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Abstract—Software tagging has been shown to be an efficient,
lightweight social computing mechanism to improve different
social and technical aspects of software development. Despite
the importance of tags, there exists limited support for automatic
tagging for software artifacts, especially during the evolutionary
process of software development. We conducted an empirical
study on IBM Jazz’s repository and found that there are several
missing tags in artifacts and more precise tags are desirable.
This paper introduces a novel, accurate, automatic tagging
recommendation tool that is able to take into account users’
feedbacks on tags, and is very efficient in coping with software
evolution. The core technique is an automatic tagging algorithm
that is based on fuzzy set theory. Our empirical evaluation on the
real-world IBM Jazz project shows the usefulness and accuracy
of our approach and tool.

I. INTRODUCTION

Tags are popular in Web communities [1]. They provide
an external metadata applied to a Web object such as a
Web blog, Web page, a picture, etc. They are used for data
searching, data description, identification, bookmarking, or
personal markers. For software development, tagging has been
shown as a lightweight yet very useful mechanism in helping
in developers’ communication and bridging the gap between
social and technical aspects [2]. It provides a simple way for
annotations in which a developer could tag his artifacts so
that others could search and find them. With tags, developers
could see the broad categories of the tagged artifacts in
terms of relevant subjects, purposes, or functions. Tagging is
also used for artifact organization. Despite its importance in
supporting informal activities in software development, there
is little research on the necessary automated supports for
software tagging. It was also reported that tagging has not
been extensively studied in a software engineering context [2].

Our goal is to identify the key components in an automatic
tagging tool for software artifacts, especially an accurate
tool that is efficient in the evolutionary process of software
development. With that goal in mind, we first wanted to
investigate the current usages of tags in a real-world software
project. We conducted an empirical study on the IBM’s Jazz
repository and focused on software tags for work items. Jazz’s
repository contains the real-world development data from IBM
for more than 3 years. A work item is a generalized concept
of a development task. It contains a summary, a description,
a tag, and relevant software artifacts including source code,
requirements, test cases, discussions, etc. In the empirical

study, our key questions include 1) what are the general
purposes and types of tags used in software development, 2)
what are the common characteristics of artifacts that share
assigned tag(s) from developers, 3) with the current tagging,
whether or not the similar work items with the same/similar
characteristics/purposes share any tag(s), and 4) with current
tagging supports, whether or not the tags are sufficient to
distinguish them and to serve those general purposes.

The results of our study showed that developers use tags for
three main purposes: 1) categorization of artifacts in different
broad concerns, goals, subjects, functions in the system, 2)
organization of artifacts in the project, and 3) support for
searching of the artifacts. This is consistent with prior findings
in [2]. We also found that work items with the same tag(s)
often share the same/similar concerns, goals, subjects or
functions in the system. It is also generally true (i.e. with
a small number of exceptions) that work items that have the
same concerns, goals, subjects, or functions are often assigned
with the same tags. Interestingly, we also found that many
work items that have the similar concerns, goals, subjects,
or functions should have additional tags to further and better
characterize or describe them with regard to those aspects.
Importantly, there is a large percentage of work items that did
not have any tag. According to prior research [2], developers
recognize the important roles of tags in software development.
Therefore, a more accurate and efficient auto-tagging tool that
takes into account the contents of work items would improve
the current state of software tagging.

With the motivation from our empirical study, we developed
an accurate, automatic tag recommendation tool, TagRec, that
is able to take into account users’ feedbacks on tags, and is
very efficient in coping with software evolution. The core of
TagRec is an automatic tagging algorithm for textual artifacts
that is based on the fuzzy set theory [3]. For each term (i.e. a
word within a work item’s text that is not a grammatical one
or a stopword) collected from the contents of all work items,
TagRec defines a fuzzy set. Each work item has a membership
value in this set, which signifies the degree of membership of
that work item with respect to the fuzzy set defined by a term.
The membership value for a work item is in the interval [0,1]
with 0 corresponding to no membership in the set defined by
the term, and 1 corresponding to full membership. To compute
the membership values for all work items with respect to all
terms in the corpus, TagRec first builds a correlation matrix
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for all meaningful terms (i.e. grammatical terms and stopwords
are removed). The correlation value between term !1 and !2
in the corpus is defined based on the number of work items
in the corpus in which !1 and !2 occur together. Then, the
membership values are computed based on the principle that
a work item "! belongs to the fuzzy set associated to the term
!", if many of its own terms in "! are strongly related to !".
At last, the membership values for each work item will be
sorted and the terms corresponding to the membership values
that exceed a chosen threshold will be reported as the tags for
that work item.

The key departure points and unique features of our au-
tomatic tagging approach from existing ones include 1) its
formulation of tagging with the fuzzy set theory that enables
the tag recommendation for new work items introduced during
software development, 2) its ability to recommend to a work
item with tags that do not even appear within its own textual
content (due to a mapping scheme between tags not appearing
in the texts and the terms appearing in the texts), 3) its ability
to improve the future tagging by taking in account the users’
feedbacks on the current resulting tags, and 4) its ability to
assign tags to items while maintaining the already assigned
tags in the project.

We also conducted an empirical evaluation of TagRec in tag
recommendation using the IBM’s Jazz data. We ran TagRec
on Jazz’s work items and requested human subjects to evaluate
the results from TagRec to see if the resulting tags are
good descriptions in terms of both goals, subjects, concerns,
or functions of the work items. The same experiment was
also carried out to evaluate how well TagRec recommends
additional tags to already tagged work items. The results
show that TagRec is very time efficient and provides useful
recommendation tags with high precision and recall. The third
evaluation was conducted in which TagRec was trained in a
set of work items and used to recommend for the other set
of items in the same project. TagRec also gave high quality
results in term of both precision and recall. Our last experiment
was carried out in which the feedbacks from human subjects in
the first experiment were taken into consideration, and the tool
uses that information to re-assign the tags to other work items.
Compared to the resulting tags without users’ feedbacks, the
tagging quality is higher in both precision and recall.

The key contributions of this paper include
1) An empirical study on the characteristics and relation-

ships of work items and their associated tags,
2) TagRec, an efficient and accurate, automatic tag recom-

mendation algorithm that is based on the fuzzy set theory
with aforementioned unique features, and

3) A prototype tool and an empirical evaluation on a
real-world software project to show the usefulness and
accuracy of TagRec.

Section II describes our empirical study on the character-
istics and relationships of tags and work items. Section III
presents our fuzzy set-based algorithm for automatic tagging.
The empirical evaluation is discussed in Section V. Related
work is discussed in Section VI. Conclusions appear last.

Data object Amount
Work items 47,563

Tagged work items 12,889

TABLE I
INFORMATION ON WORK ITEMS EXTRACTED FROM JAZZ REPOSITORY

II. EMPIRICAL STUDY

A. Goals, Hypotheses, and Settings

Tagging has been shown to be a lightweight and useful
mechanism for improving the communication and bridging
the gap between social and technical aspects in software
development [2]. Auto-tagging has also been investigated in
the Web research and social computing communities [4], [5].
However, there has been little research on auto-tagging for
evolving software [2]. To deeper understand the current state of
software tagging in real-world practice and ultimately build an
efficient automatic tag recommendation tool, we conducted an
empirical study on IBM Jazz’s repository, which contains the
data for their software development for more than three years.
In our study, we collected the quantitative data and extracted
all relevant information on the use of tags through accessing
the Jazz repository. The data was extracted for the time period
from June 2005 to June 2008 (Table I). Before describing the
details of our study, some important concepts and definitions
are needed.

Definition 1: A work item in Jazz is a generalized notion
of a development task, which consists of a summary, a
description, a tag, and relevant software artifacts.

Definition 2: Category is a broad concern for the system,
and is usually a functional or non-functional requirement
concept such as performance, scalability, accessibility, etc.

Definition 3: Goal is an objective to be achieved or fulfilled
in a project.

Definition 4: Subject is a topic of interest that a work item
describes about.

Definition 5: A tag is a chosen keyword or term that is
associated with or assigned to a work item.

Definition 6: Similar work items is a set of work items
sharing similar goals, subjects, or categories.

In our study, we took a sufficient period of time to get
ourselves familiar with Jazz data and the nature of its work
items, and what concerns, goals, and topics of such work
items. Then, we aimed to answer the following research
questions that constitute our empirical study:

1) R1. Do similar work items have tags in common?
2) R2. Are there common characteristics among work items

sharing the same tags?
3) R3. Do the work items that have some tags in common

share also a common category, goal, or subject, but they
are not totally similar work items in all aspects?

4) R4. Do patronymic tags have the same categories, goals,
or subjects of work items, e.g doc and documentation?

5) R5. Do the tags come from the textual contents?
For brevity, we define the following types of work items.



Data object Amount
Number of tested clusters 200

Number of work item pairs tested 421
Number of type 1 set work items 66

TABLE II
DO SIMILAR WORK ITEMS HAVE TAGS IN COMMON?

Definition 7: Type 1 set is a set of similar work item pairs
that have no tags in common.

Definition 8: Type 2 set is a set of work item pairs within
the same category having tags in common and need more tags
to differentiate their goals/subjects.

Definition 9: Type 3 set is a set of perfectly matched work
item pairs within the same category and sharing the same goal,
subject, and tag.

Prior research [2] on tagging in Jazz’s repository via in-
terviewing with 175 developers has concluded that they use
tags for the three following general purposes: 1) categorization
of broad concerns and goals of the system, 2) organization
of artifacts in the system, and 3) searching the relevant
artifacts. Moreover, they found that tags are used to describe
the goals, subjects, broad concerns, or functions of the work
items. The answers for research questions R1-R5 in this study
will complement to that prior knowledge because our study
investigates the contents of work items and their tags. More
importantly, the answers will help us in producing a more
precise and useful tag recommendation tool.

B. Activities and Results

For R1, we investigated the similar work items with some
tags in common. First of all, we used WVTool [6] to analyze
the contents of all work items by removing all grammatical
terms and stopwords (e.g. “a”, “the”, “and”, etc), stemming
the terms, and then producing the significance values for each
term with respect to each work item. The significance values
are Term frequency - Inverse document frequency (Tf-Idf) [7].
Then, we clustered work items based on their Tf-Idf scores.
This step produced 7,823 clusters where each one has at least
two work items. This step plays the role of initial filtering
and allows us to avoid exhaustive pairwise comparison for all
work items. Then, we manually studied 200 clusters and tried
to answer the first question for each pair of work items.

To manually verify whether the work items are similar or
not, we read their summaries, descriptions, and all relevant
information such as related artifacts and discussions. Note
that according to Definition 6, similar work items have the
similar/same goals, subjects, concerns, or functions. If they
are similar and have no tags in common, they were reported
as type 1 pairs. Table II shows the results. From the results,
there were only 66 work item pairs that share the same goals,
subjects, or categories but have no tags in common. Thus,
the answer for R1 is generally true. However, there are a
small number of work item pairs that share similar categories,
subjects, or goals but have no shared tags. The implication of
this finding is that an automatic tagging tool should take into

Data object # tested Total
Number of work item pairs tested 419
Number of type 2 set work items 356
Number of type 3 set work items 63

Number of type 2 set work items sharing 5 tags 0 3
Number of type 3 set work items sharing 5 tags 3 3
Number of type 2 set work items sharing 4 tags 31 36
Number of type 3 set work items sharing 4 tags 6 36
Number of type 2 set work items sharing 3 tags 179 229
Number of type 3 set work items sharing 3 tags 50 229
Number of type 2 set work items sharing 2 tags 143 147
Number of type 3 set work items sharing 2 tags 4 147
Number of type 2 set work items sharing 1 tag 3 4
Number of type 3 set work items sharing 1 tag 1 4

TABLE III
ARE THERE COMMON CHARACTERISTICS AMONG WORK ITEMS SHARING

THE SAME TAGS?

Data object Amount
Number of work item pairs tested 103
Number of type 2 set work items 74
Number of type 3 set work items 29

TABLE IV
DO THE WORK ITEM PAIRS HAVING SOME TAGS IN COMMON SHARE ALSO
A COMMON CATEGORY, GOAL, OR SUBJECT BUT THEY ARE NOT SIMILAR

IN ALL ASPECTS AND MAY NEED ADDITIONAL TAGS?

account the contents of work items to provide the tags that
reflect better their subjects and goals, and serve better three
purposes in categorization, organization, and searching.

To answer R2, we clustered the work items based on the
shared tags. This results in the pairs of work items sharing:
five, four, three, two, or one tag. No pair of work items shares
six or more tags. Then, we randomly selected a sample data
of 419 work item pairs that range from the pairs sharing five
to one tag(s). We manually checked them and found that the
common characteristics of work items sharing the same tags
fall in the similar/same categories, goals, or subjects. Thus, the
answer for R2 is yes. We also examined the number of type
2 pairs of work items. Table III summarizes the results. The
column ##$%#$& shows the numbers of pairs that we manually
verified. We can see that 85% of the work items sharing tags
are of type 2 and the remaining work items are either duplicate
ones or having the same tag(s). That is, among those tested
work items, 356 (i.e. 85%) of those sharing tags should have
more tags to differentiate them in terms of subjects or goals,
despite that they fall into the same categories.

To answer for R3, we investigated the work items that
share some tag(s) but might not share all the assigned tags
(Table IV). We randomly picked 103 pairs of such work items.
Our manual verification aims to determine whether the work
items sharing some tags are the examples of good tagging, and
for those that are not, whether more tags are desirable for the
work items. Table IV shows the result for this case. From the
numbers in Table IV, we can see that 28.1% of the work item
pairs are of type 3, which means that these work items were
well-tagged, and need no further tag recommendation. It is
preferable to have more tags in the other 71.9% of items. This



is consistent with the result in the previous experiment. That is,
to serve well for the 3 purposes (categorization, organization,
and searching), more tags are desirable even on the work items
that were already assigned tags. Thus, the answer for R3 is
yes. That is, work items having common tags could share some
common categories, goals, or subjects. However, they might
not necessarily be completely similar in all aspects.

For R4, through our study, we noticed the existence of some
patronymic tags, such as: doc and documentation, tests and
testing, or decorations and decorators. We aimed to know
whether such patronymic tags are just redundant tags that
can be merged or they deliberately were used in that way.
To conduct our study on patronymic tags, we studied all
the work items that were tagged with such tags, and then
judged whether such tags can be merged into one tag. For
example, in Jazz, doc is used to tag work items that are
related to the documentation and some enhancements to the
GUI comments. documentation is also used for work items
that talk about documentation in general and some defects in
multiple modules. Interestingly, there are some work items that
have both doc and documentation. Also, tests and testing tags
cannot be merged, as tests is used to tag work items related
to testing and JUnit tests, and other related cases for testing
the code. For testing, the tag was associated with work items
that either are about fixed defects and need to be verified, or
are closed work items for being marked as duplicates, etc. On
the other hand, decorations and decorators can be merged. In
brief, for the cases we found, all of patronymic tags share the
category, and for some cases they even share the subject, thus
the answer for R4 is yes.

For R5, we build a simple tool to collect all tags in work
items in Jazz. The tags in Jazz can be divided into three
parts. More than 40% of the tags appear in the summaries and
descriptions of work items, the other 60% do not. Among 60%
of tags, there are a few time-constraint tags where such tags
are valid for only a specific time range (e.g. beta2candidate).

C. Observations

From this empirical study on the real-world data in Jazz’s
repository, we had learned several insights on tags and tagging:

1) There are several work items that are still missing
tags. From Table I, we can see that there are 34,674
(73%) work items that are not tagged. An automatic tag
recommendation tool will be very useful in helping the
developers in the tagging process. For example, after
a work item is created, the tool could analyze relevant
artifacts and recommend a set of tags. Developers could
choose any of them or enter their own tag(s).

2) Our study confirms the three purposes of tag usages:
categorization, organization, and searching. Work items
that share tags are often related to the same/similar
categories (concerns), goals, or subjects. The work items
with the same or similar categories, goals, or subjects
generally share the same tags (with few exceptions).

3) There are a large number of work items that should
be assigned one or more additional tag(s) to help in

further distinguishing them along those aforementioned
three aspects, especially on subjects and goals. That
information is expressed in the number of type 2 work
items. Moreover, goals and subjects of a work item could
be learned from its textual contents.

4) During development, software constantly evolves. It is
desirable that an auto-tagging tool is able to efficiently
work for any new work items without re-running for
entire collection of all work items and artifacts. Treude et
al. [2] also suggested the need of a tag recommendation
tool that can recommend tags to handle new work items.

Based on the lessons learned from this study, we propose
TagRec, an automatic tag recommendation tool, that can be
integrated into the Jazz environment to help recommend tags
for 1) already tagged work items by enhancing that tagging,
2) un-tagged, and 3) new incoming work items based on the
already tagged work items. The following section discusses
our approach to build TagRec using the Fuzzy set theory.

III. MODEL AND APPROACH

A. Formulation

TagRec is a tagging recommendation tool that automatically
assigns tag(s) for any work item. Importantly, it supports the
evolutionary process of software work items as well. That is,
during software development, it will recommend tags for any
new work item while maintaining the existing tags for existing
artifacts. It is also useful in the scenario to recommend the tags
for current missing-tag work items while keeping the already
tagged work items.

Definition 10 (Work Item): A work item is modeled as a
sequence of terms (i.e. stemmed words that are not grammat-
ical ones or a stopword) in its title, summary, description,
keywords, and related software artifacts.

Definition 11 (Auto-Tagging): Given a set of work items in
which some of them could be already associated with some
tags and some are not, when a new set of work items is
introduced, the auto-tagging tool analyzes the collection of
work items and recommends the tags for all work items that
do not have tags yet while maintaining the tags for already
tagged items and possibly providing additional tags for them.

B. Fuzzy Set Approach

In TagRec, we model the tagging problem based on the
fuzzy set theory [8], [9]. Let us describe our model in details.
After all stopwords and grammatical terms such as “a”, “the”,
“and”, etc are filtered, the remaining terms that appear in all
work items or are used as keywords and tags should carry
some semantic meaning to work items. All of those terms are
collected into a set of terms for consideration in the corpus.
Each term defines a fuzzy set and each work item has a
degree of membership in this set. The key idea is to associate
a membership function for each work item with respect to
a particular term. The membership function takes values in
the interval [0,1] with 0 corresponding to no membership
in the class defined by a term, and 1 corresponding to full
membership. Membership values between 0 and 1 indicate



marginal elements of the class. Thus, membership in a fuzzy
set is a notion intrinsically gradual, instead of concrete as in
conventional logic [9]. That is, each term has a fuzzy boundary
and each work item has a membership value indicating that
the content of the work item belongs to that boundary.

Definition 12 (Fuzzy Set for a Term): A fuzzy set T in the
collection ' of all work items is characterized by a member-
ship function (# : ' → [0, 1], which associates with each
element " of ' a number (# (") in the interval [0,1] in
which 0 corresponds to no membership and 1 corresponds to
full membership [9].

From the perspective of a work item, each of work items
"! has a set of membership values ([*, +] between [0,1],
signifying the degree of membership it has with respect to
each term !" in the corpus. If sorting all of those membership
values ([*, +] for all terms !" in the corpus, one would have the
degrees of relevance of the work item "! with all the terms. In
other words, one would have a set of the terms that are most
suitable to describe the work item "! , and the corresponding
ranks of the terms according to their degrees of relevance.

The computation of the membership values for all work
items with respect to all terms is performed via the computa-
tion of term correlation values as follows.

C. Term-Term Correlation

Some information retrieval models consider the terms as
independent features (such as in the vector-based model
(VSM) [9]). Unlike those models, TagRec examines the rela-
tionships among terms via the work items containing the terms.
TagRec adopts the concept of keyword connection matrix
in [8] to define the term-term correlation values as follows.
The term-term correlation matrix is a matrix whose rows and
columns are associated to the index terms in the corpus. In
this matrix ,, a normalized correlation factor ,[*, +] between
two terms !" and !! is defined as

,[*, +] =
∣-",! ∣

∣-"∣+ ∣-! ∣ − ∣-",! ∣
(1)

where ∣-"∣ and ∣-! ∣ are the numbers of work items contain-
ing the term !" and !! respectively, and ∣-",! ∣ is the number
of work items containing both terms. If a work item is tagged
with a term, TagRec considers that the term is contained in
that work item.

This term correlation definition is used for the terms appear-
ing in the texts of work items. However, there exist some terms
that are used as tags for a work item but do not appear in any
other work items in the entire corpus. For example, developers
could assign the keyword “performance” to a work item ",
however, that term never occurs in any other items. In this case,
TagRec defines the term correlation for such terms (referred
to as out-texts) based on all the terms appearing in " (referred
to as in-texts). Assume that an out-text tag !% is assigned to
a work item " containing the terms !1, !2, ..., !&. Then, the
correlation between !% and !" and vice versa is defined as

/0(!")∑&
'=1 /0(!')

.
∣-%,"∣

∣-%∣+ ∣-"∣ − ∣-%,"∣
(2)

The first part of Equation 2 takes into consideration the ratio
between the frequency of !" over the total number of terms in
". The second part is the same as the formula (1). The idea is
that !% will be strongly related to a term !" if !" appears many
times in the work items that !% are assigned, however, there are
not many work items containing !" in the entire collection. For
a term that does not occur in ", the correlation value between
!% and that term is defined as zero. Of course, all stopwords
and grammatical terms are filtered before the term frequency
counting. This mapping between out-texts to in-texts enables
TagRec to take into account the existing tags (as out-texts)
in some work items. Then, when some other work item "′

that is semantically related to ", TagRec could recommend
the out-text tag !% to "′ even though the work item "′ does
not contain the tag !% in its content at all.

D. Membership Values

Definition 13 (Membership Value): A work item "! has a
degree of membership ([*, +] with respect to the fuzzy set
corresponding to term !". The value ([*, +] is computed as
in [9]:

([*, +] = 1−
∏

(!∈)"

(1− ,[*, 1]) (3)

The idea is that a work item "! belongs to the fuzzy set
associated to the term !", if its own terms are strongly related
to !". If there exists at least one term !* occurring within the
work item "! which is strongly relevant to !" (i.e., ,[*, 1] ≈ 1),
then ([*, +] ≈ 1, and the term !" is a good fuzzy index for the
work item "! . If all terms in "! are irrelevant to !", the term
!" is not a good fuzzy index for "! (i.e. ([*, +] ≈ 0).

E. Additional Ranking Scheme

For each work item "! , the membership function ([*, +] of
a term !" shows us how well the term !" reflects the content of
"! . However, in formula (3), if there exists at least one term
!* in "! that is strongly related to !", then the membership
value is 100%. To distinguish between work items that have
more than one such terms !*s, TagRec introduces an additional
ranking scheme. If a work item "1 that has 2 terms that are
strongly relevant to !" and another work item "2 with 3 terms
(2 > 3) strongly relevant to !", then the work item "1 is
considered to be more relevant to the term !" than "2. Thus,
with this ranking scheme, for a given tag !", TagRec could
rank and return the list of relevant work items.

F. Tag Recommendation

For each work item "! , all the membership values cor-
responding to all the terms will be computed as in the
formula (3). The terms that give the higher membership values
for "! than a chosen threshold will be returned to developers
as the recommended tags.

With the mapping scheme between out-texts and in-texts,
TagRec is able to recommend the tag(s) that do not need to
occur within the texts of that work item.

For the work items that were already tagged, those tags
will be maintained the same for such items because the
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membership values corresponding to those existing tags will
be among the highest. Such work items have at least one term
(the tag itself) that is strongly related to the tag. Moreover,
additional tags would also be recommended to such existing
work items if their corresponding membership values exceed
a chosen threshold. This is very useful as our empirical study
(Section 2) has shown that there are several related work items
requiring additional tagging to be more precisely described.
This is a big advantage of our fuzzy set approach in terms
of efficiency to cope with software evolution, in comparison
with other feature extraction approaches such as Tf-Idf [7],
in which when a new document is introduced, all significant
values must be recomputed.

For a newly created work item, the membership values with
respect to all terms are computed. The new tag(s) will be
recommended in the same manner for a newly introduced work
item. In other words, our tagging tool is able to work well in
the evolutionary process of software development with new
work items.

G. Users’ Feedbacks Integration

When a new work item is created, TagRec recommends to
the developer a set of tags. (S)he is able to accept or refuse
any tag and provide new tags for the work item. Let us denote
the sets of accepted, rejected, and new tags for a work item
"! by 5+, 5,, and 5-.), respectively.

For the tags in 5+, their membership values with respect to
all work items will be kept the same. For the tags in 5, (i.e.
being rejected), the membership value ( with respect to the
work item "! will be reduced in half.

For the tags that are newly assigned by users (i.e. in 5-.)),
the membership ( with respect to "! will be assigned as
100%. Then, TagRec will re-compute the membership values
for each tag in 5-.) with respect to all other work items
in the collection. During the computation, "! is assumed to
contain all the new terms in 5-.). If one of such values
exceeds a chosen threshold, the corresponding work item will
be associated with the corresponding new tag. That is, that
new tag will be recommended for that work item.

IV. TOOL DEVELOPMENT

We have implemented the aforementioned tagging algorithm
with all of those features into a prototype tool, called TagRec.
Figure 1 displays an overview of the architecture of TagRec.
The figure shows three main parts of TagRec: 1) initial run,
2) later run, and 3) users’ feedbacks and updating.

For the initial execution on the large set of work items,
the parser module performs all parsing, stemming, and textual
analysis tasks. Then, TagRec will compute the term-term
correlation matrix and the membership values for each work
item with respect to each meaningful term in the corpus. Some
important information will be stored as TagRec’s internal data.
For each work item, TagRec sorts the membership values,
produces and presents to developers the recommended tag(s).
When a new work item is introduced, TagRec will parse its
content. Based on the internal data on existing tags, it partially
re-computes the term-term correlation and membership values.
Then, TagRec performs ranking and producing tag recommen-
dation as in the initial run. When the tags are recommended
to the developers, they are allowed to provide the feedbacks
by accepting or rejecting the recommended ones, or adding
their own terms. TagRec will update the internal data, adjust
the ranking of terms, and produce the new tags if possible.

V. EMPIRICAL EVALUATION

We have conducted an empirical evaluation on TagRec. Our
goal is to evaluate 1) how well TagRec could recommend
the tags for work items that have not assigned any tags (i.e.
un-tagged work items), 2) how well it could recommend
additional tags for the work items that already had some tags,
3) how well it recommends tags for newly introduced work
items, 4) how well users’ feedbacks affect the results, and 5)
how time-efficient our recommendation tool is. We continue
to use the IBM Jazz’s work items for our evaluation. All
experiments were carried out on a Windows Vista, Intel Core 2
Duo 2.10Ghz, 4GB RAM desktop.

A. Experiment 1

Our goal in this first experiment is to answer the first
question: how well TagRec could recommend the tags for



work items that have not assigned any tags. The quality of
tag recommendation is based on two metrics: precision and
recall. Precision is defined as the ratio between the number
of correctly recommended tags over the total number of
recommended tags. Recall is defined as the ratio between the
number of correctly recommended tags over the total number
of needed tags. For the ground truth, we relied on the human
subjects’ judgement. For human subjects, we selected one
MSc. and one Ph.D. student in Software Engineering at Iowa
State University with the average of 8-9 years of experience in
programming and with 10-12 months of experience in Jazz’s
data and environment.

Firstly, we executed TagRec on all 47,563 work items.
It computed the term-term correlation matrix, membership
values, and recommend tags for all items. It is impossible to
check the tags for all work items. Thus, we randomly selected
200 work items and their assigned tags by TagRec. Those 200
work items were selected such that they were not assigned
tags before in Jazz’s data because in this first experiment, we
wanted to evaluate how well TagRec recommended the tags
for un-tagged work items. For each work item, TagRec was
configured to output up to 5 tags. The reason we chose an
upper limit of 5 tags for each work item because many of
work items in Jazz’s data have 3-5 tags. Each subject was
asked to verify the recommended tags for 100 work items
whether each tag is correct or not. Subjects were also requested
to provide additional tags if they felt that the suggested tags
were insufficient. Subjects were asked to verify and provide
additional tags (if needed) for all 200 items. They also did
cross validation and verification of each others’ results. We
collected the results for all 200 ones. These provided tags from
human subjects and the verified tags were used as the ground
truth to compute the recall of tag recommendation. The total
number of correctly recommended tags is determined based
on the human verification on the output tags from TagRec.

More specifically, let us assume that we have the work items
"1 to "/ in our testing set. For each "", let us denote the
number of resulting tags by 0", and the number of correct tags
among the resulting tags 0" identified by human subjects by 6".
Let us use %" to denote the number of additionally suggested
tags by subjects. Then, precision is computed as

∑/
"=1 6"∑/
"=1 0"

(4)

and recall is computed as
∑/

"=1 6"∑/
"=1 (6" + %")

(5)

The results of this first experiment is shown in Table V.
We could see that TagRec could recommend the tags for
un-tagged work items with very good recall (approximately
70%) and reasonably good precision levels (51%). In tag
recommendation, high recall is more preferable because the
majority of needed tags will be brought into developers’
attention. Developers will not need to scan through and

Data object Amount
# tested work items (! ) 200

# recommended tags by TagRec 646
# recommended tags by subjects 145

# correct tags 328
Recall 69.3%

Precision 50.8%

TABLE V
TAG RECOMMENDATION FOR UN-TAGGED WORK ITEMS

Data object Amount
# tested work items (! ) 200

# additional recommended tags by TagRec 668
# recommended tags by subjects 109

# correct tags 305
Recall 73.7%

Precision 45.7%

TABLE VI
ADDITIONAL TAG RECOMMENDATION FOR TAGGED WORK ITEMS

understand the contents of many work items in the project to
determine the possible tags. On the other hand, the incorrect
tags among suggested ones could easily be discarded by
developers. Thus, this result shows the usefulness of TagRec
for tag recommendation for un-tagged work items.

B. Experiment 2

Our goal in this experiment is to answer the second evalua-
tion question: how well TagRec could recommend additional
tags for tagged work items. The data set and the settings of
this experiment are similar to experiment 1. We also executed
TagRec on all 47,563 work items. However, for manual
checking, we randomly selected 200 work items that did have
tags originally in the Jazz’s data, and then requested the human
subjects to examine the additional tags recommended by our
tool. Subjects were also requested to provide additional tags if
they found that the suggested tags were not sufficient. Similar
to the previous experiment, the results for all 200 work items
were collected. Subjects’ inputs were used as the ground truth
for computing precision and recall.

Let us use 7" to denote the additional tags that TagRec
recommends for work item "". Among 7" tags, assume that
the subjects selected 6′" as the correct ones and provided %"
additional tags by themselves. Then, precision is computed as

∑/
"=1 6

′
"∑/

"=1 7"
(6)

and recall is computed as
∑/

"=1 6
′
"∑/

"=1 (6
′
" + %")

(7)

The result of this experiment is shown in Table VI. On
average, TagRec recommends 3 additional tags for one work
item. In this experiment, it recommends additional tags for
already tagged work items with even higher recall and slightly
lower precision. Because TagRec’s fuzzy set approach consid-
ers that a work item contains its associated tag(s), the tags that



Data object Amount
# tested work items (! ) 100

# recommended tags by TagRec 368
# recommended tags by subjects 36

# correct tags 145
Recall 80.1%

Precision 39.4%

TABLE VII
TAG RECOMMENDATION FOR NEW WORK ITEMS

exist already for those items are kept the same. We manually
checked the additionally recommended tags. The correct ones
mostly reflect the goals and subjects of the work items.

C. Experiment 3

In this experiment, we want to evaluate how well TagRec
could recommend tags for new work items. Since it is imprac-
tical for us to add new work items into existing Jazz’s data, we
chose to evaluate this aspect via a different way. We sorted
all tagged work items in Jazz with respect to their creation
dates from the oldest to the newest. The newest 100 work
items were used for testing and the older work items were
used for training TagRec. The contents of those 100 work
items were also analyzed during the recommendation process
of TagRec. The recommended tags for those 100 work items
were verified by a human subject. Precision and recall was
computed in the same way as in the previous experiments.
The result of this experiment is shown in Table VII. In this
case, TagRec recommends for the 100 newest work items with
a higher recall and lower precision. We manually examined the
incorrect tags and work items. We found that many of them
have brief and short textual contents.

D. Experiment 4

Our goal in this experiment is to answer the fourth evalu-
ation question: how well TagRec’s feedback approach affects
tag recommendation results. For this experiment, we reused
the tagging result for 100 work items from experiment 1,
and considered the tags from the human subject 1 as the
feedback to the result. We took into account the feedback on
the correctly recommended tags by TagRec and the human-
suggested tags by the human subject 1, and executed TagRec
with that feedback to update its internal data. Then, we used
TagRec to recommend the tags on the totally different 100
work items checked by the human subject 2 to see if the
tag recommendation result for such items improves. Note
that we did not take the feedback from the human subject 2
into consideration. In this experiment, we are interested in
the affect of users’ feedbacks on the recommendation, so for
manual checking, 1) we checked for any improvements in the
quality of the recommended tags, 2) we checked the affect
of users’ feedbacks on the recall and precision which will be
calculated in the same way as in experiment 1, 3) we checked
for any newly added tags that did not exist before the feedback
and was recommended now, and 4) we checked any changes
in ranking of the tags for each work item by comparing them
to the results of the run in experiment 1.

Data object # No Feedback With Feedback
# Recommended tags by TagRec 333 340
# Recommended tags by subjects 65 61

# Correct tags 154 163
Recall 70% 73%

Precision 46% 48%

TABLE VIII
USERS’ FEEDBACKS IMPROVE TAGGING RESULT

Work Items Terms Rec Tags PPTime RecTime
47,563 52,708 166,470 54 secs 45 mins

TABLE IX
TIME EFFICIENCY

Table VIII shows the results for the first two parts of
experiment 4. The table compares the results from subject 2
for experiment 1 without the feedback (shown under the No
Feedback column), and the same set but with the feedback un-
der the With Feedback column. From Table VIII, we could see
the improvement in the number of correct tags recommended
by TagRec, and the reduction in the number of additional
tags by human verification. Both indicates that using users’
feedbacks in TagRec improves the quality of the recommended
tags, reduces the need for manually added tags from the users,
and increases both recall and precision.

To check for goal 3, we asked the human subject 2 to verify
the rank of every recommended tag for every work item in
his set and report any increasing/decreasing in the correctly
recommended tags. Also, we provided him with a list of all
new tags that were added from the feedback set from the
human subject 1, and asked him to report if any tags from the
feedback are used in tagging for his data set (i.e. the second
100 work items). The result is that there were a total of 14 new
tags provided as the feedback from subject 1. Seven of them
were applicable and used as tags for 13 times in the second
100 work items. 10 out of those were correct recommendations
and 3 were not. For goal 4, we requested subject 2 to check
how many correct tags we gained and how many we lost (i.e.
it made the tag’s rank low enough to be ignored by TagRec).
The result is that TagRec was able to increase the membership
scores for 3 different tags for 3 work items. Those 3 tags were
ignored in the run without the feedback. Importantly, TagRec
did not lose any correct tag.

E. Time Efficiency

For time efficiency, we evaluated the running time for both
the initial execution on a large number of work items, and
the later run for a single work item. For the initial run, we
measured the running time as TagRec was executed in all
47,563 work items in Jazz’s repository. Table IX shows the
result for the initial run. The columns PPTime and RecTime
display the time for preprocessing (including textual parsing),
and the time for tag recommending (including term-term cor-
relation computation, membership computation, and ranking).
The recommendation time was about 45 minutes for a very
large amount of work items in about 3 years of development



at IBM. For the second case, we repeated the experiment 3 on
the newest 100 work items, however, TagRec was executed
for each of those 100 items at a time. On average, it took
3 seconds to recommend for one work item. These results
show that TagRec is scalable, efficient, and well-suited for
interactive use for tag recommendation as a new work item is
introduced.

F. Threats to Validity

Our human subjects are not the real authors of the work
items in Jazz. Therefore, the judgements might not be the
same. However, because the human subjects have experience
in both programming and Jazz environment, and they were
requested to examine all relevant documents to a work item,
their verifications are trustworthy. Moreover, our result is
currently only on the Jazz project.

VI. RELATED WORK

Tagging has been used to help in the social and technical
aspects in software development. According to Treude and
Storey [2], a tag is “a freely chosen keyword or term that
is associated with or assigned to a piece of information. In
the context of software development, tags are used to describe
resources such as source files or test cases in order to support
the process of finding these resources”. The resources here
could be regarded in a general way including any software
artifacts as well as “work items” as defined in IBM’s Jazz
(i.e. all artifacts relevant to a particular task in software
development). In their study [2], the authors have shown the
important roles of tags in many informal processes in software
development and that the tagging mechanism was eagerly
adopted by the team. Their inspection of the Jazz project’s
repository shows that a large number of work items are missing
tags and that the suggested tags from the Jazz tool are not
favored by developers.

Despite the popularity of automatic tagging tools in Web
environment and social computing technologies, there has
not been many such tools in software development. TagSEA
(Tags for Software Engineering Actitivies) supports social
tagging and communication among developers via tags and
user-defined navigational structures [10], [11]. Other types
of tools supporting for tagging in source code include GNU
Global [12], social bookmarking in Code Snipets [13], Byte-
Mycode [14]. Unlike our tool, these tools focus on source code
and have limited supports for other types of software artifacts.

Poshyvanyk et al. [15] use Latent Semantic Indexing (LSI)
and formal concept analysis (FCA) to map the concepts
expressed in users’ queries into code. Those techniques are
used to map the concepts expressed in queries written by the
programmers to relevant parts of the source code, presented as
a ranked list of search results. Poshyvanyk et al. combine LSI
with scenario-based probabilistic ranking for feature identifi-
cation [16]. Their results on Mozilla show that the combined
technique improves feature identification significantly with
respect to each technique used independently. They also use
LSI in coupling concepts in OO systems [17]. Liu et al. [18]

propose an approach for feature location via combining infor-
mation from two different sources: an execution trace, and the
comments and identifiers from the source code.

Hindle et al. [19] use Latent Dirichlet Allocation (LDA)
and LSI to extract a set of independent topics in devel-
opers’ discussions from a corpus of commit-log comments.
Gay et al. [20] propose the use of relevant feedbacks to
improve concept location with various information retrieval
(IR) techniques. Liu et al. [21] introduce a measurement
for class cohesion via mixtures of latent topics using LDA.
Information about relevant documents could be achieved with
traceability link recovery (TLR) tools [22]. Antoniol et al.
investigate two IR methods based on both vector space and
probabilistic models [23]. ADAMS Re-Trace is a LSI-based
traceability link recovery tool for different types of artifacts in
ADAMS, an artifact management system [24], that provides
searching and tracing supports. De Lucia et al. [25] proposed
an TLR process using users’ feedbacks, aiming at gradually
identifying a threshold that achieves a good balance between
retrieved correct links and false positives. COCONUT [26] is
able to show the similarity level between high-level artifacts
and source code during development using LSI. It can guide
programmers to write more understandable code by suggesting
the meaningful identifiers from high-level artifacts.

Despite their successes, there are no existing approaches
that apply fuzzy sets into automatic tag recommendation for
software artifacts. To the best of our knowledge, our approach
is the first to apply fuzzy set theory in automatic tagging for
software artifacts. Moreover, in comparison with our fuzzy
set-based tagging approach, those existing approaches such
as LDA, LSI, FCA are more computationally heavy-weight.
Those approaches are not quite efficient in dealing with
software evolution with new artifacts. They must re-perform
the entire process. Furthermore, the mapping between out-texts
and in-texts allows TagRec to recommend for a work item the
tags that do not occur in its content at all. This improves the
tagging quality in TagRec. Finally, users’ feedbacks could be
nicely integrated into TagRec to improve future tagging.

Examplar [27] aims to find relevant applications via a
search engine that is based on concept location and program
analysis. Users enter a natural language query that contains
high-level concepts. A keyword from the query is matched
against the descriptions of different documents that describe
API calls of widely used software packages. Wursch et al. [28]
propose a framework with the use a guided-input natural
language to query for information about a software system.
It uses ontology and knowledge processing technologies from
Semantic Web for query and retrieval. Fritz and Murphy [29]
introduce an information fragment model that is based on
graphs of information fragments, and allows the composition
of different kinds of information to help developers to easily
choose how to display the composed information.

Automatic tagging is also popular in Web and social com-
puting areas. In those areas, there exist literature surveys on
different tagging systems and classifications of user tags [30],
[31]. Song et al. [32] use spectral recursive embedding clus-



tering and a two-way Poisson mixture model for real-time
tagging of Web documents. TagAssist [1] is an automatic
tagging tool for new Web blog posts by utilizing existing
tagged posts. It performs lossless compression over existing
tag data. P-TAG [33], a method which automatically generates
personalized tags for Web pages, produces keywords relevant
both to textual content and to the data residing on the surfer’s
Desktop using Semantic Web technology. Brook et al. [4]
propose auto-tagging with hierarchical clustering. They show
that clustering algorithms can be used to reconstruct a topical
hierarchy among tags.

VII. CONCLUSIONS

Software tagging has been shown to be an efficient,
lightweight social computing mechanism to improve differ-
ent social and technical aspects of software development.
Despite the importance of tags, there exists limited support
for automatic tagging for software artifacts. We conducted
an empirical study on IBM Jazz’s data and found that there
are several missing tags in artifacts and more precise tags
are desired. This paper introduces an accurate, automatic tag
recommendation tool that is able to take into account users’
feedbacks on resulting tags, and is very efficient in coping
with software evolution. The core technique is a fuzzy set-
based automatic tagging algorithm. The unique features of our
algorithm from existing ones include its ability 1) to efficiently
handle the tag recommendation for new work items introduced
during software development, 2) to recommend to a work item
with tags that do not even occur within its own textual content,
3) to improve the future tagging by taking into account the
users’ feedbacks on the current resulting tags, and 4) to assign
tags to items while maintaining the already assigned tags.

Our empirical evaluation on the real-world IBM Jazz project
shows that TagRec is time efficient and well-suitable for
interactive uses in daily development. Importantly, it is very
accurate with high recall (76%) and precision (50%). Our
future work will investigate the use of program analysis to
enrich the semantic relations between source-code work items.
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