
Business Informatics Group
Institute of Software Technology and Interactive Systems 
Vienna University of Technology
Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Object-Oriented Modeling

Sequence Diagram

Slides accompanying UML@Classroom
Version 1.0



Introduction

https://youtu.be/pCK6prSq8aw



Introduction

§ Modeling inter-object behavior which is the interactions between 
objects.

§ Interaction
§ Specifies how messages and data are exchanged between interaction 

partners
§ Interaction partners

§ Human (lecturer, administrator, …)
§ Non-human (server, printer, executable software, …)

§ Examples of interactions
§ Conversation between persons. For example: an oral exam.
§ Message exchange between humans and a software system. For 

example: between a lecturer and the student administration system when 
the lecturer publishes exam results.

§ Communication protocols. For example: HTTP.
§ Sequence of method calls in a program. For example: fire alarm and the 

resulting communication processes.



Interaction Diagrams

§ An interaction describes the interplay between multiple interaction 
partners and comprises a sequence of messages.

§ The sending or receipt of a message can be triggered by the occurrence of 
certain events.

§ For example: the receipt of another message, and can take place at specified 
times, for example, at 05:00.

§ Predefined constraints specify any necessary preconditions that must be 
met for successful interactions.

§ For example, the lecturer must be logged into the system before entering the 
students’ grades.

§ In UML, you use interaction diagrams to: 
§ Used to specify interactions
§ Modeling concrete scenarios meaning that the message exchange takes place 

within a specific context to fulfill a specific task.
§ Describing communication sequences at different levels of detail

§ Interactions usually only describe a specific part of a situation. There are 
often other valid execution paths that the interaction diagram does not 
cover.



Interaction Diagrams

§ Interaction Diagrams show the following: 
§ Interaction of a system with its environment
§ Interaction between system parts in order to show how a specific use case 

can be implemented
§ Interprocess communication in which the partners involved must observe 

certain protocols
§ Communication at class level (operation calls, inter-object behavior)



Sequence Diagram

§ Two-dimensional diagram 
§ Horizontal axis: involved interaction partners
§ Vertical axis: chronological order of the interaction

§ Interaction = sequence of event specifications



Interaction Partners

§ Interaction partners are depicted as lifelines
§ Head of the lifeline

§ Rectangle that contains the expression roleName:Class
§ Roles are a more general concept than objects
§ Object can take on different roles over its lifetime

§ Body of the lifeline 
§ Vertical, usually dashed line
§ Represents the lifetime of the object associated with it

Head of the lifeline

Body of the Lifeline



Exchanging Messages (1/2)

§ Interaction: sequence of events
§ Message is defined via send event and receive event

§ Execution specification
§ Continuous bar
§ Used to visualize when an interaction partner executes some behavior



Exchanging Messages (2/2)

… on different lifelines which exchange messages

… on different lifelines… on one lifeline

»Happens before«

Order of messages:



Messages (1/3)

§ Synchronous message
§ Sender waits until it has received a response message 

before continuing
§ Syntax of message name: msg(par1,par2)

§ msg: the name of the message
§ par: parameters separated by commas

§ Asynchronous message
§ Sender continues without waiting for a response 

message
§ Syntax of message name: msg(par1,par2)

§ Response message
§ May be omitted if content and location are obvious
§ Syntax: att=msg(par1,par2):val

§ att: the return value can optionally be assigned to a variable
§ msg: the name of the message
§ par: parameters separated by commas
§ val: return value



Messages (1/3)

In both cases, a student is communicating with a professor in order to 
register for a course. 
• In case (a), the registration is via e-mail, that is, asynchronous. The 

student does not explicitly wait for the receipt of the confirmation 
message.

• In case (b), the student registers with the professor personally and the 
communication is therefore synchronous. The student waits until 
receiving a response message.



Messages (2/3)

§ Object Creation
§ Dashed arrow
§ Arrowhead points to the head of the lifeline of the

object to be created
§ Keyword new

§ Object Destruction
§ Object is deleted
§ Large cross (×) at the end of the lifeline



Messages (3/3)

§ Found message
§ Sender of a message is unknown or not relevant

§ Lost message
§ Receiver of a message is unknown or not relevant

§ Time-consuming message
§ "Message with duration"
§ Usually, messages are assumed to be transmitted 

without any loss of time
§ Express that time elapses between the sending and 

the receipt of a message



Combined Fragments

§ Model various control structures
§ This enables you to describe a number of possible execution paths 

compactly and precisely
§ 12 predefined types of operators

Operand

Operand

Combined Fragment

Operator

Operand



Types of Combined Fragments

Operator Purpose
alt Alternative interaction

opt Optional interaction

loop Repeated interaction

break Exception interaction

seq Weak order

strict Strict order

par Concurrent interaction

critical Atomic interaction

ignore Irrelevant interaction

consider Relevant interaction

assert Asserted interaction

neg Invalid interaction

Br
an

ch
es

 a
nd

 
lo

op
s

Co
nc

ur
re

nc
y 

an
d 

or
de

r
Fi

lte
rs

 a
nd

 
as

se
rt

io
ns



alt Fragment

§ To model alternative 
sequences

§ Similar to switch statement in 
Java

§ Guards are used to select the 
one path to be executed

§ Guards
§ Modeled in square brackets
§ default: true
§ predefined: [else]

§ Multiple operands
§ Guards must be disjoint to 

avoid indeterministic behavior



opt Fragment

§ To model an optional 
sequence

§ Actual execution at runtime 
is dependent on the guard

§ Exactly one operand
§ Similar to if statement 

without else branch
§ equivalent to alt fragment 

with two operands, one of 
which is empty



loop Fragment

§ To express that a sequence is to be executed repeatedly
§ Exactly one operand
§ Keyword loop followed by the minimal/maximal number of iterations 
(min..max) or (min,max)

§ default: (*) .. no upper limit
§ Guard 

§ Evaluated as soon as the minimum number of iterations has taken place
§ Checked for each iteration within the (min,max) limits
§ If the guard evaluates to false, the execution of the loop is terminated

Notation alternatives:

loop(3,8) = loop(3..8)
loop(8,8) = loop (8)
loop = loop (*) = loop(0,*)

loop is
executed at 
least once, then
as long as a<1
is true

Min
Guard

Max



break Fragment

§ Simple form of exception handling
§ Exactly one operand with a guard
§ If the guard is true:

§ Interactions within this operand are executed
§ Remaining operations of the surrounding

fragment are omitted
§ Interaction continues in the next higher

level fragment
§ Different behavior than opt fragment

Not executed if break is executed



loop and break Fragment - Example



seq Fragment

§ Default order of events
§ Weak sequencing:

1. The ordering of events within each of the operands is maintained in the 
result.

2. Events on different lifelines from different operands may come in any 
order.

3. Events on the same lifeline from different operands are ordered such that 
an event of the first operand comes before that of the second operand.



seq Fragment – Example



strict Fragment

§ Sequential interaction with order
§ Order of event occurrences on different lifelines between different 

operands is significant
§ Messages in an operand that is higher up on the vertical axis are always 

exchanged before the messages in an operand that is lower down on the 
vertical axis



strict Fragment - Example



par Fragment

§ To set aside chronological order between messages in different 
operands

§ Execution paths of different operands can be interleaved
§ Restrictions of each operand need to be respected
§ Order of the different operands is irrelevant
§ Concurrency, no true parallelism



par Fragment - Example



critical Fragment

§ Atomic area in the interaction (one operand)
§ To make sure that certain parts of an interaction are not interrupted by 

unexpected events
§ Order within critical: default order seq



critical Fragment - Example



Notation Elements (1/2)

Name Notation Description

Lifeline Interaction partners involved in
the communication

Destruction 
event

Time at which an interaction partner
ceases to exist

Combined 
fragment Control constructs



Notation Elements (2/2)

Name Notation Description

Synchronous 
message Sender waits for a response message

Response 
message Response to a synchronous message

Asynchronous 
communication

Sender continues its own work
after sending the asynchronous
message

Lost message Message to an unknown receiver

Found message Message from an unknown
sender



The Connection between a Class Diagram and a Sequence 
Diagram

§ We have repeatedly stated that the different UML diagrams should not 
be considered independently of one another; they merely offer different 
views of a certain content. 

§ For example, the class diagram models a part of a university system 
that also includes the student administration system.



The Connection between a Class Diagram and a Sequence 
Diagram

§ We want to depict the communication that is required to create a new 
registration of a certain student for a certain course.



Example

§ In a self-service, e.g., money (e.g., ATM), machine, three objects do the 
work we're concerned with:

§ The front: the interface the self-service machine presents to the customer
§ The money register: part of the machine where money is collected
§ The dispenser: which delivers the selected product to the customer

§ The instance sequence diagram may be sketched by using this 
sequences:

§ The customer inserts money in the money slot in front money collector.
§ The customer makes a selection on the front UI
§ The money travels to the register
§ The register checks to see whether the correct money is in the money 

collector/dispenser
§ The register updates its cash reserve
§ The register notifies the dispenser which delivers the product (e.g., 

receipt) to the front of the machine



Example

§ The customer inserts money in the money slot in front money collector.
§ The customer makes a selection on the front UI
§ The money travels to the register
§ The register checks to see whether the correct money is in the money collector/dispenser
§ The register updates its cash reserve
§ The register notifies the dispenser which delivers the product (e.g., receipt) to the front of 

the machine



Example

§ Library system, three objects do the work we’re concerned with
§ Book Borrower: that will borrow the book
§ Copy: copy of a book
§ Librarian/Library Staff: which authorizes and register the borrowing of 

the borrowed copy.



Example


