
Ahmed Tamrawi

COMP 433 Software Engineering
Module 4: System Modeling

Acknowledgment Notice
Part of the slides are based on content from Ian Somerville’s Software Engineering book.

System Modeling

• System modeling is the process of developing abstract models of a
system, with each model presenting a different view or perspective of
that system.
• System modeling has now come to mean representing a system using

graphical notation, which is now almost always based on notations in
the Unified Modeling Language (UML).
• System modelling helps the analyst to understand the functionality

of the system and models are used to communicate with customers.

Existing and Planned System Models

• Models of the existing system are used during requirements
engineering.
• They help clarify what the existing system does and can be used as a basis for

discussing its strengths and weaknesses.
• These then lead to requirements for the new system.

• Models of the new system are used during requirements engineering
to help explain the proposed requirements to other system
stakeholders. Engineers use these models to discuss design proposals
and to document the system for implementation.

Use of Graphical Models

• As a means of facilitating discussion about an existing or proposed
system
• Incomplete and incorrect models are OK as their role is to support discussion.

• As a way of documenting an existing system
• Models should be an accurate representation of the system but need not be

complete.

• As a detailed system description that can be used to generate a
system implementation
• Models must be both correct and complete.

System Perspectives

• An external “context” perspective, where you model the context or
environment of the system.
• An interaction perspective, where you model the interactions

between a system and its environment, or between the components
of a system.
• A structural perspective, where you model the organization of a

system or the structure of the data that is processed by the system.
• A behavioral perspective, where you model the dynamic behavior of

the system and how it responds to events.

Context Models

Context Models

• Context models are used to illustrate the
operational context of a system - they
show what lies outside the system
boundaries.
• Social and organisational concerns may

affect the decision on where to position
system boundaries.
• Architectural models show the system

and its relationship with other systems.

«system»
Mentcare

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Context Models: System Boundaries

• System boundaries are established to define what is inside and what
is outside the system. They show other systems that are used or
depend on the system being developed.
• The position of the system boundary has a profound effect on the

system requirements.
• Defining a system boundary is a political judgment
• There may be pressures to develop system boundaries that increase and/or

decrease the influence or workload of different parts of an organization.

Context Models: Process Perspective

• Context models simply show the other systems in the environment,
not how the system being developed is used in that environment.
• Process models reveal how the system being developed is used in

broader business processes.
• UML activity diagrams may be used to define business process

models.

Context Models: Process Perspective

Confirm
detention
decision Find secure

place

Admit to
hospital

Transfer to
police station

Transfer to
secure hospital

Inform next
of kin

Inform
social care

Inform
patient of

rights

Update
register

«system»
Admissions

system

«system»
Mentcare

«system»
Mentcare

Record
detention
decision

[dangerous]

[not available]

[not
dangerous]

[available]

«system»
Mentcare

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Context of the Mentcare System

Process Model of Involuntary Detention

Interaction Models

Interaction Models

• Modeling user interaction is important as it helps to identify user
requirements.
• Modeling system-to-system interaction highlights the communication

problems that may arise.
• Modeling component interaction helps us understand if a proposed

system structure is likely to deliver the required system performance
and dependability.
• Use case diagrams and sequence diagrams may be used for

interaction modelling.

Interaction Models: Use Case Modeling

• Use cases were developed originally to support requirements
elicitation and now incorporated into the UML.
• Each use case represents a discrete task that involves external

interaction with a system.
• Actors in a use case may be people or other systems.
• Represented diagrammatically to provide an overview of the use case

and in a more detailed textual form.

Transfer-Data Use Case: Mentcare System

Medical receptionist Patient record system

Transfer data

Use cases involving the role ‘medical receptionist’

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Interaction Models: Sequence Diagrams

• Sequence diagrams are part of the UML and are used to model the
interactions between the actors and the objects within a system.
• A sequence diagram shows the sequence of interactions that take

place during a particular use case or use case instance.
• The objects and actors involved are listed along the top of the

diagram, with a dotted line drawn vertically from these.
• Interactions between objects are indicated by annotated arrows.

Sequence Diagram for View Patient Information

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: Mentcare-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

P: PatientInfo

login ()

D: Mentcare-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

Sequence Diagram for Transfer Data

Structural Models

Structural Models

• Structural models of software display the organization of a system in
terms of the components that make up that system and their
relationships.
• Structural models may be static models, which show the structure of

the system design, or dynamic models, which show the organization
of the system when it is executing.
• You create structural models of a system when you are discussing and

designing the system architecture. We will cover the topic of system
architecture and architectural pattern in later lectures.

Structural Models: Class Diagrams

• Class diagrams are used when developing an object-oriented system
model to show the classes in a system and the associations between
these classes.
• An object class can be thought of as a general definition of one kind

of system object.
• An association is a link between classes that indicates that there is

some relationship between these classes.
• When you are developing models during the early stages of the

software engineering process, objects represent something in the real
world, such as a patient, a prescription, doctor, etc.

Classes and Associations in the MHC-PMS

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

The Consultation Class

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...

Generalization

• Generalization is an everyday technique that
we use to manage complexity.
• Rather than learn the detailed characteristics

of every entity that we experience, we place
these entities in more general classes
(animals, cars, houses, etc.) and learn the
characteristics of these classes.
• This allows us to infer that different members

of these classes have some common
characteristics. For example, squirrels and
rats are rodents.

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctor

Generalization

• In modeling systems, it is often useful to examine the
classes in a system to see if there is scope for
generalization.
• If changes are proposed, then you do not have to look at all

classes in the system to see if they are affected by the change.

• In object-oriented languages, such as Java,
generalization is implemented using the class
inheritance mechanisms built into the language.
• In a generalization, the attributes and operations

associated with higher-level classes are also associated
with the lower-level classes.
• The lower-level classes are subclasses inherit the attributes

and operations from their super classes. These lower-level
classes then add more specific attributes and operations.

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
Address

Behavioral Models

Behavioral Models

• Behavioral models are models of the dynamic behavior of a system as
it is executing.
• They show what happens or what is supposed to happen when a

system responds to a stimulus from its environment.
• You can think of these stimuli as being of two types:
• Data - some data arrives that has to be processed by the system.
• Events - some event happens that triggers system processing. Events may

have associated data, although this is not always the case.

Behavioral Models: Data-Driven Modeling

• Many business systems are data-processing systems that are primarily
driven by data. They are controlled by the data input to the system,
with relatively little external event processing.
• Data-driven models show the sequence of actions involved in

processing input data and generating an associated output.
• They are particularly useful during the analysis of requirements as

they can be used to show end-to-end processing in a system.

Activity Model of the Insulin Pump’s Operation

Calculate
pump

commands

Blood sugar
sensor

Insulin
pump

Blood sugar
level

Pump control
commands

Insulin
requirement

Get sensor
value

Sensor
data

Compute
sugar level

Calculate
insulin
delivery

Control
pump

Order Processing

:Order

Fillin ()

Purchase officer

Validate ()

[validation ok]

«datastore»
Orders

Budget

Update (amount)

Save ()

Supplier

Send ()

Behavioral Models: Event-Driven Modeling

• Real-time systems are often event-driven, with minimal data
processing. For example, a landline phone switching system responds
to events such as ‘receiver off hook’ by generating a dial tone.
• Event-driven modeling shows how a system responds to external and

internal events.
• It is based on the assumption that a system has a finite number of

states and that events (stimuli) may cause a transition from one state
to another.

Behavioral Models: State Machine Models

• These model the behaviour of the system in response to external and
internal events.
• They show the system’s responses to stimuli so are often used for

modelling real-time systems.
• State machine models show system states as nodes and events as

arcs between these nodes. When an event occurs, the system moves
from one state to another.
• Statecharts are an integral part of the UML and are used to represent

state machine models.

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

State Diagram of a Microwave Oven

Modeling with Large Number of States

Cook
do: run

generator

Done

do: buzzer on
for 5 secs.

Waiting

Alarm
do: display

event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time

Door open Cancel

Operation
• The problem with state-based modeling

is that the number of possible states
increases rapidly. For large system
models, therefore, you need to hide
detail in the models.

• One way to do this is by using the
notion of a superstate that
encapsulates several separate states.
This superstate looks like a single state
on a high-level model but is then
expanded to show more detail on a
separate diagram

includes several sub-states and
shows that operation starts with a
status check and that if any problems
are discovered an alarm is indicated
and operation is disabled.

involves running the microwave
generator for the specified time;
on completion, a buzzer is
sounded. If the door is opened
during operation, the system
moves to the disabled state

