient nor necessary as a
set of relevant functions for the verification.

• The reverse call graph, with matching pair events (e.g.,
lock and unlock calls) as leaves, is sufficient as a set
of relevant functions for the verification. However, it
would include many irrelevant functions and thus it is
not efficient.

• Inter-procedural analysis must account for the follow-
ing mechanisms for communicating the pointer to the
allocated memory from one function to another: the
pointer is (i) passed as a parameter, (ii) passed as a
return, and/or (iii) assigned to a global.

• The type of the structure for which the memory is allo-
cated can be used as a good approximate constraint to
limit the set of functions for verification. For example,
a candidate for MPG could be the reverse call graph
but restricted to the set of functions that read and/or
write to the structure type for which the memory is
allocated.

• The notion of event traces relevant to the verification
and the EFG as a compact form of CFG to capture
those event traces efficiently.

4. LINUX CASE STUDY RESULTS
The results in this section provide quantitative and qual-

itative assessments to evaluate how EECV has worked in
practice. The case study is based on EECV projects in
a senior undergraduate course and a graduate course. We
present examples of verification instances from the three re-
sult categories (C1, C2 and C3 in Section 2.3.1) to give a
qualitative sense of how the automatically generated evi-
dence simplifies the verification task

4.1 Quantitative Assessment
We have applied L-SAP [14] to produce IVKs for three re-

cent versions (3.17-rc1, 3.18-rc1, and 3.19-rc1) of the Linux
kernel totalling > 37 MLOC. L-SAP is fast and scalable,
and it is able to accurately pair 66, 151 (99.3% of the total)
locks in 3 hours. To date no errors have been discovered
through manual cross-checks of these results. The verifica-
tion instances and the IVKs are available at the website [2].

399

4.1.1 Quantitative Assessment of Visual Models
The visual models are meant to produce evidence to re-

duce the burden on the human analyst. Optimizing the
visual models is crucial for reducing the human effort. For
example, without a good optimization, the MPG could have
too many irrelevant functions. The larger the MPG the more
the burden on the human analyst.

There is one MPG per lock. The average MPG size (the
number of nodes in the MPG without the lock and unlock
function nodes) over all the 66, 609 locks is 1.3 with the
maximum MPG size of 40 in case of one lock. The MPG
size is one (i.e., only intra-procedural verification is needed)
for 62, 663 locks. The manual cross-checks revealed 161
cases where the MPG points to missing evidence, i.e. some
functions relevant for verification are not included in MPG.
In most of these case, relevant functions are missing from
the MPG because they are called using function pointers.
These cases happen because our current implementation of
MPG does not take into consideration calls through function
pointers. The L-SAP tool could be improved to process at
least some cases of function pointers automatically. Later
in Section 4.3.2, we present an example of how the students
can augment the MPG and complete the verification by is-
suing queries to gather the missing functions called through
function pointers.

There is one EFG per function. The larger the EFG the
more the burden on the human analyst. The average EFG
size (the number of nodes in the EFG without the unique
entry/exit nodes) over the 55, 215 functions is 4. The max-
imum EFG size is 63 for function wsm_set_edca_params.

The reductions from CFGs to EFGs are particularly im-
portant for complex CFGs, and especially for CFGs with a
large number of branch nodes. Table 1 lists the reductions
for the ten functions, from the 55, 215 relevant functions in
all MPGs, with the largest number of branch nodes in their
CFGs. For example, for function dst_ca_ioctl the reduc-
tions from CFG to EFG are: from 349 to 2 nodes, from 518
edges to only one edge, and from 163 to no branch nodes.

Table 1: A comparison of CFG vs. EFG

Function Name
Nodes Edges Branch Nodes

CFG EFG CFG EFG CFG EFG

client_common_fill_super 1,101 15 1,179 28 249 13

kiblnd_create_conn 731 18 925 34 197 15

CopyBufferToControlPacket 392 20 559 39 180 18

kiblnd_cm_callback 662 38 831 56 170 15

kiblnd_passive_connect 622 22 784 44 164 20

dst_ca_ioctl 349 2 518 1 163 0

qib_make_ud_req 621 10 821 15 156 5

cfs_cpt_table_al 522 7 672 13 153 6

private_ioctl 569 16 732 24 148 8

vCommandTimer 490 47 623 75 143 28

4.1.2 Manual Effort
The manual cross-check of automatically verified instances

with no violation (category C1) took on average 2 minutes
per instance. For the remaining instances (categories C2 and
C3), the manual verification using the visual models took on
average 8 minutes per instance with the maximum time of
30 minutes for a few difficult instances.

4.2 Qualitative Assessment of Evidence
We present examples of verification instances to give a

qualitative sense of the human effort and how the MPG and

EFG are used.

• Cross-checking: In Section 4.2.1, we present an ex-
ample to give a qualitative sense of the human effort to
cross-check an automatically verified inter-procedural
instance with no violation (category C1, 99.3% instances).
The example shows how the MPG and EFG can be
used for cross-checking.

• Signature Issue: In Section 4.2.2, we show an exam-
ple of miss-reported bug. In this example, the L-SAP
tool fails to analyze an instance correctly because the
signature is the same for two consecutive locks without
an unlock in-between. In reality, the two locks operate
on different objects. After a manual examination of
verification instances related to signature problem, we
have found cases difficult to fix by improving automa-
tion. For example, an array of pointers to different
mutex objects of the same type is a difficult case to
solve by automation.

• EFG Points to Missing Evidence: In Section 4.2.3,
we present an example of an EFG that points to miss-
ing evidence. In this example, the missing evidence
is a lock that occurs before a loop. The loop has an
unlock followed by another lock. On entering the loop,
the unlock is unpaired unless the loop is preceded by
another lock.

• MPG Points to Missing Evidence: This is the
case where function f has an unlock without a lock
preceding it. Thus, one expects the MPG of f to con-
tain a parent function g which has a lock and a call
edge from g to f. As discussed in Section 4.1.1, the
current implementation of MPG does not include such
a parent function. This leads one to hypothesize that
the parent function g exists but the call is via a func-
tion pointer. In this case, the student can use the Atlas
query language to search for g that calls f using a func-
tion pointer. After finding g, the student can complete
the verification. This is an interesting case that leads
to a bug discovery.

In all these cases, the evidence provides valuable clues
to identify the issues and empowers analytical reasoning to
either correct or complete the verification.

4.2.1 Example 1
The example shows how easy it is to cross-check an auto-

matically verified instance. Figure 6 shows the visual models
for a lock that L-SAP has reported to be correctly matched.
Figure 6(a) shows the MPG for the lock in the function
hso_free_serial_device. Figures 6(b) and 6(c) show the
EFGs for the MPG functions hso_free_shared_int and
hso_free_serial_device, respectively.

In this example, it is easy to observe from the EFG of func-
tion hso_free_serial_device that the lock is followed by a
branch node with two paths: (1) one path leads to a match-
ing unlock (intra-procedural), and (2) the other path leads to
a call to function hso_free_shared_int (blue-colored node).
The EFG of the called function hso_free_shared_int (Fig-
ure 6(b)) shows a matching unlock on all paths within the
called function. This evidence simplifies the inter-procedural
cross-check to conclude that the automatic verification is
correct.

400

Figure 6: Visual models for an automatically verified
instance

4.2.2 Example 2
In this example, L-SAP reports a deadlock because a lock

is followed by another lock with the same signature. L-SAP
deems the two objects to be the same because they have
identical signatures. In reality, the two objects are different
but L-SAP lacks a refined notion of signature to distinguish
them.

Figure 7 shows the EFG for function ucma_lock_files.
The EFG shows a lock immediately followed by another lock.
It represents either an inadvertent coding error or a mistaken
identity for two locks that are different but have the same
signature. Here, the source correspondence is important to
resolve the matter. By clicking on each lock call, one can
find that the two locks operate on different objects. There
are 82 instances with this issue.

Figure 7: The EFG for function ucma_lock_files

shows incorrect automatic verification

4.2.3 Example 3
This example shows how an EFG may point to an unusual

situation and it is not difficult to verify through human in-
tervention.

Figure 8(a) shows the MPG for the lock in the function

destroy_async and Figure 8(b) shows the EFG for function
destroy_async. The EFG shows that the lock is matched
correctly with the two unlocks on two paths. However, there
is a dangling unlock upon the entry to the loop. This points
to the possibility of a lock before the loop. If such a lock
is there then the verification is complete with no dangling
unlock. The students need to realize that the lock before the
loop would have its own verification instance. They need to
look for that lock and its verification instance and verify
it correctly. Actually, L-SAP works correctly in this case
but the students get confused by the dangling unlock they
observe in the EFG.

Figure 8: EFG points to a missing lock preceding a
loop

4.3 Examples of Bugs Discovered

4.3.1 A missing unlock
Figure 9 shows the visual models for a discovered bug.

This bug was discovered automatically by L-SAP and then
cross-checked manually. Figure 9(a) shows the MPG for the
lock in the function toshsc_thread_irq. Figure 9(b) shows
the EFG for toshsc_thread_irq.

Figure 9: A bug discovery using visual models

The EFG for toshsc_thread_irq shows a path on which
the lock in not followed by an unlock. As seen from the
EFG, the path is feasible if the boolean expression (C1C2)
is true. To complete the verification, the student must verify

401

that the boolean expression is satisfiable and concludes that
the automatically reported violation is indeed a violation.
This bug was reported to the Linux organization and it is
fixed.

4.3.2 An instance with a function pointer
This example brings out interactive reasoning where the

querying capability in Atlas is crucial. The MPG points to
the possibility of functions relevant to the verification, but
may be missing because they may have been called using
function pointers. The querying capability is needed to find
these functions.

Figure 10 shows the visual models for the lock in func-
tion drxk_gate_crtl reported as unpaired by L-SAP. Fig-
ures 10(a), (b) and (c) show the MPG, EFG, and CFG.
The MPG shows that function drxk_gate_crtl calls lock
and unlock, however, the EFG shows that the lock is not
matched by an unlock. The corresponding CFG shows why
they are not matched. The lock and unlock are on disjoint
paths: if C = true, the lock occurs, otherwise, the unlock
occurs.

Figure 10: Visual models for drxk_gate_crtl pointing
to presence of calls via function pointers

The lock and unlock on disjoint paths could match if
drxk_gate_crtl is called twice, first with C = true and
then with C = false. This amounts to using drxk_gate_crtl

first as a lock and then as an unlock. A quick query shows
that drxk_gate_crtl is not called directly anywhere. Thus,
it is either dead code or drxk_gate_crtl is called using a
function pointer. It is apparent that the evidence in this ex-
ample is not sufficient, however, it gives the students valu-
able clues to start with.

As shown in Figure 10, function tuner_attach_tda18271

calls drxk_gate_crtl via function pointer. demo_attach_drxk
sets the function pointer to drxk_gate_crtl, the pointer is
communicated by parameter passing to dvb_input_attach,
then to tuner_attach_tda18271. Figure 11 shows the re-
fined MPG after it is augmented with these functions newly
discovered by human intervention.

This interactive reasoning for discovering the functions
called via function pointers can be conducted visually using
Atlas. The queries amount to asking the following questions:

1. What are functions that set function pointers to func-
tion drxk_gate_crtl?

Figure 11: The augmented MPG for drxk_gate_crtl

after resolving calls via function pointers

2. What are the functions that communicate the function
pointer?

3. What are the functions that invoke calls via the func-
tion pointer?

We found a bug while working on this instance. Recall
that drxk_gate_crtl must be called twice; first it acts like
a lock and then as an unlock. There is a path on which there
is a return before the second call and thus a bug because the
second call for unlocking does not happen on that return
path.

5. GRAPH DATABASE PLATFORM AND VI-
SUAL MODELING

Visual models such as the MPG are crucial to empower
human intelligence. These models reveal that the knowledge
is hard to decipher from bare lines of code. Program min-
ing and modeling tools are critically important for building
such models. The models represent software in a way that
enables powerful program analysis and reasoning. The same
representation also enables visualization with an unprece-
dented level of interaction - which is important for students
to understand non-trivial program analysis and reasoning
concepts.

We have designed a graph database platform called At-
las [1, 6]. The database is used to store program artifacts.
Atlas provides a query language to mine programs and build
visual models. Currently, Atlas supports Java, Java byte
code, and C. Atlas is available as an Eclipse plug-in. It
has a graphical query language for constructing and analyz-
ing visual models of software. The queries can be written
in Java and packaged in Eclipse plug-ins as extensions to
the platform, or executed using an interactive shell. Atlas
builds a graph database of relationships between program
artifacts. The user can issue queries against this database
and the results are shown as visual models. The queries are
composable. The result of a query can be stored in a variable
and then passed as an input to another query. The Atlas
platform has some built-in graph algorithms to transform
and traverse graph models to serve as building blocks.

Atlas provides a rich API for writing queries to mine soft-
ware and create visual models. The API provides capa-

402

bilities for selecting, traversing, refining graphs to improve
accuracy of analyses, and constructing subgraphs from the
universe software graphs initially created by Atlas using a
host of static analyses. Using the Atlas API, it is possible
to write powerful analyzers in minutes or hours that would
otherwise take weeks or months to write. For example, the
function cg for constructing a call graph can be written with
just two lines of code.

A function to construct call graph using Atlas APIs:
public Q cg(Q function){

return edges(XCSG.Call).forward(function)

}

The eXtensible Common Software Graph (XCSG) schema
includes several relationships (edges) which can be selected
by other keywords in place of XCSG.Call as shown in cg.
Through the ongoing research funded by the DARPA STAC
program, we are advancing XCSG as a common schema to
write language independent analyzers. So, functions such as
cg can work for different programming languages.

Readers can get more information about XCSG and Atlas
from the papers [6, 9] and the website [1].

6. RELATED WORK
The papers on teaching model-based software engineer-

ing [4, 5, 12] are typically either about formal methods or
about UML modeling. Our primary goal is to teach problem-
solving with large and complex software with visual models
as a practical way to abstract a variety of software prob-
lems. The formal models or the UML models focus on teach-
ing specific modeling methods and they require a significant
amount of upfront time to teach modeling techniques. UML
is a language independent notation for modeling software
structure and behavior. XCSG, the graph schema for visual
models, could be described that way, but there are signifi-
cant differences. Broadly, XCSG is representing the details
of the implementation, and follows the syntax of the lan-
guage more closely, and merges concepts common across
languages. If a student is familiar with Java syntax, the
correspondence to XCSG becomes clear through interaction
with the visualization, so explicit education about XCSG
itself is less necessary.

Kramer in [10] has called abstraction the “key skill” in
computing. Roberts in [13] emphasizes the use of models to
remove unnecessary details and to generalize concepts and
find patterns. As we have discussed earlier, this paper em-
phasizes on the use of visual models to provide abstractions
by removing unnecessary details to amplify and empower
human knowledge to cope with large software.

7. CONCLUSION
This paper proposes EECV as a vehicle to teach analyt-

ical reasoning in the context of software engineering. It
summarizes a project to teach and conduct collaborative
verification in a classroom setting. It describes labs to get
students over the hump of abstraction and realize how mod-
eling can be interesting and useful. Taught in this way, mod-
eling can transcend software engineering and help students
learn how to think clearly and effectively using mathematical
abstractions. We have taught this material to undergrad-
uate and graduate students at Iowa State University and
through workshops to undergraduate students and teach-

ers in India. We have received many comments through
course and instructor evaluation forms indicating that the
students found this topic thought provoking and useful. We
also offer parts of this material through tutorials at confer-
ences including: Automated Software Engineering (ASE),
International Symposium on Software Reliability (ISSRE),
International Conference on Information Systems Security
(ICISS), and the Premier International Conference for Mil-
itary Communications (MILCOM). The paper provides a
website [2] to the IVKs for three recent Linux versions used
in the class projects. The Atlas platform, the L-SAP tool,
the structured labs for the project, and the lecture slides are
available upon request for academic use.

8. REFERENCES
[1] Ensoft corp. http://www.ensoftcorp.com.
[2] Linux results. http://kcsl.ece.iastate.edu/linux-results/.

[3] XINU. http://en.wikipedia.org/wiki/XNU.

[4] P. J. Clarke, Y. Wu, A. A. Allen, and T. M. King.
Experiences of teaching model-driven engineering in a
software design course. In Online Proceedings of the 5th
Educators’ Symposium of the MODELS Conference, pages
6–14, 2009.

[5] A. J. Cowling. Modelling: a neglected feature in the
software engineering curriculum. In Software Engineering
Education and Training, 2003.(CSEE&T 2003).
Proceedings. 16th Conference on, pages 206–215. IEEE,
2003.

[6] T. Deering, S. Kothari, J. Sauceda, and J. Mathews. Atlas:
a new way to explore software, build analysis tools. In
Companion Proceedings of the 36th International
Conference on Software Engineering, pages 588–591. ACM,
2014.

[7] J. Gleick and R. C. Hilborn. Chaos, making a new science.
American Journal of Physics, 56(11):1053–1054, 1988.

[8] K. Gui and S. Kothari. A 2-phase method for validation of
matching pair property with case studies of operating
systems. In Software Reliability Engineering (ISSRE), 2010
IEEE 21st International Symposium on, pages 151–160.
IEEE, 2010.

[9] B. Holland, T. Deering, S. Kothari, J. Mathews, and
N. Ranade. Security toolbox for detecting novel and
sophisticated android malware. ICSE, 2015.

[10] J. Kramer. Is abstraction the key to computing?
Communications of the ACM, 50(4):36–42, 2007.

[11] E. N. Lorenz. Deterministic nonperiodic flow. Journal of
the atmospheric sciences, 20(2):130–141, 1963.

[12] L. Pareto. Teaching domain specific modeling. In
Symposium at MODELS 2007, page 7, 2007.

[13] P. Roberts. Abstract thinking: a predictor of modelling
ability? 2009.

[14] A. Tamrawi and S. Kothari. L-SAP: Scalable and Accurate
Lock/Unlock Pairing Analysis for The Linux Kernel.
Submitted to ACM Transactions on Software Engineering
and Methodology.

[15] A. Tamrawi and S. Kothari. Event-flow graphs for efficient
path-sensitive analyses. arXiv preprint arXiv:1404.1279,
2014.

[16] A. S. Tanenbaum and H. Bos. Modern operating systems.
Prentice Hall Press, 2014.

403

