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ABSTRACT
With growing dependence on software in embedded and
cyber-physical systems where vulnerabilities and malware
can lead to disasters, efficient and accurate verification has
become a crucial need for safety and cybersecurity. Formal
verification of large software has remained an elusive tar-
get, riddled with problems of low accuracy and high com-
putational complexity [9, 11, 16, 18]. The need for automat-
ing verification is undoubted, however human is indispens-
able to accurate real-world software verification. The au-
tomation should actually enable and simplify human cross-
checking, which is especially important when the stakes are
high. This technical briefing discusses the challenges of cre-
ating a powerful fusion of automation and human intelli-
gence to solve software verification problems where complete
automation has remained intractable. We will contrast with
existing software verification approaches and reflect on their
strengths and limitations as a human-machine collaboration
framework and outline key software engineering research and
practice challenges to be addressed in the future.

1. INTRODUCTION TO THE TOPIC
The challenges of verifying our software infrastructure are

daunting, in part because of the complexity of the software,
but also due to the sheer volume of it. The Linux kernel
alone, which provides the basis for so many devices (web
servers, routers, smart phones, desktops), is over 12 MLOC.
How can we verify this mountain of code?

Formal verification has been the holy grail of software
engineering research [13]. Automated software verification
methods have led to advances in data and control flow anal-
yses, and applications of techniques such as Binary Decision
Diagrams (BDDs) to analyze large software [15]. However,
there are two fundamental limitations: (A) a completely
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automated and accurate analysis encounters NP hard prob-
lems, and (B) formal verification methods work mostly as
automated black boxes with little support for cross-checking [2,
3, 5, 17,19].

This technical briefing is about targeting automation to
amplify human intelligence to scale it to large software. It
projects the Intelligence Amplification (IA) vision propounded
by Frederick Brooks [10]: “If indeed our objective is to build
computer systems that solve very challenging problems, my
thesis is that IA > AI, that is, that intelligence amplifying
systems can, at any given level of available systems technol-
ogy, beat AI systems. That is, a machine and a mind can
beat a mind-imitating machine working by itself.”The brief-
ing will highlight the new frontier of software verification
to ensure safety and security of critical software systems.
It will bring out the key software verification research and
practice challenges to be addressed in the future.

2. RELEVANCE TO SOFTWARE
ENGINEERING COMMUNITY

The Intelligence Amplification vision is especially relevant
in the context of software verification for cybersecurity and
safety, where the the verification problems are extremely
challenging for either the human or the machine to solve,
and failures have catastrophic consequences. With this in
mind, the recent DARPA STAC Program [6] for side chan-
nel and algorithmic complexity vulnerabilities calls for au-
tomated tools for human-in-the-loop software verification.
With this briefing, researchers will benefit from an overview
of the state-of-the-art research in this area while practition-
ers will benefit from an overview of the existing set of tools
and techniques and their maturity for handling these chal-
lenges. Both audiences will benefit from discussion of open
problems and the challenges as well as the opportunities they
present for next generation software verification approaches.

3. TECHNICAL BRIEFING TOPIC
The briefing will discuss key challenges for an integrated

human-machine approach to software verification from the
following perspectives: (a) Human-Machine Collaborative
Verification, (b) Evidence and Concept Empowered Verifi-
cation, and (c) Interactive and Programmable Verification.
Human-Machine Collaboration: The machine and hu-
man have different strengths and weaknesses to complement
each other. Verifying software for safety and cybersecu-
rity vulnerabilities can be like looking for the needle in the
haystack, not knowing what the needle looks like. The vul-
nerabilities must be hypothesized before they can be verified.
The hypothesis is best originated from a human leveraging
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the domain knowledge, but the human requires help from
the machine to comb through large software to develop a hy-
pothesis and then prove or reject it. The hypothesis would
be in the form of a well-defined property (e.g., specification
of a sensitive information leak) which can either be proved
automatically or by a combination of human reasoning and
automated analysis [14].
Evidence and Concept-Empowered Verification: The
verification should be automated wherever possible, and com-
plemented by human reasoning wherever needed. This calls
for a mathematically rigorous notion of evidence that the
machine generates to help the human to: (a) cross-check an
automatically verified instance, and to (b) complete the ver-
ification where automation falls short. The evidence should
reflect the hardness of each instance. For example, a recent
version of Linux has more than 22 thousand instances of
mutex and spin LOCK instances. The hardness of verifying
that a LOCK is followed by an UNLOCK varies significantly
among the multitude of LOCK instances because of factors
such as the number of execution paths, the number of in-
teracting functions, or whether the interaction happens di-
rectly or indirectly (e.g., a call using a function pointer). To
avoid state explosion, a human is needed to discover domain-
specific concepts to simplify proofs. For example, the state
space for the computer-aided proof of the four color prob-
lem explodes without the simplifications due to the two key
concepts of: Discharging [7] and Reducibility [8].
Interactive and Programmable Verification: Human-
machine verification can benefit greatly from an experiment-
discover paradigm. There are many opportunities to apply
this paradigm; for example, the discovery of domain-specific
simplifications or discovering the target properties for safety
and cybersecurity. In this paradigm, a human interacts with
large software by conceptualizing graph models of the in-
ner workings of the software and uses those models to rea-
son about the software. The software can be viewed as a
large graph database of program artifacts and relationships
between artifacts. The domain-specific concepts as well as
verification-critical evidence can be formulated with the help
of graph models. Graph database queries can be designed
to enable interactive and query-embedded programming.
Future Challenges and Opportunities: After examin-
ing the existing verification approaches with respect to the
above aspects, the briefing will conclude with a discussion of
open challenges to be addressed by software verification re-
search and practice. Examples of future challenges include:
a mathematically rigorous notion of automatically generated
verification-critical evidence, domain-specific simplifications
that can avoid the inevitable state explosion in a completely
automated generic verification, and a powerful query lan-
guage for interactive and programmable verification.

Evidence and concept-empowered verification presents in-
triguing opportunities to improve accuracy and minimize
human efforts for verification. For instance, consider prob-
lematic scenarios where automation cannot produce unam-
biguous evidence and would otherwise generate inaccurate
conclusions, the automation could instead present such sce-
narios for the human to handle. The human can then gather
additional information through interactive queries to resolve
the ambiguity. The net result can be better accuracy and
less human effort, because the interactive process may still
be more efficient than triaging inaccurate and ambiguous
reports from less sophisticated automation. Specifically, we

will introduce the concepts: accuracy boundary-aware and
composable analyzers and elaborate with concrete examples
how these concepts could be central to accurate, efficient
and scalable verification.
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