
Ahmed Tamrawi

COMP 433 Software Engineering
Module 5: System Modeling with UML



UML

• The Unified Modeling Language (UML) is a consolidation of the best 
practices that have been established over the years in the use of 
modeling languages.
• UML enables us to present the widely varying aspects of a software 

system (e.g., requirements, data structures, data flows, and 
information flows) within a single framework using object-oriented 
concepts.



UML Usage

• UML is not tied to a specific development tool, specific programming 
language, or specific target platform on which the system to be 
developed must be used. Neither does UML offer a software 
development process. 
• UML in fact separates the modeling language and modeling method. 
• However, the language concepts of UML do favor an iterative and 

incremental process.



UML Usage

• UML can be used consistently across the entire software 
development process.
• At all stages of development, the same language concepts can be 

used in the same notation. Thus, a model can be refined in stages.
• There is no need for a model to be translated into another modeling 

language. This enables an iterative and incremental software 
development process.
• UML is well-suited for various application areas with different 

requirements regarding complexity, data volume, real time, etc.



UML Usage

• The UML model elements and their correct use are specified in the 
UML metamodel (https://www.omg.org/spec/UML/). 
• The language concepts are defined so generically that a wide and 

flexible applicability is achieved.
• To avoid restricting the use of UML, the standard is (intentionally) 

vague at various points, permitting different interpretations in the 
form of semantic variation points.
• However, this is a two-edged sword; it also leads to different 

implementations of the language standard by modeling tools, which 
in turn, unfortunately makes it difficult to exchange models.



UML Diagrams

• In UML, a model is represented graphically in the form of diagrams
which provides a view of that part of reality described by the model.
• There are diagrams that express which users use which functionality

and diagrams that show the structure of the system but without 
specifying a concrete implementation. 
• In the version 2.4.1, UML offers 14 diagrams that describe either the 

structure or the behavior of a system





UML Diagrams

• A diagram is usually enclosed by a rectangle with a pentagon in the 
top left-hand corner. This pentagon contains the diagram type and 
the frame name of the diagram. 
• Optionally, parameters may be specified following the name which 

then can be used within the diagram.
Class 

Diagram

Sequence Diagram



UML Diagrams

• A concept that may occur in all diagrams is the note. 
• A note can contain any form of expression that specifies the diagram 

and its elements more precisely—for example, in natural language or 
in the Object Constraint Language (OCL). Notes may be attached to all 
other model elements.



Structure Diagrams: Class Diagram

• The concepts of the class diagram originate from conceptual data 
modeling and object-oriented software development. 
• These concepts are used to specify the data structures and object 

structures of a system. 
• The class diagram is based primarily on the concepts of class, 

generalization, and association. 



Structure Diagrams: Class Diagram

• For example, in a class diagram, you can model 
that the classes Course, Student, and 
Professor occur in a system. 
• Professors teach Courses and Students attend 
Courses. 
• Students and Professors have common 

properties as they are both members of the class 
Person. This is expressed by a generalization 
relationship.



Structure Diagrams: Component Diagram

• UML pays homage to component-oriented software development by 
offering component diagrams.
• A component is an independent, executable unit that provides other 

components with services or uses the services of other components.



Structure Diagrams: Deployment Diagram

• The hardware topology used, and the runtime system assigned can be 
represented by the deployment diagram. 
• The hardware encompasses processing units in the form of nodes as 

well as communication relationships between the nodes. 
• A runtime system contains artifacts that are deployed to the nodes.



E-commerce Microservices Deployment Diagram



Behavior Diagrams: Use Case Diagram

• UML offers the use case diagram to enable you to define the 
requirements that a system must fulfill. 
• This diagram describes which users use which functionalities of the 

system but does not address specific details of the implementation. 
• The units of functionality that the system provides for its users are 

called use cases. 
• In a university administration system, for example, the functionality 

Registration would be a use case used by students.



Behavior Diagrams: State Machine Diagram

• Within their life cycle, objects go through different states. 
• For example, a person is in the state logged out when first visiting a 

website. The state changes to logged in after the person successfully 
entered username and password (event login). As soon as the person 
logs out (event logout), the person returns to the state logged out. 
• This behavior can be represented in UML using the state machine 

diagram which describes the permissible behavior of an object in the 
form of possible states and state transitions triggered by various 
events.



Behavior Diagrams: Activity Diagram

• You can model processes of any kind using activity diagrams: both 
business processes and software processes. 
• For example, an activity diagram can show which actions are 

necessary for a student to participate in a lecture and an assignment. 
• Activity diagrams offer control flow mechanisms as well as data flow 

mechanisms that coordinate the actions that make up an activity, that 
is, a process.



Behavior Diagrams: Sequence Diagram

• The sequence diagram describes the interactions between objects to 
fulfill a specific task.
• The focus is on the chronological order of the messages exchanged 

between the interaction partners.
• Various constructs for controlling the chronological order of the 

messages as well as concepts for modularization allow you to model 
complex interactions.
• For example, registration for an exam in a university administration 

system. 


