
Business Informatics Group
Institute of Software Technology and Interactive Systems 
Vienna University of Technology
Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Object-Oriented Modeling

Use Case Diagram

Slides accompanying UML@Classroom
Version 1.0



Introduction

https://youtu.be/zid-MVo7M-E



Introduction 

§ The use case is a fundamental concept of many object-oriented 
development methods.

§ Use case diagrams express the expectations of the 
customers/stakeholders

§ essential for a detailed design
§ The use case diagram is used during the entire analysis and design 

process.
§ We can use a use case diagram to answer the following questions:

§ What is being described? (The system.)
§ Who interacts with the system? (The actors.)
§ What can the actors do? (The use cases.)



Example: Student Administration System

§ System 
(what is being described?) 

§ Student administration system

§ Actors 
(who interacts with the system?) 

§ Professor

§ Use cases
(what can the actors do?)

§ Query student data
§ Issue certificate
§ Announce exam



Use Case

§ Describes functionality expected from the system under development.
§ Provides tangible benefit for one or more actors that communicate with 

this use case.
§ The use case diagram does not cover the internal structure and the 

actual implementation of a use case.
§ Derived from collected customer wishes. Set of all use cases 

describes the functionality that a system shall provide.
§ Documents the functionality that a system offers.

§ Alternative notations:



Example: Student Administration System

§ In general, a use case is triggered either by invocation of an actor or 
by a trigger event, in short, a trigger. 

§ An example of a trigger is that the semester has ended and hence the 
use case Issue certificate must be executed.

§ The use cases are generally grouped within a rectangle. This rectangle 
symbolizes the boundaries of the system to be System described.



Actor

§ To describe a system completely, it is essential to document not only 
what the system can do but also who works and interacts with the 
system.

§ Actors interact with the system as:
§ Active Actor by using use cases, i.e., the actors initiate the execution of 

use cases.
§ Passive Actor by being used by use cases, i.e., the actors provide 

functionality for the execution of use cases.
§ Actors represent roles that users adopt.

§ Specific users can adopt and set aside multiple roles simultaneously.
§ Actors are not part of the system, i.e., they are outside of the system 

boundaries.
§ Alternative notations:



Actor

§ Usually, user data is also administered within the system. This data is 
modeled within the system in the form of objects and classes.

§ Example: actor Assistant
§ The actor Assistant interacts with the system Laboratory 
Assignment by using it.

§ The class Assistant describes objects representing user data (e.g., 
name, ssNr, …).



Actor

§ Human, for example: Student, Professor
§ Non-human, for example: E-Mail Server
§ Primary: has the main benefit of the execution of the use case
§ Secondary: receives no direct benefit
§ Active: initiates the execution of the use case
§ Passive: provides functionality for the execution of the use case
§ Graphically, there is no differentiation between primary and 

secondary actors, between active and passive actors, and between 
human and non-human actors.

§ Example:

Non-human
Secondary

Passive

Human
Primary

Active

Human
Primary

Active
Human

Secondary
Active



Actor

§ The E-Mail Server is an actor—it is not part of the system, but it is 
necessary for the execution of the use case Inform student. 

§ However, if no external server is required to execute this use case 
because the student administration system implements the e-mail 
functionality itself or has its own server, the E-Mail Server is no longer 
an actor. 

§ In that case, only the Professor is required to inform students about 
various news items.



Relationships between Use Cases and Actors 

§ Actors are connected with use cases via solid lines (associations).
§ Every actor must communicate with at least one use case.
§ An association is always binary.
§ Multiplicities may be specified.

§ If a multiplicity greater than 1 is specified for the actor’s association end, 
this means that more than one instance of an actor is involved in the 
execution of the use case.

One to three students and 
precisely one assistant is 

involved in the execution of the 
use case Conduct oral exam



Relationships between Actors
Generalization of Actors

§ Actors often have common properties, and some use cases can be 
used by various actors. 

§ For example, it is possible that not only professors but also assistants
(i.e., the entire research personnel) are permitted to view student data. 

§ To express this, actors may be depicted in an inheritance relationship 
(generalization) with one another. 

§ When an actor A (sub-actor) inherits from an actor B (super-actor), A is 
involved with all use cases with which B is involved. 

§ In simple terms, generalization expresses an “is a” relationship. 
§ It is represented with a line from the sub-actor to the super-actor with a 

large triangular arrowhead at the super-actor end.

Super-actor

Sub-actor



Relationships between Actors
Generalization of Actors

§ In the example below, the actors 
Professor and Assistant inherit from the 
actor Research Associate, which means 
that every professor and every assistant 
is a research associate. 

§ Every research associate can execute the 
use case Query student data. Only 
professors can create a new course; in 
contrast, tasks can only be published by 
assistants. 

§ To execute the use case Issue certificate, 
an actor Professor is required; in 
addition, an actor Assistant can be 
involved optionally, which is expressed by 
the multiplicity 0..1.



Relationships between Actors
Generalization of Actors

§ There is a great difference between two actors participating in a use
§ case themselves and two actors having a common super-actor that 

participates in the use case.
§ In the first case, both actors must participate in the use case.
§ In the second case, each of them inherits the association. Then each 

actor participates in the use case individually
§ If there is no instance of an actor, this actor can be labeled with the 

keyword {abstract}.

Professor AND Assistant needed
for executing Query student data

Professor OR Assistant needed
for executing Query student data



§ The behavior of one use case (included use case) is integrated in the 
behavior of another use case (base use case)

§ The use of «include» is analogous to calling a subroutine in a 
procedural programming language.

§ One use case may include/included by multiple other use cases. In 
such situations, it is important to ensure that no cycle arises.

Relationships between Use Cases
«inlcude» - Relationship

Base use case
requires the behavior of the included use 
case to be able to offer its functionality

Included use case 
may be executed on its own

Whenever a new lecture is 
announced, the use case 
Assign lecturer must also be 
executed, and further 
lecturers can also be assigned 
to an existing lecture.



Relationships between Use Cases
«extend» - Relationship

§ The behavior of one use case (extending use case) may be integrated in
the behavior of another use case (base use case) but does not have to.

§ Both use cases may also be executed independently of each other.
§ A decides if B is executed.

Base use case

Extending use case

When a new lecture is announced, it is 
possible (but not mandatory) to reserve 

a lecture hall.
A use case can act as an extending use case several 
times or can itself be extended by several use cases. 

Again, no cycles may arise.



Relationships between Use Cases
«extend» - Relationship

§ Extension points define at which point the behavior is integrated.
§ Conditions define under which circumstances the behavior is integrated.
§ A condition that must be fulfilled for the base use case to insert the 

behavior of the extending use case.
§ The condition can be specified for every «extend» relationship within 

curly brackets, in a note that is connected with the corresponding 
«extend» relationship. A condition is indicated by the preceding keyword 
Condition followed by a colon.



Relationships between Use Cases
«extend» - Relationship: Extension Points

§ By using extension points, you can define the point at which the 
behavior of the extending use cases must be inserted in the base use 
case.

§ The extension points are written directly within the use case
§ Specification of multiple extension points is possible.



Relationships between Use Cases
Generalization of Use Cases

§ Use case A generalizes use case B.
§ B inherits the behavior of A and may 

either extend or overwrite it.
§ B also inherits all relationships from A.
§ B adopts the basic functionality of A but 

decides itself what part of A is executed or changed.
§ A may be labeled {abstract}

§ Cannot be executed directly
§ Only B is executable

§ Example:

Base use case

Sub use case



Relationships between Use Cases
Generalization of Use Cases

§ The abstract use case Announce event passes on its properties and 
behavior to the use cases Announce lecture and Announce talk. As 
a result of an «include» relationship, both use cases must execute the 
behavior of the use case Assign lecturer. 

§ When a lecture is announced, an exam can also be announced at the 
same time. 

§ Both use cases inherit the relationship from the use case Announce 
event to the actor Professor.



In Class Activity: Examples of Relationships



Examples of Relationships

The use case A includes the use cases E and D. An actor O is involved in all 
three use cases. There is no specification of whether this is the same user or 
different users, that is, different instances of O.



Examples of Relationships

The use case H inherits from the use case C. As use case C is executed by the 
actor L, an actor L must also be involved in the execution of H. The actors N 
and M inherit from L. Therefore, both use cases C and H can also be executed 
by an actor M or N.



Examples of Relationships

The use case J inherits from the use case B. As a result of the inheritance 
relationship, an actor O is involved in the execution of use case J. However, an 
association with O is also modeled for J directly. The consequence of this is 
that two actors in the role O are involved in the execution of J. Note that these 
two actors can coincide.



Examples of Relationships

The use case F inherits from the use case G. As a result of the inheritance 
relationship, an actor N is involved in the execution of use case F. For F, an 
association with the actor L is also modeled directly. Therefore, an actor N and, 
due to the inheritance relationship of the actors L, N, and M, either an actor L 
or an actor M or an additional actor N is involved in the execution of F. If two 
actors N are involved, they may coincide.



Examples of Relationships

The use case I extends the use case F. As use case F inherits from use case G 
and as I extends use case G, this relationship is passed on to F. If G and I 
were in an «include» relationship, this relationship would also be passed on to 
F in the same way.



Examples of Relationships

The use case J extends the use case H. This is as a result of the inheritance 
relationships from B to J and from C to H.



Creating a Use Case Diagram

§ First you must identify actors and use cases and then place them in 
relationships with one another. You then describe the use cases in 
detail. 

§ At first glance, this diagram seems to be simple due to the low number 
of concepts involved. But in fact, use case diagrams are often created 
incorrectly with a lot of errors.



Identifying Actors and Use Cases

§ There are two ways to identify use cases for prospective system 
design:

§ Analysis of requirements documents
§ Analysis of the expectations of future users

§ Requirements documents are generally natural language specifications 
that explain what the customer expects from a system. They should 
document relatively precisely who will use the system and how they will 
use it. If you follow the second approach for finding use cases, you 
must first identify the future users—that is, the actors. 

§ To identify the actors that appear in a use case diagram, you must 
answer the following questions:

§ Who uses the main use cases?
§ Who needs support for their daily work?
§ Who is responsible for system administration?
§ What are the external devices/(software) systems with which the system 

must communicate?
§ Who is interested in the results of the system?



Identifying Actors and Use Cases

§ Once you know the actors, you can derive the use cases by asking the 
following questions about the actors:

§ What are the main tasks that an actor must perform? 
§ Does an actor want to query or even modify information contained in the

system?
§ Does an actor want to inform the system about changes in other systems?
§ Should an actor be informed about unexpected events within the system?



Identifying Actors and Use Cases

§ In many cases, you model use cases iteratively and incrementally. In 
doing so, you often start with the “top level” requirements that reflect the 
business objectives to be pursued with the software. 

§ You then continue to refine them until, at a technical level, you have 
specified what the system should be able to do. 

§ For example, a “top level” requirement for a university administration 
system could be that the system can be used for student administration. 
If we refine this requirement, we define that new students should be 
able to register at the university and enroll for studies.



Description of Use Cases

§ To ensure that even large use case diagrams remain clear, it is 
extremely important to select short, concise names for the use cases. 

§ When situations arise in which the intention behind the use case and its 
interpretation are not clear, you must also describe the use cases. 

§ It is important to ensure that you describe the use cases clearly and 
concisely, as otherwise there is a risk that readers will only skim over 
the document.



Description of Use Cases

§ Structured approach
§ Name
§ Short description
§ Precondition: prerequisite for successful execution
§ Postcondition: system state after successful execution
§ Error situations: errors relevant to the problem domain
§ System state on the occurrence of an error
§ Actors that communicate with the use case
§ Trigger: events which initiate/start the use case
§ Standard process: individual steps to be taken 
§ Alternative processes: deviations from the standard process 

[A. Cockburn: Writing Effective Use Cases, Addison Wesley, 2000]



Description of Use Cases – Example*

* The description is extremely simplified but fully sufficient for our purposes.



Best Practices
«include»

UML standard Best practice



UML standard Best practice

Best Practices
«extend»



Best Practices
Error 1: Modeling processes

§ Use case diagrams do not model processes/workflows!
§ The functionality that one of these use cases offers is not part of the 

functionality that another use case offers, hence the use cases must be 
used independently of one another.



Best Practices
Error 2: Setting system boundaries incorrectly

§ When modeling a use case diagram, you must consider very carefully 
where to draw the boundaries of the diagram.

§ Actors are not part of the system; hence, they are positioned outside 
the system boundaries!



Best Practices
Error 3: Mixing abstraction levels

§ When identifying use cases, you must always ensure that they are 
located on the same abstraction level.

§ Avoid representing “top level” use cases with technically oriented use 
cases in the same diagram.



Best Practices
Error 4: Functional decomposition

§ Use cases—even included or extending use cases—can always be 
executed independently. If they can only be executed within the scope 
of another use case and not independently, they are not use cases and 
must not be depicted as such. 

§ Their functionality must then be covered in the description of the use case 
that uses them.

§ The various steps are part of the use cases, not separate use cases 
themselves! -> NO functional decomposition

ü



Best Practices
Error 5: Incorrect associations

§ If a use case is associated with two actors, this does not mean that 
either one or the other actor is involved in the execution of the use 
case: it means that both are necessary for its execution.

§ Use case Issue information needs EITHER one actor Assistant
OR one actor Professor for execution

ü



Best Practices
Error 6: Modeling redundant use cases

§ When modeling use cases, it is very tempting to create a separate use 
case for each possible situation. When modeling a real application, the 
diagram would very quickly become unmanageable.

§ Many small use cases that have the same objective may be grouped to 
form one use case.

§ The individual steps are then specified in the description of the 
standard process.

ü



Name Notation Description

System Boundaries between the system 
and the users of the system

Use case Unit of functionality of the system

Actor Role of the users of the system

Notation Elements (1/2)



Name Notation Description

Association Relationship between use cases 
and actors

Generalization Inheritance relationship between 
actors or use cases

Extend 
relationship

B extends A: optional use of use
case B by use case A

Include 
relationship

A includes B: required use of use
case B by use case A

Notation Elements (2/2)



In Class Activity: Information System of a Student Office

§ Many important administrative activities of a university are processed 
by the student office. Students can register for studies (matriculation), 
enroll, and withdraw from studies here. Matriculation involves enrolling, 
that is, registering for studies.

§ Students receive their certificates from the student office. The 
certificates are printed out by an employee. Lecturers send grading 
information to the student office. The notification system then informs 
the students automatically that a certificate has been issued.

§ There is a differentiation between two types of employees in the 
student office: a) those that are exclusively occupied with the 
administration of student data (service employee, or ServEmp), and b) 
those that fulfill the remaining tasks (administration employee, or 
AdminEmp), whereas all employees (ServEmp and AdminEmp) can 
issue information.

§ Administration employees issue certificates when the students come to 
collect them. Administration employees also create courses. When 
creating courses, they can reserve lecture halls



In Class Activity: Identifying Actors

§ Many important administrative activities of a university are processed 
by the student office. Students can register for studies (matriculation), 
enroll, and withdraw from studies here. Matriculation involves enrolling, 
that is, registering for studies.

§ Students receive their certificates from the student office. The 
certificates are printed out by an employee. Lecturers send grading 
information to the student office. The notification system then informs 
the students automatically that a certificate has been issued.

§ There is a differentiation between two types of employees in the 
student office: a) those that are exclusively occupied with the 
administration of student data (service employee, or ServEmp), and 
b) those that fulfill the remaining tasks (administration employee, or 
AdminEmp), whereas all employees (ServEmp and AdminEmp) can 
issue information.

§ Administration employees issue certificates when the students come 
to collect them. Administration employees also create courses. When 
creating courses, they can reserve lecture halls.



In Class Activity: Identifying Actors



In Class Activity: Identifying Use Cases

§ Many important administrative activities of a university are processed 
by the student office. Students can register for studies (matriculation), 
enroll, and withdraw from studies here. Matriculation involves enrolling, 
that is, registering for studies.

§ Students receive their certificates from the student office. The 
certificates are printed out by an employee. Lecturers send grading 
information to the student office. The notification system then informs 
the students automatically that a certificate has been issued.

§ There is a differentiation between two types of employees in the 
student office: a) those that are exclusively occupied with the 
administration of student data (service employee, or ServEmp), and 
b) those that fulfill the remaining tasks (administration employee, or 
AdminEmp), whereas all employees (ServEmp and AdminEmp) can 
issue information.

§ Administration employees issue certificates when the students come 
to collect them. Administration employees also create courses. When 
creating courses, they can reserve lecture halls.



In Class Activity: Identifying Use Cases



In Class Activity: Identifying Associations



In Class Activity: Describing the Use Cases


