
Ahmed Tamrawi

COMP 433 Software Engineering
Module 1: Introduction To Software Engineering

Acknowledgment Notice
Part of the slides are based on content from Ian Somerville’s Software Engineering book.

Software Value

• It is the fuel of modern life:
• Business
• Government
• Scientists
• Industries
• Education

• However, building and maintaining software is hard and is getting
harder.

Software Complexity

• Software development is Complex!
• It is important to distinguish between “small” systems (one developer,

one user, experimental use only) and “Complex” systems (multiple
developers, multiple users, products).
• Experience with “small” systems is misleading as one person

techniques do not scale up.

Software Complexity

• Analogy with bridge building:
• Building a bridge over a stream is an easy and one person job.
• Building a bridge over a river? (the one-person job techniques do not scale)

6

Ever Increasing Complexity

20 MLOC ≈ 360K Pages

Ever Increasing Size

Complexity and Size matters!

https://www.visualcapitalist.com/millions-lines-of-code/

Software Engineering

• The economies of ALL developed nations are dependent on software.
• More and more systems are software controlled.
• Software engineering is concerned with theories, methods and tools

for professional software development.
• Expenditure on software represents a significant fraction of Gross

National Product (GNP) in all developed countries.

Software Costs

• Software costs often dominate computer system costs.
• Costs of software on a PC are often greater than the hardware cost.
• Software costs more to maintain than it does to develop. For systems

with a long life, maintenance costs may be several times development
costs.
• Software engineering is concerned with cost-effective software

development.

Software Project Failure

• Increasing system complexity
• As new software engineering techniques help us to build larger, more

complex systems, the demands change. Systems have to be built and
delivered more quickly; larger, even more complex systems are required;
systems have to have new capabilities that were previously thought to be
impossible.

• Failure to use software engineering methods
• It is fairly easy to write computer programs without using software

engineering methods and techniques.
• Many companies have drifted into software development as their products

and services have evolved. They do not use software engineering methods in
their everyday work. Consequently, their software is often more expensive
and less reliable than it should be.

Why Software Engineering?

• The problem is complexity!
• Complexity depends on many factors, but size is one key:
• For example:
• UNIX:

• 1971: 10,000 lines of code.
• 2020: 27.8 millions lines of code.

• Windows:
• Windows 95 contains 15 millions lines of code.
• Windows 2000 contains 100 millions lines of code.
• Windows 7 contains 39.3 millions lines of code.
• Windows 10 contains 50 millions lines of code.

Software Engineering is about using engineering methods
to manage software complexity efficiently

Software Engineering

• Software engineering is an engineering discipline that is concerned
with all aspects of software production from the early stages of
system specification through to maintaining the system after it has
gone into use.
• Engineering discipline
• Using appropriate theories and methods to solve problems bearing in mind

organizational and financial constraints.

• All aspects of software production
• Not just technical process of development. Also project management and the

development of tools, methods etc. to support software production.

Importance of Software Engineering

• More and more, individuals and society rely on advanced software
systems. We need to be able to produce reliable and trustworthy
systems economically and quickly.
• It is usually cheaper, in the long run, to use software engineering

methods and techniques for software systems rather than just write
the programs as if it was a personal programming project. For most
types of system, the majority of costs are the costs of changing the
software after it has gone into use.

Computer Science vs Software Engineering

• Computer science is concerned with theory and fundamentals such
as: algorithms, date structures, complexity theory, numerical
methods, etc.
• Software engineering is concerned with the practicalities of

developing and delivering useful software. It deals with practical
problems in complex software products.
• Computer science theories are currently insufficient to act as a

complete underpinning for software engineering, but it is a
foundation for practical aspects of software engineering.

Different than Regular Engineers?

• Regular engineers for buildings and bridges for example, have faced
similar examples, risks, solutions. But as a software engineers, we are
not so lucky!
• What is the real problem?
• Complexity and Change.

Software Engineering History

• Software Engineering introduced first in 1968 – conference about
“software crisis” when the introduction of third generation computer
hardware led to more complex software systems than before.
• Early approaches based on informal methodologies led to:
• Delays in software delivery.
• Higher costs than initially estimated.
• Unreliable and difficult to maintain software .

• Thus, there was an urgent need for new methods and techniques to
manage the production of complex software.

Question Answer

What is software? Computer programs and associated documentation. Software products may be
developed for a particular customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality and performance to the user
and should be maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned with all aspects of
software production.

What are the fundamental software
engineering activities?

Software specification, software development, software validation and software
evolution.

What is the difference between software
engineering and computer science?

Computer science focuses on theory and fundamentals; software engineering is
concerned with the practicalities of developing and delivering useful software.

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects of computer-based systems
development including hardware, software and process engineering. Software
engineering is part of this more general process.

FAQs About Software Engineering

Question Answer

What are the key challenges facing
software engineering?

Coping with increasing diversity, demands for reduced delivery times and developing
trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are testing costs. For custom
software, evolution costs often exceed development costs.

What are the best software engineering
techniques and methods?

While all software projects have to be professionally managed and developed, different
techniques are appropriate for different types of system.

For example, games should always be developed using a series of prototypes whereas
safety critical control systems require a complete and analyzable specification to be
developed. You can’t, therefore, say that one method is better than another.

What differences has the web made to
software engineering?

The web has led to the availability of software services and the possibility of developing
highly distributed service-based systems. Web-based systems development has led to
important advances in programming languages and software reuse.

FAQs About Software Engineering

Professional Software Development

• Most of the software development is a professional activity:
• Special team of developers.
• Specific business purpose.
• Formal and systematic processes.
• Software will be maintained and changed throughout its life.

• Software Engineering supports professional software development,
not amateur development.

Software Products

• Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

• Generic products - Stand-alone systems that are marketed and sold to any
customer who wishes to buy them.
• Examples – PC software such as graphics programs, project management tools; CAD

software; software for specific markets such as appointments systems for dentists.
• The specification of what the software should do is owned by the software developer and

decisions on software change are made by the developer.

• Customized products - Software that is commissioned by a specific customer to
meet their own needs.
• Examples – embedded control systems, air traffic control software, traffic monitoring

systems.
• The specification of what the software should do is owned by the customer for the software

and they make decisions on software changes that are required.

Attributes of a Good Software

• Good software means that:
• It delivers the required functionality. (Functional Requirements)
• It has acceptable performance to the user, and it should be maintainable,

dependable, usable, and secure. (Non-Functional Requirements)

• Requirements specify a set of features that the system must have.
• Functional requirement is a specification of a function that the system must

support,
• Non-functional requirement is a constraint on the operation of the

system that is not related directly to a function of the system.

Attributes of Good Software

• When we talk about the quality of professional software, we have to consider
that the software is used and changed by people apart from its developers.

• Quality is therefore not just concerned with what the software does. Rather, it
has to include the software’s behavior while it is executing and the structure and
organization of the system programs and associated documentation.

• This is reflected in the software’s quality or non-functional attributes.

• Examples of these attributes are the software’s response time to a user query
and the understandability of the program code.

• The specific set of attributes that you might expect from a software system
obviously depends on its application. Therefore, an aircraft control system must
be safe, an interactive game must be responsive, a telephone switching system
must be reliable, and so on.

Essential Attributes of Good Software
Product characteristic Description

Maintainability

Software should be written in such a way so that it can evolve to meet the
changing needs of customers.

This is a critical attribute because software change is an inevitable
requirement of a changing business environment.

Dependability and security

Software dependability includes a range of characteristics including reliability,
security and safety.

Dependable software should not cause physical or economic damage in the
event of system failure. Malicious users should not be able to access or
damage the system.

Efficiency
Software should not make wasteful use of system resources such as memory
and processor cycles. Efficiency therefore includes responsiveness, processing
time, memory utilisation, etc.

Acceptability

Software must be acceptable to the type of users for which it is designed.

This means that it must be understandable, usable and compatible with other
systems that they use.

Classify Requirements

1. The user must be able to purchase tickets.
2. The user must be able to access traffic information.
3. The system must be provided feedback in less than one second.
4. The colors used in the interface should be consistent with the company

logo.
5. System should be easy to use since users could be of different ages.
6. Specific hardware platform for the system.
7. Strict security requirements.
8. How the system should deal with failures and faults.
9. How to provide backward compatibility with an old system that the client

is unwilling to retire.

In-class Activity I
Identifying Software Myths

Activity: Software Myths

• Management myths:
• There exist precise standards and procedures for building successful software.
• Add more programmers if behind schedule (see next slide)

• Customer myths
• General and/or generic description of objectives is enough to start coding.
• We can change the requirements anytime as the software is flexible and easy

to adapt.

• Practitioner myths
• Task accomplished when the program works.
• “Working program” the only project deliverable.

The Total Cost of Owning a Mess

Hire new developers The Grand Redesign in the Sky

Ariane 5 (1996)
THE 7 BILLION DOLLAR

OVERFLOW

NASA - Mariner 1
$18 million

Car Recalls - $3
Billion

Knight Capital Trading
$440 million

Android Lollipop
https://threatpost.com/google-aware-
of-memory-leakage-issue-in-android-
5-1-fix-forthcoming/111640/

Zero-Day Flaw Linux
Taking control and privacy

Ukraine power grid attacks

Dec 2015 & Dec 2016

July 21, 2015

Jeep remotely hijacked

November 29, 2011

HP printers remotely set on fire

Deployed in 2005, Identified in 2010

STUXnet Worm

August 17, 2009

Destruction Sayano-Shushenskaya
Hydroelectric Power Plant

August 2003

Northeast Power Blackout Davis-Besse Nuclear Power Plant

August 2003

Cost of Delayed Error/Bug Detection

Why Software Projects Fail?

• Modules that do not fit together.
• Software that are hard to maintain/extend.
• Poor quality
• Unacceptable performance.
• Technology change and team-member change over time in long

period projects.

What is a Successful Software Project?

• Deliver the required functionality. (Functional Requirements)
• non-Functional Requirements:
• Efficient: does not waste valuable resources and response time.
• Usable
• Dependable: reliable, secure, and safe.
• Maintainable
• Within budget and time.

In-class Activity II
Good Attributes of Software

Activity 1: Good Attributes of Software

1. A medical system that has a failure rate of 2% in a year.
2. A bank security system that has a 95% reliability.
3. A university registration system that requires 1 day of student

training before students can use it.
4. An online banking system that serves a national bank and allows

1000 concurrent users to access the system.
5. A complex train station control system that needs 3 months of

training before administrators can operate it.
6. A national polling system that has a reliability of 96%.

Activity 1: Good Attributes of Software

7. A heart-monitoring unit that is used in a hospital’s intensive care
has a heart attack detection function that is required to have a
failure rate of less than one per million cases.

8. One requirement of a supermarket billing software system that it
should not fail, on average, more than 10 minutes per month during
the supermarket’s working hours. In addition, the probability that
the off-time (the time needed for repair and recovery of all the
supermarket services) be more than 30 minutes is required to be
less than 0.5%.

Activity 2: Good Attributes of Software

• You are working as a software consultant in university X. You are responsible for
providing recommendation on buying one of the following new software systems
for managing university student registration:

A. The first system costs only $100k but requires an additional cost of $1k for annual system
support. It also requires 5 days training and is upgraded yearly to newer version.

B. The second system costs only $40k but requires an additional cost of $3k for annual system
support. It also requires 3 days user training and is upgraded every 2 years to newer
version.

• In your opinion, which of the two systems has:
• higher maintainability
• higher dependability
• higher efficiency
• higher acceptability
• higher usability

In-class Activity III
Comprehensive Software Requirements

Goal: Comprehensive Software Requirements

• Read the following sample real-world software development cases
and try to answer the following questions:
• Identify the functional and non-functional requirement for each case.
• Summarize the real causes of the mentioned issues for each case.
• List the specific requirements that are missing and/or were not specified.

Case 1: Sales Information System

Case 2: Education Management System

Case 3: Loan Contract Software

Software Development Process

• A systematic approach for software development. It is a sequence of
activities that leads to the production of software.
• Four fundamental activities are common to all software processes:
• Software specification, where customers and engineers define the software

that is to be produced and the constraints on its operation.
• Software development, where the software is designed and programmed.
• Software validation, where the software is checked to ensure that it is what

the customer requires.
• Software evolution, where the software is modified to reflect changing

customer and market requirements.

General Issues that Affect Software

• Heterogeneity – Increasingly, systems are required to operate as distributed systems across
networks that include different types of computer and mobile devices.

• Business and social change – Business and society are changing incredibly quickly as emerging
economies develop and new technologies become available. They need to be able to change their
existing software and to rapidly develop new software.

• Security and trust – As software is intertwined with all aspects of our lives, it is essential that we
can trust that software.

• Scale – Software has to be developed across a very wide range of scales, from very small
embedded systems in portable or wearable devices through to Internet-scale, cloud-based
systems that serve a global community.

• Legacy systems - old, valuable systems must be maintained and updated.

• Dependability and Delivery - having trustworthy software with faster delivery of software (time-
to-market)

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

Software Engineering Diversity

• Software engineering is a systematic approach to the production of
software that takes into account practical cost, schedule, and
dependability issues, as well as the needs of software customers and
producers.
• There are many different types of software system and there is no

universal set of software techniques that is applicable to all of these.
• The software engineering methods and tools used depend on the

type of application being developed, the requirements of the
customer and the background of the development team.

Application Types

• Stand-alone applications
These are application systems that run on a local computer, such as a PC. They include
all necessary functionality and do not need to be connected to a network.

• Interactive transaction-based applications
Applications that execute on a remote computer and are accessed by users from their
own PCs or terminals. These include web applications such as e-commerce
applications.

• Embedded control systems
These are software control systems that control and manage hardware devices.
Numerically, there are probably more embedded systems than any other type of
system.

• Batch processing systems
These are business systems that are designed to process data in large batches. They
process large numbers of individual inputs to create corresponding outputs.

Application Types – Cont’d

• Entertainment systems
These are systems that are primarily for personal use and which are intended to
entertain the user.

• Systems for modelling and simulation
• These are systems that are developed by scientists and engineers to model physical

processes or situations, which include many, separate, interacting objects.

• Data collection systems
• These are systems that collect data from their environment using a set of sensors

and send that data to other systems for processing.

• Systems of systems
• These are systems that are composed of a number of other software systems.

Software Engineering Fundamentals

Some fundamental principles apply to all types of software system,
irrespective of the development techniques used:

• Systems should be developed using a managed and understood development
process. Of course, different processes are used for different types of software.

• Dependability and performance are important for all types of system.
• Understanding and managing the software specification and requirements (what

the software should do) are important.
• Where appropriate, you should reuse software that has already been developed

rather than write new software.
• These fundamental notions of process, dependability, requirements,

management, and reuse are important themes. Different methods reflect
them in different ways, but they underlie all professional software
development.

Internet Software Engineering

• The Web is now a platform for running application and organizations are
increasingly developing web-based systems rather than local systems.
• Before the web, business applications were mostly monolithic running on

single computers. Communications were local, within an organization.
• Now, software is highly distributed. Business applications are not

programmed from scratch but involve reuse of components and programs.
• Web services (discussed in later in the course) allow application

functionality to be accessed over the web.
• Cloud computing is an approach to the provision of computer services

where applications run remotely on the ‘cloud’.
• Users do not buy software but pay according to use.

Web-based Software Engineering

• Web-based systems are complex distributed systems but the
fundamental principles of software engineering discussed previously
are as applicable to them as they are to any other types of system.
• The fundamental ideas of software engineering apply to web-based

software in the same way that they apply to other types of software
system.

Web Software Engineering

• Software reuse
Software reuse is the dominant approach for constructing web-based systems. When
building these systems, you think about how you can assemble them from pre-existing
software components and systems.

• Incremental and agile development
Web-based systems should be developed and delivered incrementally. It is now
generally recognized that it is impractical to specify all the requirements for such
systems in advance.

• Service-oriented systems
Software may be implemented using service-oriented software engineering, where the
software components are stand-alone web services.

• Rich interfaces
Interface development technologies such as AJAX and HTML5 have emerged that
support the creation of rich interfaces within a web browser.

Case Studies

Case Studies

• A personal insulin pump
An embedded system in an insulin pump used by diabetics to maintain blood
glucose control.

• Mentcare: a mental health case patient management system
A system used to maintain records of people receiving care for mental health
problems.

• A wilderness weather station
A data collection system that collects data about weather conditions in remote
areas.

• iLearn: a digital learning environment
A system to support learning in schools

Insulin Pump Control System

• Collects data from a blood sugar sensor and calculates the amount of
insulin required to be injected.
• Calculation based on the rate of change of blood sugar levels.
• Sends signals to a micro-pump to deliver the correct dose of insulin.
• Safety-critical system as low blood sugars can lead to brain

malfunctioning, coma and death; high-blood sugar levels have long-
term consequences such as eye and kidney damage.

Insulin Pump Hardware Architecture

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoir
• A software-controlled insulin delivery

system uses a microsensor embedded in
patient to measure some blood parameter
that is proportional to the sugar level.

• This is then sent to the pump controller to
compute the sugar level and the amount
of insulin that is needed.

• It then sends signals to a miniaturized
pump to deliver the insulin via a
permanently attached needle.

UML Activity Model of the Insulin Pump

Analyse sensor
reading

Blood
sensor

Insulin
pump

Blood
sugar

Compute
insulin

Insulin
dose

Insulin
log

Log doseCompute pump
commands

Pump
data

Control insulin
pump

illustrates how the software transforms an input blood sugar level to a sequence
of commands that drive the insulin pump

Essential High-Level Requirements

• The system shall be available to deliver insulin when required.
• The system shall perform reliably and deliver the correct amount of

insulin to counteract the current level of blood sugar.
• The system must therefore be designed and implemented to ensure

that the system always meets these requirements.

Mentcare: A patient information system for
mental health care
• A patient information system to support mental health care is a

medical information system that maintains information about
patients suffering from mental health problems and the treatments
that they have received.
• Most mental health patients do not require dedicated hospital

treatment but need to attend specialist clinics regularly where they
can meet a doctor who has detailed knowledge of their problems.
• To make it easier for patients to attend, these clinics are not just run

in hospitals. They may also be held in local medical practices or
community centres.

Mentcare

• Mentcare is an information system that
is intended for use in clinics.
• It makes use of a centralized database

of patient information but has also
been designed to run on a PC, so that it
may be accessed and used from sites
that do not have secure network
connectivity.
• When the local systems have secure

network access, they use patient
information in the database but they
can download and use local copies of
patient records when they are
disconnected.

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Mentcare Goals

• To generate management information that allows health service
managers to assess performance against local and government
targets.
• To provide medical staff with timely information to support the

treatment of patients.

Organization of the Mentcare System

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Key Features of the Mentcare System

• Individual care management
Clinicians can create records for patients, edit the information in the system, view
patient history, etc. The system supports data summaries so that doctors can quickly
learn about the key problems and treatments that have been prescribed.

• Patient monitoring
The system monitors the records of patients that are involved in treatment and issues
warnings if possible problems are detected.

• Administrative reporting
The system generates monthly management reports showing the number of patients
treated at each clinic, the number of patients who have entered and left the care
system, number of patients sectioned, the drugs prescribed and their costs, etc.

Mentcare System Concerns

• Privacy
• It is essential that patient information is confidential and is never disclosed to

anyone apart from authorised medical staff and the patient themselves.

• Safety
• Some mental illnesses cause patients to become suicidal or a danger to other

people. Wherever possible, the system should warn medical staff about
potentially suicidal or dangerous patients.
• The system must be available when needed otherwise safety may be

compromised and it may be impossible to prescribe the correct medication to
patients.

Wilderness Weather Station

• The government of a country with large areas of wilderness decides
to deploy several hundred weather stations in remote areas.
• Weather stations collect data from a set of instruments that measure

temperature and pressure, sunshine, rainfall, wind speed and wind
direction.
• The weather station includes a number of instruments that measure weather

parameters such as the wind speed and direction, the ground and air
temperatures, the barometric pressure and the rainfall over a 24-hour period.
• Each of these instruments is controlled by a software system that takes

parameter readings periodically and manages the data collected from the
instruments.

Weather Information System

• Weather Station System
This is responsible for collecting weather data,
carrying out some initial data processing and
transmitting it to the data management system.

• Data Management and Archiving System
This system collects the data from all of the
wilderness weather stations, carries out data
processing and analysis and archives the data.

• Station Maintenance System
This system can communicate by satellite with all
wilderness weather stations to monitor the health
of these systems and provide reports of problems.

«system»
Data management

and archiving

«system»
Station maintenance

«system»
Weather station

Additional Software Functionality

• Monitor the instruments, power and communication hardware and
report faults to the management system.
• Manage the system power, ensuring that batteries are charged

whenever the environmental conditions permit but also that
generators are shut down in potentially damaging weather
conditions, such as high wind.
• Support dynamic reconfiguration where parts of the software are

replaced with new versions and where backup instruments are
switched into the system in the event of system failure.

iLearn: A digital Learning Environment

• A digital learning environment is a framework in which a set of
general-purpose and specially designed tools for learning may be
embedded plus a set of applications that are geared to the needs of
the learners using the system.
• The tools included in each version of the environment are chosen by

teachers and learners to suit their specific needs.
• These can be general applications such as spread sheets, learning

management applications such as a Virtual Learning Environment (VLE) to
manage homework submission and assessment, games and simulations.

iLearn: A Service-Oriented System

• The system is a service-oriented system with all system components
considered to be a replaceable service.
• This allows the system to be updated incrementally as new services

become available.
• It also makes it possible to rapidly configure the system to create

versions of the environment for different groups such as very young
children who cannot read, senior students, etc.

iLearn Services

• Utility services that provide basic application-
independent functionality and which may be
used by other services in the system.
• Application services that provide specific

applications such as email, conferencing, photo
sharing and access to educational content such
as scientific films or historical resources.
• Configuration services that are used to adapt the

environment with a specific set of application
services and do define how services are shared
between students, teachers and their parents.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage
Logging and monitoring

Application storage
Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

iLearn: Service Integration

• The environment has been designed so that services can be replaced as
new services become available and to provide different versions of the
system that are suited for the age of the users.
• This means that the system has to support two levels of service integration:

• Integrated services are services which offer an API (application programming
interface) and which can be accessed by other services through that API. Direct
service-to-service communication is therefore possible.

• Independent services are services which are simply accessed through a browser
interface and which operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and paste;
re-authentication may be required for each independent service.

Generic Technical Terms

• Notation is a graphical or textual set of rules for representing a
model.
• Examples: Unified Modeling Language (UML) and Architecture Analysis and

Design Language (AADL).

• Method is a repeatable technique that specifies the steps involved in
solving a specific problem.
• Examples: different sorting algorithms and heuristics.

• Methodology: a collection of methods for solving a specific set of
problems.
• Examples:

Computer-Aided Software Engineering

• CASE are software systems which are intended to provide automated
support for software process activities, such as requirements
analysis, system modelling, debugging and testing.
• Upper-CASE are the Tools to support the early process activities of

requirements and design
• Lower-CASE are the tools to support later activities such as

programming, debugging and testing

