
Business Informatics Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Object-Oriented Modeling

Class Diagram

Slides accompanying UML@Classroom
Version 1.0

Introduction

https://youtu.be/UI6lqHOVHic

Class Diagram

§ We use the class diagram to model the static structure of a system,
thus describing the elements of the system and the relationships
between them. These elements and the relationships between them do
not change over time.

§ For example, students have a name and a number and attend various
courses. This sentence covers a small part of the university structure
and does not lose any validity even over years. It is only the specific
students and courses that change.

§ The class diagram is without doubt the most widely used UML diagram.
It is applied in various phases of the software development process.

Class Diagram: Level of Details

§ The level of detail or abstraction of the class diagram is different in
each phase.

§ In the early project phases, a class diagram allows you to create a
conceptual view of the system and to define the vocabulary to be used.
In the context of object-oriented programming, the class diagram
visualizes the classes a software system consists of and the
relationships between these classes.

§ Due to its simplicity and its popularity, the class diagram is ideally
suited for quick sketches and documentation purposes. However, you
can also use it to generate program code automatically.

Object Diagram

§ Before we introduce the concepts of the class diagram, let us first take
a look at objects, which are modeled in object diagrams.

§ Object diagrams allow you to depict concrete objects that appear in a
system at a specific point in time.

§ Classes provide schemas for characterizing objects and objects are
instances of classes.

§ The object diagram visualizes instances of classes that are modeled in
a class diagram.

Objects

§ A system contains numerous different individuals. Individuals might be
not only persons but also animals, plants, inanimate objects, artifacts,
etc. that can be identified uniquely.

§ For example, as part of her IT Studies program, Helen Lewis attends the
lecture Object-Oriented Modeling (OOM) at the university.

§ Helen Lewis, IT Studies, and Object-Oriented Modeling are individuals
(concrete objects) in a university administration system and are in a
relationship with one another.

Link

Attribute = Current Value

Object Name : Class

Object

§ The characteristics of an object include its structural characteristics
(attributes) and its behavior (in the form of operations).

§ Whilst concrete values are assigned to the attributes in the object
diagram, operations are generally not depicted.

§ Operations are identical for all objects of a class and are therefore
usually described exclusively for the class.

§ Alternative notations:

Anonymous objects
= no object name

From Object to Class

§ Individuals of a system often have identical characteristics and
behavior.

§ A class is a construction plan for a set of similar objects of a system.

§ Objects are instances of classes

§ Attributes: structural characteristics of a class
§ Different value for each instance (= object)

§ Operations: behavior of a class
§ Identical for all objects of a class

à not depicted in object diagram

Class

Object of that class

Class
A

ttr
ib

ut
es

Class
Name

O
pe

ra
tio

n

Class Abstraction

§ To ensure that a model remains clear and understandable, we
generally do not model all of the details of the content:

§ we only include the information that is relevant for the moment and for the
system to be implemented.

§ This means that we abstract from reality to make the model less complex
and to avoid an unnecessary flood of information.

§ In the model, we restrict ourselves to the essentials.
§ For example, in a university administration system, it is important to be

able to manage the names and numbers of the students; in contrast, their
shoe size is irrelevant and is therefore not included.

Notation

Attribute Syntax

Attribute Syntax - Visibility

§ Who is permitted to access the attribute
§ + ... public: everybody
§ - ... private: only the object itself
§ # ... protected: class itself and subclasses
§ ~ ... package: classes that are in the same package

Attribute Syntax - Derived Attribute

§ Attribute value is derived from other attributes
§ age: calculated from the date of birth

Attribute Syntax - Name

§ Name of the attribute

Attribute Syntax - Type

§ Type
§ User-defined classes
§ Data type

§ Primitive data type
§ Pre-defined: Boolean, Integer, UnlimitedNatural, String
§ User-defined: «primitive»
§ Composite data type: «datatype»

§ Enumerations: «enumeration»

Attribute Syntax - Multiplicity

§ Number of values an attribute may contain
§ Default value: 1
§ Notation: [min..max]

§ no upper limit: [*] or [0..*]

Attribute Syntax – Default Value

§ Default value
§ Used if the attribute value is not set explicitly by the

user

Attribute Syntax – Properties

§ Pre-defined properties
§ {readOnly} … value cannot be changed
§ {unique} … no duplicates permitted
§ {non-unique} … duplicates permitted
§ {ordered} … fixed order of the values
§ {unordered} … no fixed order of the values

§ Attribute specification
§ Set: {unordered, unique}
§ Multi-set: {unordered, non-unique}
§ Ordered set: {ordered, unique}
§ List: {ordered, non-unique}

Operation Syntax

Operation Syntax - Visibility

§ Visibilities are used to realize information hiding, an important
concept in computing. Marking the attributes that represent the state of
an object as private protects this state against unauthorized access.

§ Access is therefore only possible via a clearly defined interface, such
as via operations that are declared public.

Operation Syntax - Parameters

§ Notation like attributes!
§ Direction of the parameter

§ in … input parameter
§ When the operation is used, a value is

expected from this parameter
§ out … output parameter

§ After the execution of the operation, the
parameter has adopted a new value

§ inout : combined input/output parameter

Operation Syntax - Type

§ Type of the return value

Class Variable and Class Operation

§ Instance variable (= instance attribute): attributes defined on instance level
§ Class variable (= class attribute, static attribute)

§ Defined only once per class, i.e., shared by all instances of the class
§ E.g., counters for the number of instances of a class, constants, etc.

§ Class operation (= static operation)
§ Can be used if no instance of the corresponding class was created
§ E.g., constructors, counting operations, math. functions (sin(x)), etc.

§ Notation: underlining name of class variable / class operation

Class
variable

Class
operation

class Person {

public String firstName;
public String lastName;
private Date dob;
protected String[] address;
private static int pNumber;
public static int getPNumber() {…}
public Date getDob() {…}

}

Specification of Classes: Different Levels of Detail

coarse-grained fine-grained

§ Associations between classes model possible relationships, known as
§ links, between instances of the classes.
§ They describe which classes are potential communication partners. If

their attributes and operations have the corresponding visibilities, the
communication partners can access each other’s attributes and
operations.

§ A class diagram can be viewed as a graph in which the classes
represent the nodes, and the associations represent the edges.

Association

Binary Association

§ Connects instances of two classes with one another

Association name
(Optional) Reading Direction

Non-navigability

Multiplicity

RoleVisibility

Navigability

§ Navigability: an object knows its partner objects and can therefore
access their visible attributes and operations.

§ Indicated by open arrow head
§ Non-navigability

§ Indicated by cross
§ Example:

§ A can access the visible attributes and
operations of B

§ B cannot access any attributes and
operations of A

§ Navigability undefined
§ Bidirectional navigability is assumed

Binary Association - Navigability

Navigability – UML Standard vs. Best Practice

UML standard Best practice

Binary Association as Attribute

§ Java-like notation:

Preferable

class Professor {…}

class Student{
public Professor[] lecturer;
…

}

Binary Association – Multiplicity and Role

§ Multiplicity: Number of objects that may be associated with exactly one
object of the opposite side

§ Role: describes the way in which an object is involved in an association
relationship

A lecturer may issue no, one, or
multiple assignments and that
an assignment is issued by
exactly one lecturer. No
assignment may exist without
an association to a lecturer.

A lecturer gives at least one
lecture, and a lecture is given
by at least one lecturer.

A person in the role of examiner can examine
any number (≥ 0) of persons and a person in
the role of examinee can be examined by any
number of examiners.

Binary Association – xor constraint

§ “exclusive or” constraint
§ An object of class A is to be associated with an object of class B or an

object of class C but not with both.
§ To indicate that two associations from the same class are mutually

exclusive, they can be connected by a dashed line labeled {xor}.
§ For example, an exam can take place either in an office or in a lecture

hall but not in both:

n-ary Association (1/2)

§ More than two partner objects are involved in the relationship.
§ No navigation directions
§ For example:

§ One specific student takes one specific exam with no lecturer (i.e., does
not take this exam at all) or with precisely one lecturer.

§ One specific exam with one specific lecturer can of course be taken by
any number of students and one specific student can be graded by one
specific lecturer for any number of exams.

Ternary
association

n-ary Association (2/2)

§ Example
§ (Student, Exam) à (Lecturer)

§ One student takes one exam with one or no lecturer
§ (Exam, Lecturer) à (Student)

§ One exam with one lecturer can be taken by any number of students
§ (Student, Lecturer) à (Exam)

§ One student can be graded by one Lecturer for any number of exams

≠

The ternary association clearly shows which lecturer a student passed a specific exam with. For
example, it is possible to express that student s1 took the exam e1 with lecturer l1 and that
student s2 took the same exam e1 with lecturer l2. With the binary associations, it is only possible
to express that the students s1 and s2 took the exam e1 and that exam e1 has two examiners l1
and l2. With this model, you cannot express which lecturer grades which student.

Association Class

§ Assign attributes to the relationship between classes rather than to a
class itself

§ The class and association of an association class must have the same
name.

§ Necessary when modeling n:m Associations

§ With 1:1 or 1:n possible but not necessary

Association Class

Association class

Association Class vs. Regular Class

A Student can have mutiple
Enrollments for one and the
same StudyProgram

A Student can enroll for one
particular StudyProgram only
once

≠

§ Default: no duplicates § non-unique: duplicates allowed

Association Class – unique/non-unique (1/2)

A student can only be granted an
exam meeting for a specific exam once.

A student can have more than one
exam meetings for a specific exam.

Association Class – unique/non-unique (2/2)

Aggregation

§ Special form of association
§ Used to express that a class is part of another class
§ Properties of the aggregation association:

§ Transitive: if B is part of A and C is part of B, C is also part of A
§ Asymmetric: it is not possible for A to be part of B and B to be part of A

simultaneously.
§ Two types:

§ Shared aggregation
§ Composition

Shared Aggregation

§ Expresses a weak belonging of the parts to a whole
= Parts also exist independently of the whole

§ Multiplicity at the aggregating end may be >1
= One element can be part of multiple other elements simultaneously

§ Spans a directed acyclic graph
§ Syntax: Hollow diamond at the aggregating end
§ Example:

§ Student is part of LabClass
§ Course is part of StudyProgram

A lab class consists of any number of
students. However, a student can
participate in a maximum of one lab class.

A study program is made up of any (≥ 0)
number of courses. A course is assigned to
at least one (≥ 1) study program.

Composition

§ Existence dependency between the composite object and its parts
§ One part can only be contained in at most one composite object at one

specific point in time
Multiplicity at the aggregating end max. 1
-> The composite objects form a tree

§ If the composite object is deleted, its parts are also deleted.
§ Syntax: Solid diamond at the aggregating end
§ Example: Beamer is part of LectureHall is part of Building

If the Building is deleted,
the LectureHall is also deleted

The Beamer can exist without the
LectureHall, but if it is contained in the
LectureHall while it is deleted, the Beamer
is also deleted

Shared Aggregation and Composition

§ Which model applies?

§ Which model applys?

Shared Aggregation and Composition

A Tire can exist without a Car. A
Tire belongs to one Car at most.

A Tire cannot exist without a Car.

A Tire can belong to multiple Cars

----Yes--- ---------N
o--------

A Car has one or two types of
Tires. Several Cars may have
the same Type of Tires.

----Yes---

Generalization

§ Characteristics (attributes and operations),
associations, and aggregations that are
specified for a general class (superclass)
are passed on to its subclasses.

§ Every instance of a subclass is
simultaneously an indirect instance of the
superclass.

§ Subclass inherits all characteristics,
associations, and aggregations of the
superclass except private ones.

§ Subclass may have further characteristics,
associations, and aggregations.

§ The generalization relationship is also
referred to as an “is a” relationship.

§ Generalizations are transitive.

Superclass

Subclasses
…inherit characteristics,
associations, and
aggregations

A Secretary is
an Employee and
a Person

§ Used to highlight common characteristics of their subclasses.
§ Used to ensure that there are no direct instances of the superclass.
§ Only its non-abstract subclasses can be instantiated.
§ Useful in the context of generalization relationships.
§ Notation: keyword {abstract} or class name in italic font.

Generalization – Abstract Class

Two types of Person: Man and Woman

No Person-object possible

§ Similarly, to the abstract class, an interface also does not have an
implementation or any direct instances. An interface represents a
contract.

§ The classes that enter into this contract, that is, the classes that
implement the interface, obligate themselves to provide the behavior
specified by the interface.

§ In contrast to the relationship between an abstract class and its
subclasses, an “is a” relationship between an interface and the classes
that implement it is not necessary.

§ Operations of interfaces never have an implementation.
§ An interface is denoted like a class but with the additional keyword

«interface» before the name.

Generalization – Interface Class

Generalization – Interface Class

implements
the interface

implements
the interface

uses the
interface

Generalization – Multiple Inheritance

§ UML allows multiple inheritance.
§ A class may have multiple superclasses.

§ Example:

A Tutor is both an Employee and a Student

With and Without Generalization

Creating a Class Diagram

§ Not possible to completely extract classes, attributes and associations
from a natural language text automatically.

§ Guidelines
§ Nouns often indicate classes
§ Adjectives indicate attribute values
§ Verbs indicate operations

§ Example: The library management system stores users with their
unique ID, name and address as well as books with their title, author
and ISBN number. Ann Foster wants to use the library.

Creating a Class Diagram

§ The following three aspects are important:
§ Which operations can an object of a class execute?
§ Which events, to which the object must be able to react, can theoretically

occur?
§ Which other events occur as a result? If the values of an attribute can be

derived from another attribute, for example, if the age of a person can be
calculated from their date of birth, it should be identified as a derived
attribute.

§ Further, it is essential to consider not only the current requirements but
also the extensibility of the system.

Example – University Information System

§ A university consists of multiple faculties which are composed of various institutes.
Each faculty and each institute has a name. An address is known for each institute.

§ Each faculty is led by a dean, who is an employee of the university.
§ The total number of employees is known. Employees have a social security number,

a name, and an email address. There is a distinction between research and
administrative personnel.

§ Research associates are assigned to at least one institute. The field of study of
each research associate is known. Furthermore, research associates can be
involved in projects for a certain number of hours, and the name, starting date, and
end date of the projects are known. Some research associates hold courses. Then
they are called lecturers.

§ Courses have a unique number (ID), a name, and a weekly duration in hours.

Example – Step 1: Identifying Classes

§ A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a name.
An address is known for each institute.

§ Each faculty is led by a dean, who is an
employee of the university.

§ The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is a
distinction between research and
administrative personnel.

§ Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be
involved in projects for a certain number of
hours, and the name, starting date, and
end date of the projects are known. Some
research associates hold courses. Then
they are called lecturers.

§ Courses have a unique number (ID), a
name, and a weekly duration in hours.

We model the system „University“

Dean has no further attributes than
any other employee

Example – Step 2: Identifying the Attributes

§ A university consists of multiple faculties
which are composed of various institutes.
Each faculty and each institute has a name.
An address is known for each institute.

§ Each faculty is led by a dean, who is an
employee of the university.

§ The total number of employees is known.
Employees have a social security number,
a name, and an email address. There is a
distinction between research and
administrative personnel.

§ Research associates are assigned to at
least one institute. The field of study of
each research associate is known.
Furthermore, research associates can be
involved in projects for a certain number of
hours, and the name, starting date, and
end date of the projects are known. Some
research associates hold courses. Then
they are called lecturers.

§ Courses have a unique number (ID), a
name, and a weekly duration in hours.

Example – Step 2: Identifying Relationships (1/6)

§ Three kinds of relationships:
§ Association
§ Generalization
§ Aggregation

§ Indication of a generalization
§ “There is a distinction between research

and administrative personnel.”
§ “Some research associates hold courses.

Then they are called lecturers.”

Abstract, i.e., no other types
of employees

§ “A university consists of multiple faculties which are composed of
various institutes.”

Example – Step 2: Identifying Relationships (2/6)

Composition to show existence dependency

§ “Each faculty is led by a dean, who is an employee of the university”

Example – Step 2: Identifying Relationships (3/6)

In the leads-relationship, the
Employee takes the role of a dean.

§ “Research associates are assigned to at least one institute.”

Example – Step 2: Identifying Relationships (4/6)

Shared aggregation to show that ResearchAssociates
are part of an Institute,

but there is no existence dependency

§ “Furthermore, research associates can be involved in projects for a
certain number of hours.”

Example – Step 2: Identifying Relationships (5/6)

Association class enables to store
the number of hours for every
single Project of every single
ResearchAssociate

§ “Some research associates hold courses. Then they are called
lecturers.”

Example – Step 2: Identifying Relationships (6/6)

Lecturer inherits all characteristics,
associations, and aggregations from
ResearchAssociate.
In addtion, a Lecturer has an association
teaches to Course.

Example – Complete Class Diagram

Code Generation

§ Class diagrams are often created with the intention of
implementing the modeled elements in an object-oriented
programming language.

§ Often, translation is semi-automatic and requires only minimal
manual intervention.

§ The class diagram is also suitable for documenting existing
program code, with the advantage that the relationships between
classes are represented graphically.

§ There are a number of tools for reverse engineering program
code into class diagrams automatically.

Code Generation – Example (1/6)

class Course {
public int courseNo;

}

class Course {
public int courseNo;

}

class Course {
public int courseNo;

}

class Course {
public int courseNo;

}

Code Generation – Example (2/6)

abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNo;

}

abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNo;

}

abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNo;

}

abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNo;

}

Code Generation – Example (3/6)

Enumeration ESemester {
winter,
summer

}

Enumeration ERole {
lecturer,
tutor,
examiner

}

Enumeration ESemester {
winter,
summer

}

Enumeration ESemester {
winter,
summer

}

Enumeration ERole {
lecturer,
tutor,
examiner

}

Code Generation – Example (4/6)

class Student extends
UniversityMember {

public int matNo;
public CourseExecution []

completedCourses;
}

class Student extends
UniversityMember {

public int matNo;
public CourseExecution []

completedCourses;
}

class Student extends
UniversityMember {

public int matNo;
public CourseExecution []

completedCourses;
}

class Student extends
UniversityMember {

public int matNo;
public CourseExecution []

completedCourses;
}

class Student extends
UniversityMember {

public int matNo;
public CourseExecution []

completedCourses;
}

Code Generation – Example (5/6)

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo {

return acctNo;
}
public CourseExecution [] courseExecution;

}

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo {

return acctNo;
}
public CourseExecution [] courseExecution;

}

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo {

return acctNo;
}
public CourseExecution [] courseExecution;

}

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo {

return acctNo;
}
public CourseExecution [] courseExecution;

}

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo {

return acctNo;
}
public CourseExecution [] courseExecution;

}

class Employee extends UniversityMember {
private int acctNo;
public int getAcctNo () {

return acctNo;
}
public CourseExecution [] courseExecutions;

}

Code Generation – Example (6/6)

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

Name Notation Description

Class Description of the structure and
behavior of a set of objects

Abstract class Class that cannot be instantiated

Association

Relationship between classes:
navigability unspecified,
navigable in both directions,
not navigable in one direction

Notation Elements (1/3)

oder

Name Notation Description

n-ary
association

Relationship between n (here 3)
classes

Association class More detailed description of an
association

xor relationship
An object of C is in a relationship
with an object of A or with an
object of B but not with both

Notation Elements (2/3)

Notation Elements (3/3)

Name Notation Description

Shared
aggregation

Parts-whole relationship (A is part
of B)

Strong
aggregation =
composition

Existence-dependent parts-whole
relationship (A is part of B)

Generalization Inheritance relationship (A
inherits from B)

Object Instance of a class

Link Relationship between objects

