
Ahmed Tamrawi

COMP 433 Software Engineering
Module 2: Software Processes

Acknowledgment Notice
Part of the slides are based on content from Ian Somerville’s Software Engineering book.

Software Processes
A structured set of activities required to develop a software system

The Software Process

• Many different software processes but all involve:
• Specification – defining what the system should do;
• Design and implementation – defining the organization of the system and implementing the

system;
• Validation – checking that system does what the customer wants;
• Evolution – changing the system in response to changing customer needs.

• These activities are complex activities in themselves, and they include sub-activities such
as requirements validation, architectural design, and unit testing.

• Processes also include other activities, such as software configuration management and
project planning that support production activities.

• A software process model is an abstract representation of a process. It presents a
description of a process from some particular perspective.

Software Process Descriptions

• When we describe and discuss processes, we usually talk about the
activities in these processes such as specifying a data model,
designing a user interface, etc. and the ordering of these activities.
• Process descriptions may also include:
• Products, which are the outcomes of a process activity;
• Roles, which reflect the responsibilities of the people involved in the process;
• Pre- and post-conditions, which are statements that are true before and after

a process activity has been enacted or a product produced.
• For example, before architectural design begins, a precondition may be that the

consumer has approved all requirements; after this activity is finished, a postcondition
might be that the UML models describing the architecture have been reviewed.

Software Processes

• Software processes are complex and, like all intellectual and creative processes
rely on people making decisions and judgments.

• There is no universal process that is right for all kinds of software.

• Most software companies have developed their own development processes.

• Processes have evolved to take advantage of the capabilities of the software
developers in an organization and the characteristics of the systems that are
being developed.

• For safety-critical systems, a very structured development process is required
where detailed records are maintained. For business systems, with rapidly
changing requirements, a more flexible, agile process is likely to be better.

Software Process Models

• The waterfall model
Plan-driven model. Separate and distinct phases of specification and
development.

• Incremental development
Specification, development and validation are interleaved. May be plan-driven
or agile.

• Integration and configuration
The system is assembled from existing configurable (reusable) components.
May be plan-driven or agile.

• In practice, most large systems are developed using a process that
incorporates elements from all of these models.

sometimes called a Software Development Life Cycle or SDLC model

Software Process Models

• Various attempts have been made to develop “universal” process
models that draw on all of these general models.
• One of the best known of these universal models is the Rational

Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company.
• The RUP is a flexible model that can be instantiated in different ways

to create processes that resemble any of the general process models
discussed here.
• The RUP has been adopted by some large software companies

(notably IBM), but it has not gained widespread acceptance.

The Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

The system’s services, constraints, and goals are established by consultation with system
users. They are then defined in detail and serve as a system specification.

The systems design process allocates the requirements to either hardware or software systems. It establishes
an overall system architecture. Software design involves identifying and describing the fundamental software
system abstractions and their relationships.

the software design is realized as a set of programs or program units. Unit
testing involves verifying that each unit meets its specification.

The individual program units or programs are integrated and tested as a complete
system to ensure that the software requirements have been met. After testing, the
software system is delivered to the customer.

Normally, this is the longest life-cycle phase. The system is installed and put into practical use.
Maintenance involves correcting errors that were not discovered in earlier stages of the life
cycle, improving the implementation of system units, and enhancing the system’s services as
new requirements are discovered.

The Waterfall Model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

The main drawback of the waterfall model is the difficulty of accommodating change after the
process is underway. In principle, a phase has to be complete before moving onto the next phase.

In principle, the result of each phase in the waterfall model is one or
more documents that are approved (“signed off”). The following phase

should not start until the previous phase has finished.

The Waterfall Model

• In reality, software has to be flexible and accommodate change as it is
being developed.
• The need for early commitment and system rework when changes are

made means that the waterfall model is only appropriate for some
types of system:
• Embedded systems where the software has to interface with hardware

systems (hardware inflexibility).
• Critical systems where there is a need for extensive safety and security

analysis of the software specification and design.
• Large software systems that are part of broader engineering systems

developed by several partner companies.

Advantages of Waterfall Model

• Developers and customers agree on what will be delivered early in the
development lifecycle. This makes planning and designing more
straightforward.
• Progress is more easily measured, as the full scope of the work is known in

advance.
• Throughout the development effort, it’s possible for various members of

the team to be involved or to continue with other work, depending on the
active phase of the project
• Customer presence is not strictly required after the requirements phase.
• The software can be designed completely and more carefully, based upon

a more complete understanding of all software deliverables.

Waterfall Model Problems

• Inflexible partitioning of the project into distinct stages makes it
difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.
• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering
projects where a system is developed at several sites.
• In those circumstances, the plan-driven nature of the waterfall model helps

coordinate the work.

Waterfall Model Problems

• One area which almost always falls short is the effectiveness
of requirements.
• Gathering and documenting requirements in a way that is meaningful

to a customer is often the most difficult part of software
development.
• Another potential drawback of pure Waterfall development is the

possibility that the customer will be dissatisfied with their delivered
software product.
• Testing of whole system that only happens at end of project.

Formal System Development

• An important variant of the waterfall model is formal system
development, where a mathematical model of a system specification
is created. This model is then refined, using mathematical
transformations that preserve its consistency, into executable code.
• This development process is particularly suited to the development of

systems that have stringent safety, reliability, or security
requirements.
• Formal methods are most likely to be applied to safety-critical or

security-critical software and systems, such as avionics software.

Incremental Development

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Incremental development is based on the idea of developing an initial implementation, getting feedback from users
and others, and evolving the software through several versions until the required system has been developed

Each increment or version of the system
incorporates some of the functionality that is
needed by the customer. The early increments of
the system include the most important or most
urgently required functionality. This means that the
customer or user can evaluate the system at a
relatively early stage in the development to see if it
delivers what is required.

Incremental Development Benefits

• The cost of accommodating changing customer requirements is
reduced.
• The amount of analysis and documentation that has to be redone is much less

than is required with the waterfall model.
• It is easier to get customer feedback on the development work that

has been done.
• Customers can comment on demonstrations of the software and see how

much has been implemented.
• More rapid delivery and deployment of useful software to the

customer is possible.
• Customers are able to use and gain value from the software earlier than is

possible with a waterfall process.

Incremental Development Problems

• The process is not visible.
• Managers need regular deliverables to measure progress. If systems are

developed quickly, it is not cost-effective to produce documents that reflect
every version of the system.

• System structure tends to degrade as new increments are added.
• Unless time and money is spent on refactoring to improve the software,

regular change tends to corrupt its structure. Incorporating further software
changes becomes increasingly difficult and costly.

• The problems of incremental development become particularly acute
for large, complex, long-lifetime systems, where different teams
develop different parts of the system. Remember that Large systems
need a stable framework or architecture.

Integration and Configuration

• Based on software reuse where systems are integrated from existing
components or application systems (sometimes called COTS -
Commercial-off-the-shelf) systems).
• Reused elements may be configured to adapt their behaviour and

functionality to a user’s requirements
• Reuse is now the standard approach for building many types of

business system.

Types of Reusable Software

• Stand-alone application systems (sometimes called COTS) that are
configured for use in a particular environment.
• Collections of objects that are developed as a package to be

integrated with a component framework such as Java Spring
Framework, .NET, or J2EE.
• Web services that are developed according to service standards and

which are available for remote invocation.

Reuse-Oriented Software Engineering

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
available

The initial requirements for the
system are proposed. These do not
have to be elaborated in detail.

A search is made for components
and systems that provide the
functionality required. The requirements are refined using information

about the reusable components and applications
that have been discovered. The requirements are
modified to reflect the available components, and
the system specification is re defined

Reuse-Oriented Software Engineering

• Advantages:
• Reduced costs and risks as less software is developed from scratch.
• Faster delivery and deployment of system.

• Disadvantages:
• Requirements compromises are inevitable so system may not meet real needs

of users.
• Loss of control over evolution of reused system elements.

Agile Software Development

Rapid Software Development

• Rapid development and delivery is now often the most important
requirement for software systems
• Businesses operate in a fast – changing requirement and it is practically

impossible to produce a set of stable software requirements
• Software must evolve quickly to reflect changing business needs.

• Plan-driven development is essential for some types of system but
does not meet these business needs.
• Agile development methods emerged in the late 1990s whose aim

was to radically reduce the delivery time for working software
systems.

Agile Development

• Program specification, design and implementation are inter-leaved.
• The system is developed as a series of versions or increments with

stakeholders involved in version specification and evaluation.
• Frequent delivery of new versions for evaluation.
• Extensive tool support (e.g., automated testing tools) used to support

development.
• Minimal documentation – focus on working code.

Plan-Driven and Agile Development

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Plan-Driven Development
• A plan-driven approach to software engineering is based

around separate development stages with the outputs
to be produced at each of these stages planned in
advance.

• Not necessarily waterfall model – plan-driven,
incremental development is possible.

• Iteration occurs within activities.

Agile Development
Specification, design, implementation and testing are inter-
leaved and the outputs from the development process are
decided through a process of negotiation during the
software development process.

Plan-Driven vs Agile Development

Agile Methods

Agile Methods

• Dissatisfaction with the overheads involved in software design methods of the
1980s and 1990s led to the creation of agile methods. These methods:
• Focus on the code rather than the design
• Are based on an iterative approach to software development
• Are intended to deliver working software quickly and evolve this quickly to meet changing

requirements.

• The aim of agile methods is to reduce overheads in the software process (e.g. by
limiting documentation) and to be able to respond quickly to changing
requirements without excessive rework.

The Principles of Agile Methods
Principle Description

Customer involvement
Customers should be closely involved throughout the development
process. Their role is provide and prioritize new system requirements
and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer specifying
the requirements to be included in each increment.

People not process
The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working
without prescriptive processes.

Embrace change Expect the system requirements to change and so design the system to
accommodate these changes.

Maintain simplicity
Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

Agile Method Applicability

• Product development where a software company is developing a
small or medium-sized product for sale.
• Virtually all software products and apps are now developed using an agile

approach

• Custom system development within an organization, where there is a
clear commitment from the customer to become involved in the
development process and where there are few external rules and
regulations that affect the software.

Agile Development Techniques

Extreme Programming

• A very influential agile method,
developed in the late 1990s, that
introduced a range of agile
development techniques.
• Extreme Programming (XP) takes an

‘extreme’ approach to iterative
development.
• New versions may be built several times

per day;
• Increments are delivered to customers

every 2 weeks;
• All tests must be run for every build and

the build is only accepted if tests run
successfully.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test software

Extreme Programming Practices

Principle or practice Description

Incremental planning
Requirements are recorded on story cards and the stories to be included in a
release are determined by the time available and their relative priority. The
developers break these stories into development ‘Tasks’.

Small releases
The minimal useful set of functionality that provides business value is developed
first. Releases of the system are frequent and incrementally add functionality to
the first release.

Simple design Enough design is carried out to meet the current requirements and no more.

Test-first development An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

Refactoring
All developers are expected to re-factor the code continuously as soon as
possible code improvements are found. This keeps the code simple and
maintainable.

Extreme Programming Practices

Pair programming Developers work in pairs, checking each other’s work and providing the support
to always do a good job.

Collective ownership
The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into the whole
system. After any such integration, all the unit tests in the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as the net effect is
often to reduce code quality and medium term productivity

On-site customer

A representative of the end-user of the system (the customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is responsible
for bringing system requirements to the team for implementation.

XP and Agile Principles

• Incremental development is supported through small, frequent
system releases.
• Customer involvement means full-time customer engagement with

the team.
• People not process through pair programming, collective ownership

and a process that avoids long working hours.
• Change supported through regular system releases.
• Maintaining simplicity through constant refactoring of code.

Influential XP Practices

• Extreme programming has a technical focus and is not easy to
integrate with management practice in most organizations.
• Consequently, while agile development uses practices from XP, the

method as originally defined is not widely used.

User Stories for Requirements

• In XP, a customer or user is part of the XP team and is responsible for
making decisions on requirements.
• User requirements are expressed as user stories or scenarios.
• These are written on cards and the development team break them

down into implementation tasks. These tasks are the basis of
schedule and cost estimates.
• The customer chooses the stories for inclusion in the next release

based on their priorities and the schedule estimates.

A ‘prescribing medication’ Story and Tasks

The record of the patient must be open for input. Click on the medication field and
select either ‘current medication’, ‘new medication’ or ‘formulary’.

If you select ‘current medication’, you will be asked to check the dose; If you wish to
change the dose, enter the new dose then confirm the prescription.

If you choose, ‘new medication’, the system assumes that you know which
medication you wish to prescribe. Type the first few letters of the drug name. You
will then see a list of possible drugs starting with these letters. Choose the required
medication. You will then be asked to check that the medication you have selected
is correct. Enter the dose then confirm the prescription.

If you choose ‘formulary’, you will be presented with a search box for the approved
formulary. Search for the drug required then select it. You will then be asked to
check that the medication you have selected is correct. Enter the dose then confirm
the prescription.

In all cases, the system will check that the dose is within the approved range and
will ask you to change it if it is outside the range of recommended doses.

After you have confirmed the prescription, it will be displayed for checking. Either
click ‘OK’ or ‘Change’. If you click ‘OK’, your prescription will be recorded on the audit
database. If you click ‘Change’, you reenter the ‘Prescribing medication’ process.

Prescribing medication

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.
Using the formulary id for the generic drug name,
lookup the formulary and retrieve the recommended
maximum and minimum dose.
Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Refactoring

• Conventional wisdom in software engineering is to design for change.
It is worth spending time and effort anticipating changes as this
reduces costs later in the life cycle.
• XP, however, maintains that this is not worthwhile as changes cannot

be reliably anticipated.
• Rather, it proposes constant code improvement (refactoring) to make

changes easier when they have to be implemented.

Refactoring

• Programming team look for possible software improvements and
make these improvements even where there is no immediate need for
them.
• This improves the understandability of the software and so reduces

the need for documentation.
• Changes are easier to make because the code is well-structured and

clear.
• However, some changes requires architecture refactoring, and this is

much more expensive.

Examples of Refactoring

• Re-organization of a class hierarchy to remove duplicate code.
• Tidying up and renaming attributes and methods to make them easier

to understand.
• The replacement of inline code with calls to methods that have been

included in a program library.

Test-First Development

• Testing is central to XP and XP has developed an approach where the
program is tested after every change has been made.
• XP testing features:
• Test-first development.
• Incremental test development from scenarios.
• User involvement in test development and validation.
• Automated test harnesses are used to run all component tests each time that

a new release is built.

Test-Driven Development

• Writing tests before code clarifies the requirements to be
implemented.
• Tests are written as programs rather than data so that they can be

executed automatically. The test includes a check that it has executed
correctly.
• Usually relies on a testing framework such as Junit.

• All previous and new tests are run automatically when new
functionality is added, thus checking that the new functionality has
not introduced errors.

Customer Involvement

• The role of the customer in the testing process is to help develop
acceptance tests for the stories that are to be implemented in the
next release of the system.
• The customer who is part of the team writes tests as development

proceeds. All new code is therefore validated to ensure that it is what
the customer needs.
• However, people adopting the customer role have limited time

available and so cannot work full-time with the development team.
• They may feel that providing the requirements was enough of a contribution

and so may be reluctant to get involved in the testing process.

Test Case Description for Dose Checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too
high.
2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

Test 4: Dose checking

Test Automation

• Test automation means that tests are written as executable
components before the task is implemented
• These testing components should be stand-alone, should simulate the

submission of input to be tested and should check that the result meets the
output specification.
• An automated test framework (e.g., Junit) is a system that makes it easy to

write executable tests and submit a set of tests for execution.

• As testing is automated, there is always a set of tests that can be
quickly and easily executed
• Whenever any functionality is added to the system, the tests can be run and

problems that the new code has introduced can be caught immediately.

Problems with Test-First Development

• Programmers prefer programming to testing and sometimes they
take short cuts when writing tests. For example, they may write
incomplete tests that do not check for all possible exceptions that
may occur.
• Some tests can be very difficult to write incrementally. For example,

in a complex user interface, it is often difficult to write unit tests for
the code that implements the ‘display logic’ and workflow between
screens.
• It difficult to judge the completeness of a set of tests. Although you

may have a lot of system tests, your test set may not provide
complete coverage.

Pair Programming

• Pair programming involves programmers working in pairs, developing
code together.
• This helps develop common ownership of code and spreads

knowledge across the team.
• It serves as an informal review process as each line of code is looked

at by more than 1 person.
• It encourages refactoring as the whole team can benefit from

improving the system code.
• In pair programming, programmers sit together at the same computer

to develop the software.

Pair Programming

• Pairs are created dynamically so that all team members work with
each other during the development process.
• The sharing of knowledge that happens during pair programming is

very important as it reduces the overall risks to a project when team
members leave.
• Pair programming is not necessarily inefficient and there is some

evidence that suggests that a pair working together is more efficient
than 2 programmers working separately.

Agile Project Management

Agile Project Management

• The principal responsibility of software project managers is to
manage the project so that the software is delivered on time and
within the planned budget for the project.
• The standard approach to project management is plan-driven.

Managers draw up a plan for the project showing what should be
delivered, when it should be delivered and who will work on the
development of the project deliverables.
• Agile project management requires a different approach, which is

adapted to incremental development and the practices used in agile
methods.

Scrum

• Scrum is an agile method that focuses on managing iterative
development rather than specific agile practices.
• There are three phases in Scrum.
• The initial phase is an outline planning phase where you establish the general

objectives for the project and design the software architecture.
• This is followed by a series of sprint cycles, where each cycle develops an

increment of the system.
• The project closure phase wraps up the project, completes required

documentation such as system help frames and user manuals and assesses
the lessons learned from the project.

SCRUM
A framework for managing work with an emphasis on software development. It is designed for teams of developers (3 to 9) who
break their work into actions that can be completed within timeboxed iterations, called sprints (30 days or less, most commonly

two weeks) and track progress and re-plan in 15-minute stand-up meetings, called daily scrums.

Purpose
• Synchronize activities and create a plan for next 24 hrs.
• Track Progress
Agenda – Each Team member explains:
• What has been accomplished since last meeting?
• What will be done before the next meeting?
• What obstacles are in the way?

Max 15 mins

Max 8 hours

Max 4 hours
Show the customer and other
stakeholders the work that the team
accomplished in the sprint and
receive feedback

Identify and implement ideas for
process improvement

Determine what to do

Max 3 hours

Scrum Terminology
Scrum term Definition

Development team
A self-organizing group of software developers responsible for developing the software and other essential project
documents.

Potentially shippable product
increment

The software increment that is delivered from a sprint. The idea is that this should be ‘potentially shippable’ which
means that it is in a finished state and no further work, such as testing, is needed to incorporate it into the final product.
In practice, this is not always achievable.

Product backlog
This is a list of ‘to do’ items which the Scrum team must tackle. They may be feature definitions for the software,
software requirements, user stories or descriptions of supplementary tasks that are needed, such as architecture
definition or user documentation.

Product owner

An individual (or possibly a small group) whose job is to identify product features or requirements, prioritize these for
development and continuously review the product backlog to ensure that the project continues to meet critical business
needs. The Product Owner can be a customer but might also be a product manager in a software company or other
stakeholder representative.

Scrum
A daily meeting of the Scrum team that reviews progress and prioritizes work to be done that day. Ideally, this should be
a short face-to-face meeting that includes the whole team.

ScrumMaster

The ScrumMaster is responsible for ensuring that the Scrum process is followed and guides the team in the effective use
of Scrum. He or she is responsible for interfacing with the rest of the company and for ensuring that the Scrum team is
not diverted by outside interference. The Scrum developers are adamant that the ScrumMaster should not be thought of
as a project manager. Others, however, may not always find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.

Velocity
An estimate of how much product backlog effort that a team can cover in a single sprint. Understanding a team’s
velocity helps them estimate what can be covered in a sprint and provides a basis for measuring improving performance.

The Scrum Sprint Cycle

• Sprints are fixed length, normally 2–4 weeks.
• The starting point for planning is the product backlog, which is the list

of work to be done on the project.
• The selection phase involves all of the project team who work with

the customer to select the features and functionality from the
product backlog to be developed during the sprint.

Review work
to be done

Select
items

Plan
sprint

Review
sprintSprint

Scrum

Product
backlog

Sprint
backlog

Potentially
shippable
software

The Sprint Cycle

• Once these are agreed, the team organize themselves to develop the
software.
• During this stage the team is isolated from the customer and the

organization, with all communications channelled through the so-
called ‘Scrum master’.
• The role of the Scrum master is to protect the development team

from external distractions.
• At the end of the sprint, the work done is reviewed and presented to

stakeholders. The next sprint cycle then begins.

Teamwork in Scrum

• The ‘Scrum master’ is a facilitator who arranges daily meetings, tracks
the backlog of work to be done, records decisions, measures progress
against the backlog and communicates with customers and
management outside of the team.
• The whole team attends short daily meetings (Scrums) where all team

members share information, describe their progress since the last
meeting, problems that have arisen and what is planned for the
following day.
• This means that everyone on the team knows what is going on and, if

problems arise, can re-plan short-term work to cope with them.

Scrum Benefits

• The product is broken down into a set of manageable and
understandable chunks.
• Unstable requirements do not hold up progress.
• The whole team have visibility of everything and consequently team

communication is improved.
• Customers see on-time delivery of increments and gain feedback on

how the product works.
• Trust between customers and developers is established and a positive

culture is created in which everyone expects the project to succeed.

Practical Problems with Agile Methods

• The informality of agile development is incompatible with the legal
approach to contract definition that is commonly used in large
companies.
• Agile methods are most appropriate for new software development

rather than software maintenance. Yet the majority of software costs
in large companies come from maintaining their existing software
systems.
• Agile methods are designed for small co-located teams yet much

software development now involves worldwide distributed teams.

Contractual Issues

• Most software contracts for custom systems are based around a
specification, which sets out what has to be implemented by the
system developer for the system customer.
• However, this precludes interleaving specification and development

as is the norm in agile development.
• A contract that pays for developer time rather than functionality is

required.
• However, this is seen as a high risk in many legal departments because what

has to be delivered cannot be guaranteed.

Agile Methods and Software Maintenance

• Key problems are:
• Lack of product documentation
• Keeping customers involved in the development process
• Maintaining the continuity of the development team

• Agile development relies on the development team knowing and
understanding what has to be done.
• For long-lifetime systems, this is a real problem as the original

developers will not always work on the system.

Agile and Plan-Driven Methods

• Most projects include elements of plan-driven and agile processes.
Deciding on the balance depends on:
• Is it important to have a very detailed specification and design before moving

to implementation? If so, you probably need to use a plan-driven approach.
• Is an incremental delivery strategy, where you deliver the software to

customers and get rapid feedback from them, realistic? If so, consider using
agile methods.
• How large is the system that is being developed? Agile methods are most

effective when the system can be developed with a small co-located team
who can communicate informally. This may not be possible for large systems
that require larger development teams so a plan-driven approach may have
to be used.

Process Activities

Process Activities

• Real software processes are inter-leaved sequences of technical,
collaborative and managerial activities with the overall goal of specifying,
designing, implementing and testing a software system.
• The four basic process activities of specification, development, validation

and evolution are organized differently in different development
processes.
• For example, in the waterfall model, they are organized in sequence,

whereas in incremental development they are interleaved.
• Generally, processes are now tool-supported. This means that software

developers may use a range of software tools to help them, such as
requirements management systems, design model editors, program
editors, automated testing tools, and debuggers.

Software Specification

• The process of establishing what
services are required and the
constraints on the system’s operation
and development.
• Requirements engineering process
• Requirements elicitation and analysis

• What do the system stakeholders require or
expect from the system?

• Requirements specification
• Defining the requirements in detail

• Requirements validation
• Checking the validity of the requirements

What do the system
stakeholders require or

expect from the system? Defining the
requirements
in detail

Software Design and Implementation

• The process of converting the system specification into an executable
system.
• Software design
• Design a software structure that realises the specification;

• Implementation
• Translate this structure into an executable program;

• The activities of design and implementation are closely related and
may be inter-leaved.

Design Activities

• Architectural design, where you identify the
overall structure of the system, the principal
components (subsystems or modules), their
relationships and how they are distributed.
• Database design, where you design the

system data structures and how these are
to be represented in a database.
• Interface design, where you define the

interfaces between system components.
• Component selection and design, where you

search for reusable components. If
unavailable, you design how it will operate.

Interface
design

Component
design

System
architecture

Database
specification

Interface
specification

Requirements
specification

Architectural
design

Component
specification

Platform
information

Data
description

Design inputs

Design activities

Design outputs

Database design

The design process activities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design rework is therefore inevitable.

System Implementation

• The software is implemented either by developing a program or programs
or by configuring an application system.
• Software development tools may be used to generate a skeleton program

from a design.
• Design and implementation are interleaved activities for most types of

software system.
• Programming is an individual activity with no standard process.
• Normally, programmers carry out some testing of the code they have

developed. This often reveals program defects (bugs) that must be
removed from the program. Finding and fixing program defects is called
debugging.

Software Validation

• Verification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the
system customer.
• Involves checking and review processes and system testing.
• System testing involves executing the system with test cases that are

derived from the specification of the real data to be processed by the
system.
• Testing is the most commonly used V & V activity.

Testing Stages

• Component testing
• Individual components are tested independently;
• Components may be functions or objects or coherent groupings of these

entities.

• System testing
• Testing of the system as a whole. Testing of emergent properties is

particularly important.

• Customer testing
• Testing with customer data to check that the system meets the customer’s

needs.

System testing
Component

 testing
Acceptance

testing

Testing Phases in a Plan-Driven Software
Process (V-model)

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Software Evolution

• Software is inherently flexible and can change.
• As requirements change through changing business circumstances,

the software that supports the business must also evolve and change.
• Although there has been a demarcation between development and

evolution (maintenance) this is increasingly irrelevant as fewer and
fewer systems are completely new.

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

Coping with Change

Coping with Change

• Change is inevitable in all large software projects.
• Business changes lead to new and changed system requirements
• New technologies open up new possibilities for improving implementations
• Changing platforms require application changes

• Change leads to rework so the costs of change include both rework
(e.g., re-analyzing requirements) as well as the costs of implementing
new functionality.

Reducing the Costs of Rework

• Change anticipation, where the software process includes activities
that can anticipate possible changes before significant rework is
required.
• For example, a prototype system may be developed to show some key

features of the system to customers.

• Change tolerance, where the process is designed so that changes can
be accommodated at relatively low cost.
• This normally involves some form of incremental development. Proposed

changes may be implemented in increments that have not yet been
developed. If this is impossible, then only a single increment (a small part of
the system) may have be altered to incorporate the change.

Coping with Changing Requirements

• System prototyping, where a version of the system or part of the
system is developed quickly to check the customer’s requirements
and the feasibility of design decisions. This approach supports change
anticipation.
• Incremental delivery, where system increments are delivered to the

customer for comment and experimentation. This supports both
change avoidance and change tolerance.

Software Prototyping

• A prototype is an initial version of a system used to demonstrate
concepts and try out design options.
• A prototype can be used in:
• The requirements engineering process to help with requirements elicitation

and validation;
• In design processes to explore options and develop a UI design;
• In the testing process to run back-to-back tests.

Benefits of Prototyping

• Improved system usability.
• A closer match to users’ real needs.
• Improved design quality.
• Improved maintainability.
• Reduced development effort.

Prototype Development

• May be based on rapid prototyping languages or tools
• May involve leaving out functionality
• Prototype should focus on areas of the product that are not well-understood;
• Error checking and recovery may not be included in the prototype;
• Focus on functional rather than non-functional requirements such as

reliability and security.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

Throw-Away Prototypes

• Prototypes should be discarded after development as they are
not a good basis for a production system:
• It may be impossible to tune the system to meet non-functional

requirements;
• Prototypes are normally undocumented;
• The prototype structure is usually degraded through rapid change;
• The prototype probably will not meet normal organizational quality

standards.

Incremental Delivery

• Rather than deliver the system as a single delivery, the development
and delivery is broken down into increments with each increment
delivering part of the required functionality.
• User requirements are prioritised and the highest priority

requirements are included in early increments.
• Once the development of an increment is started, the requirements

are frozen though requirements for later increments can continue to
evolve.

Incremental Development and Delivery

• Incremental development
• Develop the system in increments and evaluate each increment before

proceeding to the development of the next increment;
• Normal approach used in agile methods;
• Evaluation done by user/customer proxy.

• Incremental delivery
• Deploy an increment for use by end-users;
• More realistic evaluation about practical use of software;
• Difficult to implement for replacement systems as increments have less

functionality than the system being replaced.

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Incremental Delivery Advantages

• Customer value can be delivered with each increment so system
functionality is available earlier.
• Early increments act as a prototype to help elicit requirements for

later increments.
• Lower risk of overall project failure.
• The highest priority system services tend to receive the most testing.

Incremental Delivery Problems

• Most systems require a set of basic facilities that are used by different
parts of the system.
• As requirements are not defined in detail until an increment is to be

implemented, it can be hard to identify common facilities that are needed
by all increments.

• The essence of iterative processes is that the specification is
developed in conjunction with the software.
• However, this conflicts with the procurement model of many organizations,

where the complete system specification is part of the system development
contract.

Spiral Model of Software Development

• The spiral model was defined by Barry Boehm in his article A Spiral
Model of Software Development and Enhancement from 1986.
• This model was not the first model to discuss iteration, but it was the

first model to explain why the iteration matters. As originally
envisioned, the iterations were typically 6 months to 2 years long.
• The spiral model (Boehm, 1988) aims at risk reduction by any means

in any phase. The spiral model is often referred to as a risk-driven
model.
• Introducing prototyping in a Software Process aims at risk reduction

at the requirements level. There is always an element of risk involved
in the other phases of development.

Spiral Model of Software Development

• A spiral phase begins in the top left
quadrant (quadrant 1), by
determining objectives of that
phase, alternatives and constraints.
This is a way to define a strategy for
achieving the goals of this iteration.
• Next (quadrant 2), the strategy is

analyzed form the viewpoint of risk,
and solutions to minimize these risks
are investigated, often using
prototyping.

Spiral Model of Software Development

• Then (quadrant 3), considering the
investigations made in quadrant 2, a
solution is put into practice to
produce the artifacts necessary to
reach the goals identified in
quadrant 1. This quadrant 3
corresponds to where the traditional
waterfall model phases are put into
practice.

Spiral Model of Software Development

• Finally (quadrant 4), the results of
the risk-reduction strategies are
assessed, and if all risks are resolved,
the next phase is planned and
started.
• If some risks are left unsolved,

another iteration can be made to
continue to work on the
uneliminated risks. If certain risks
can not be resolved, the project
might be terminated immediately.

Spiral Model of Software Development

Advantages
• Emphasis on alternatives and constraints supports the reuse of existing

solutions.
• Targets testing by treating it as a risk, which has to be addressed.
• Maintenance is just another phase of the spiral model. It is treated in the

same way as development.
• Estimates (budget and schedule) get more realistic as work progresses,

because important issues are discovered earlier.
• It is more able to cope with the (nearly inevitable) changes that software

development generally entails.
• Software engineers, who can get restless with protracted design processes,

can get their hands in and start working on a project earlier.

Spiral Model of Software Development

Disadvantages
• Only intended for internal projects (inside a company), because risk is

assessed as the project is developed. Hardly suitable for contractual
software development.
• In case of contractual software development, all risk analysis must be

performed by both client and developers before the contract is signed and
not as in the spiral model.
• Spiral model is risk driven. Therefore, it requires knowledgeable staff.
• Suitable for only large-scale software development. Does not make sense if

the cost of risk analysis is a major part of the overall project cost.

In-class Activity
Software Development Processes

Case 1: Secure ATM System

To develop a secure ATM sub-system and integrate it with an existing
banking system. The developed ATM sub-system will be deployed
across a 1000 ATM machines. It should have an availability rate of 99%.
It should also have a 99.9% accuracy money notes counting dispenser,
and three-level security that requires a card, a pin code and a
biometric code.

Case 2: Student Management/Registration

To develop university student management/registration system that
can support 75000 students, and up-to 15000 concurrent students’
access, would not need more than 1 hour (student/user) training and
need to be delivered in 4 years for operational use.

Case 3: Health Monitoring Mobile App

To develop a mobile app, that monitors health indicators (e.g., blood
pressure, sugar level, and pulse) of patients, by collecting readings
through special medical sensors, then provides medical advice based
on the collected readings by an external medical decision system,
which your system must be connected to it.

Case 4: Word Processing Application

To develop a word processing application, that uses existing print,
graphic, font styles, spelling check, and grammar check components.
The application must be designed to be used by people with
dyslexic/learning difficulty.

Case 5: Product-Line Ordering System

• You are a project manger responsible for developing a system for a
product-line ordering system for a manufacturer of car parts.
• The system, should allow telephone and online ordering of car parts, and has a

dedicated team to process the orders.
• The system should keep inventory of existing stock and be accessed by the

manufacturer’s product-line to manufacture parts according to sales.
• The users of the system are online users, who should register an account online and

store users’ information including their credit card details to enable them ordering
online within a secure login sub-system.

• To enable users order online, the system will be required to connect to the
respective credit card bank to authorize payment. Other system users also include
salesmen who can place orders through telephone calls, and process payment
through the system, and inventory users who manage availability of car parts and
system administrators who manage the system database.

• The system should allow 10 concurrent salesmen and 10 inventory men to use the
system.

