COMP 433 Software Engineering
Module 5: System Modeling with UML

Ahmed Tamrawi

in| atamrawi é’atamrawi.gifhub.io DA ahmedtamrawi@gmail.com

Modeling Application Classes

* In Class Diagram module, we discussed the static modeling of entity
classes, which benefit most from static modeling in the analysis phase
because they are information-intensive. Entity classes, however, are
only one kind of software class within the system.

* Before dynamic modeling (e.g., sequence diagrams) can be
undertaken, it is necessary to determine what software classes are
needed to realize each use case.

* |dentification of software classes can be greatly assisted by applying
class structuring criteria, which categorizes software classes by the
roles they play in the application.

Modeling Application Classes

«application class»

JAY
‘ bi hat i ; ; bi h - Software object that
Software o Ject.t at mtgr aces . Software object t' at !orovn es «appllcatlon contains the details of the
to and communicates with the | «boundary» «entity» «control» | the overall coordination for a logicy application logic.
external environment. R collection of objects =)
Encapsulates info and provides
access to the info it stores. It could
be accessed via a service object.
«user «device : «state dependent ; «business : :
: : «timer» «coordinator» : «algorithmy» || «service»
interactiony [/O» SPReE control» logicy ©
«inputy» «outputy» «nput/
output»

Modeling Application Classes

* Most applications will have objects from each of the four categories.
However, different types of applications will have a greater number of
classes in one or another category.

* Information-intensive systems will have several entity classes, which
is why static modeling is so vital for these systems.

* Real-time systems are likely to have several device 1/O boundary
classes to interface to the various sensors and actuators. They are
also likely to have complex state-dependent control classes because
these systems are highly state-dependent.

Boundary Classes: User Interaction Class

a) -
«user mteraction»
Operator
Interaction
b) 1: Operator 2: Sensor
Command Request
% i «user 1nteraction» — «entity»
: Operator : SensorData
- . - .
Interaction Repository
4: Display 3: Sensor Data

: Operator pata

Figure 8.2. Example of user interaction class and object

Boundary Classes: Proxy Class

Software object
external system

a) «Proxy»
Pick&Place
Robot
Proxy
b) I
I
| 1: Pick & Place 1
| «externa
_ i Robot Command b
: Pick&Place ; — - External
Robot < | Pick&Place
Proxy 2: Pick & Place | Robot
Robot Response |
| Real-world
I
I
I
1

System boundary

(Note: the dashed line for the system boundary is for illustrative purpose only and
does not conform to the UML notation.)

Figure 8.3. Example of proxy class and object

Boundary Classes: [/O Class

2) «input» a) a)
Temperature «outputy «input/outputy
Sensor RedLight ATMCardReader
Interface Interface Interface
: l !
b) :) | B} |
' 1: Temperature 1 . i 1: Card Reader I
«external input Sensor Input i «input» 1: Light Command d «external output «external input/ Input i
device» . | I, «output» -— ! Havices - P — ! «input/output»
aReal-World | 5 FRELishy ' . RedLight s | : ATMCardReader
Temperature i I te nlior TRERICS : Actuator s A i Interface
Sensor | ftertace i Reader 2: Card Reader !
Real-world i . ! Real-world Output :
Fatdro e i Software object Software object ! Real-world o Ao ! Software object
2 I hardware object ardware object I
Hardware / software boundary Hardware / software boundary Hardware / software boundary
(Note: the dashed line for the hardware/software boundary is for illustrative purpose] (Note: the dashed line for the hardware/software boundary is for illustrative purpose (Note: the dashed line for the hardware/software boundary is for illustrative purpose
only and does not conform to the UML notation.) only and does not conform to the UML notation.) only and does not conform to the UML notation.)

Figure 8.4. Example of input class and object Figure 8.5. Example of output class and object Figure 8.6. Example of |/0 class and object

Depicting External Classes and Boundary

Classes

ATM 1
Customer

«external I/O
device»
CardReader

«software system»

«external output
device»
ReceiptPrinter

«external user»
ATMCustomer
KeypadDisplay

«external output
device»
CashDispenser

«user interaction»
Operator
Interaction

Interacts
< Wlth

|

A

L'l AT™
Operator
1

BankingSystem
Inputs to '
1 B 1 «input/output»
< CardReader
Interface
Outputs to
Outputs to
] < 1 «output»
ReceiptPrinter
Interface
Interacts
with) .
1 I 1 «user interaction
Customer
Interaction
Outputs to
1 < 1 «output»
CashDispenser
Interface

Figure 8.7. Banking System external classes and boundary classes

«external user»
Operator

Control Classes: Coordinator Class

1.1: PIN Validation

a)
«coordinator»
BankCoordinator
b)
«subsystem»
: ATMClient
1,.2,.3:4: 1.3,23,3.3,4.3:
ATM Bank
Transaction Response
«coordinator»
: BankCoordinator
4.1: Transfer
Transaction / Request
. 3.2: Query A
“ L Que.ry Response Withdraw o 8
A Transaction / R . e
R \ eques ;
4.2: Transfer 2.2: Withdraw \ 1.2: PIN
Response Response Validation
«business logic» «business logic» «business logic» Response
: Transfer : Query : Withdrawal
Transaction Transaction Transaction
Manager Manager Manager

«business logic»
: PINValidation
Transaction
Manager

Figure 8.10. Example of coordinator class and object

Control Classes: State-Dependent Class

a)
«state dependent
control»
ATMControl
b) «output»
1: Dispense Cash : CashDispenser
_7 Interface
/
2: Cash Dispensed
«state dependent E
control» .y .
- ATMConitiol 3: Print Receipt
B
< «output»
: ReceiptPrinter
4: Receipt Printed Interface

Figure 8.11. Example of state-dependent control class and object

Application Logic Classes: Business Logic Class

a)
«business logic»
Withdrawal
TransactionManager
b)
«coordinator»
: BankCoordinator
1: Withdrawal Request \l{ T 8: Withdrawal Response
(Card Id, Account#, Amount) (Amount, Balance)
«business logic»
: Withdrawal
TransactionManager
7: Log Transaction
4: Debit 2: Check \
(Account#, Amount) Daily Limit
/ (Card Id, Amount), 3: Daily Limit
6: Update Response
7 Daily Total
B AT (Card Id, Amount)
) «entity»
«entity» «entity» : Transaction
- Account g DebltCard LOg

Figure 8.13. Example of business logic class and object

Application Logic Classes: Algorithm Class

a)

«algorithmy
Cruiser

b)
«entity»
: Cruising
Speed
2: Read 1‘ \L 3: Cruising Speed Value
4: Read
1: Enable)
Maintain Speed — <<§11t1ty>>
«state dependent — . -— : Current
control» 2 - Speed
: : Cruiser
+ CruiseControl 5: Current Speed Value

RN

6: Speed
Adjustment

7: Motor Value

«outputy» —_—
: ElectricMotor
Interface

Figure 8.14. Example of algorithm class and object

Application Logic Classes: Service Class

a :
) «servicey
CatalogService

b)

2: Catalog R t
1: Customer Input atalog Keques

—_— «user interaction» — «coordinator»
€ : CustomerlInteraction > — aCustomerCoordinator
6: Catalog Output .
e . g uip 5: Catalog Info
3: Catalog Request l T 4: Catalog Info
«service»
: CatalogService

Figure 8.15. Example of service class and object

A bank has several automated teller machines (ATMs) that are geographically dis-
tributed and connected via a wide area network to a central server. Each ATM
machine has a card reader, a cash dispenser, a keyboard/display, and a receipt
printer. By using the ATM machine, a customer can withdraw cash from either a
checking or savings account, query the balance of an account, or transfer funds from
one account to another. A transaction is initiated when a customer inserts an ATM
card into the card reader. Encoded on the magnetic strip on the back of the ATM
card are the card number, the start date, and the expiration date. Assuming the card
is recognized, the system validates the ATM card to determine that the expiration
date has not passed, that the user-entered personal identification number, or PIN,
matches the PIN maintained by the system, and that the card is not lost or stolen.
The customer is allowed three attempts to enter the correct PIN; the card is confis-
cated if the third attempt fails. Cards that have been reported lost or stolen are also
confiscated.

If the PIN is validated satisfactorily, the customer is prompted for a withdrawal,
query, or transfer transaction. Before a withdrawal transaction can be approved,
the system determines that sufficient funds exist in the requested account, that the
maximum daily limit will not be exceeded, and that there are sufficient funds at the
local cash dispenser. If the transaction is approved, the requested amount of cash is
dispensed, a receipt is printed that contains information about the transaction, and
the card is ejected. Before a transfer transaction can be approved, the system deter-
mines that the customer has at least two accounts and that there are sufficient funds
in the account to be debited. For approved query and transfer requests, a receipt
is printed and the card ejected. A customer may cancel a transaction at any time;
the transaction is terminated, and the card is ejected. Customer records, account
records, and debit card records are all maintained at the server.

An ATM operator may start up and close down the ATM to replenish the ATM
cash dispenser and for routine maintenance. It is assumed that functionality to open
and close accounts and to create, update, and delete customer and debit card records
is provided by an existing system and is not part of this problem.

ATM\

Customer

Withdraw Funds o

~No «include»
~

~
~
~
~

«include»
______ Validate PIN

ATM Operator

Use case name: Validate PIN
Summary: System validates customer PIN
Actor: ATM Customer
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:
1. Customer inserts the ATM card into the card reader.
. If system recognizes the card, it reads the card number.
. System prompts customer for PIN.
. Customer enters PIN.
. System checks the card’s expiration date and whether the card has
been reported as lost or stolen.
6. If card is valid, system then checks whether the user-entered PIN
matches the card PIN maintained by the system.
7. If PIN numbers match, system checks what accounts are accessible
with the ATM card.
8. System displays customer accounts and prompts customer for
transaction type: withdrawal, query, or transfer.
Alternative sequences:
Step 2: If the system does not recognize the card, the system ejects the
card.
Step S: If the system determines that the card date has expired, the system
confiscates the card.
Step 5: If the system determines that the card has been reported lost or
stolen, the system confiscates the card.
Step 7: If the customer-entered PIN does not match the PIN number for
this card, the system re-prompts for the PIN.
Step 7: If the customer enters the incorrect PIN three times, the system
confiscates the card.
Steps 4-8: If the customer enters Cancel, the system cancels the transaction
and ejects the card.
Postcondition: Customer PIN has been validated.

DN AW N

Use case name: Withdraw Funds

Summary: Customer withdraws a specific amount of funds from a valid
bank account.

Actor: ATM Customer

Dependency: Include Validate PIN use case.

Precondition: ATM is idle, displaying a Welcome message.

Main sequence:
1. Include Validate PIN use case.
2. Customer selects Withdrawal, enters the amount, and selects the
account number.
3. System checks whether customer has enough funds in the account
and whether the daily limit will not be exceeded.
4. If all checks are successful, system authorizes dispensing of cash.
5. System dispenses the cash amount.
6. System prints a receipt showing transaction number, transaction type,
amount withdrawn, and account balance.
7. System ejects card.
8. System displays Welcome message.
Alternative sequences:
Step 3: If the system determines that the account number is invalid, then it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s account, then it displays an apology and ejects the card.
Step 3: If the system determines that the maximum allowable daily with-
drawal amount has been exceeded, it displays an apology and ejects the
card.
Step 5: If the ATM is out of funds, the system displays an apology, ejects
the card, and shuts down the ATM.
Postcondition: Customer funds have been withdrawn.

Use case name: Query Account
Summary: Customer receives the balance of a valid bank account.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:
1. Include Validate PIN use case.
2. Customer selects Query, enters account number.
3. System reads account balance.
4. System prints a receipt that shows transaction number, transaction
type, and account balance.
5. System ejects card.
6. System displays Welcome message.
Alternative sequence:
Step 3: If the system determines that the account number is invalid, it dis-
plays an error message and ejects the card.
Postcondition: Customer account has been queried.

Use case name: Transfer Funds
Summary: Customer transfers funds from one valid bank account to
another.
Actor: ATM Customer
Dependency: Include Validate PIN use case.
Precondition: ATM is idle, displaying a Welcome message.
Main sequence:
1. Include Validate PIN use case.
2. Customer selects Transfer and enters amount, from account, and to
account.
3. If the system determines the customer has enough
funds in the from account, it performs the transfer.
4. System prints a receipt that shows transaction number, transaction
type, amount transferred, and account balance.
5. System ejects card.
6. System displays Welcome message.
Alternative sequences:
Step 3: If the system determines that the from account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that the to account number is invalid, it
displays an error message and ejects the card.
Step 3: If the system determines that there are insufficient funds in the
customer’s from account, it displays an apology and ejects the card.
Postcondition: Customer funds have been transferred.

«external /0O
device»
CardReader

«software system»

ATM \]

«external output
device»
ReceiptPrinter

Customer

«external user»
ATMCustomer
KeypadDisplay

«external output
device»
CashDispenser

«user interaction»
Operator
Interaction

Interacts
< Wlth

1

I ATM
Operator

BankingSystem
Inputs to .
1 B 1 «input/output»
CardReader
Out ‘t ¢ Interface
utputs to
Outputs to
1 < 1 «output»
ReceiptPrinter
Interface
Interacts
with
| [N 1 «user interaction»
Customer
Interaction
Outputs to
1 < 1 «output»
CashDispenser
Interface

«external user»
Operator

Provides service for p

«entity» 1" «entity»
Bank ATMInfo
Provides service for 1
1 v
1.2
Administers
v «entity» Identifies
1 Customer 7
Owns
v 1.x
¥ Owns
g 2 0.1 Provides 1.* *
Access to
«entity» B > (2 «entity» «entity»
DebitCard Account 0,2 < Modifies E ATMTransaction
«entity»
CardAccount
«entity» «entity» «entity» «entity» «entity» «entity»
Checking Savings Withdrawal Query Transfer PINValidation
Account Account Transaction Transaction Transaction Transaction

Figure 21.4. Conceptual static model for Banking System: entity classes

«entity»
Bank

bankName: String
bankAddress: String
bankld: Real

«entity»
Account

accountNumber: String
accountType: String
balance: Real

«entity»
WithdrawalTransaction

«entity»
Customer

«entity»
DebitCard

customerName: String
customerld: String
customerAddress: String

cardld: String

PIN: String
startDate: Date
expirationDate: Date

status: Integer

«entity»
ATMiInfo

bankld: String
ATMId: String
ATMLocation: String

«entity»
ATMTransaction

limit: Real TR

tal Bual ATMAddress: String
«entity» «entity» «entity»
CheckingAccount SavingsAccount ATMCard

bankld: String

ATMId: String

date: Date

time: Time
transactionType: String
cardld: String

PIN: String

status: Integer

lastDepositAmount: Real

interest: Real

cardld: String
startDate: Date
expirationDate: Date

accountNumber: String
amount: Real
balance: Real

«entity»
QueryTransaction

«entity»
TransferTransaction

«entity»
PINValidationTransaction

accountNumber: String
balance: Real
lastDepositAmount: Real

fromAccountNumber: String
toAccountNumber: String
amount: Real

startDate: Date
expirationDate: Date

«entity»
CardAccount

cardld: String
accountNumber: String
accountType: String

«entity»
ATMCash

cashAvailable: Integer
fives: Integer

tens: Integer
twenties: Integer

«external /O «external «l/O» «entity» «state dependent «user interaction» ' b
device» user» : CardReader - ATMCard control» : Customer ‘ «entity» xsu system»
: CardReader :ATM Interface - ATMControl Interaction : ATMTransaction : BankingService
: Customer : : :
I Keypad I I : 1 : :
| Display : | | | | |
[, | I : [! :
I I I I |) I I
: [: - [| ! |
I 1: Card Reader Input I : : I : :
b i = I | [! :
! [! I [
: I 1.1: Card Id, Start Date, Expiration Date : : : :
: l : o | : | |
: | : 1.2: Card Inserted : : | !
! I [i >i 1.3: Get PIN | ! !
. | [I | o [[
| | [I : I | !
l . l 14 PIN Prompt ! l | I
| | | | | | ’ |
! l I 2: PIN Input ! . i i
| I 1 1 |
1 | | ! : ! : :
| ' | | | | ' |
I ! I I 2.1: Card Request I | !
| | | = T ! 1 |
I [: | [! [[
! ! ! ! 2.2: Card Id, Start Date, Expiration Date ! : !
| | |
[| [I . [i
! | ! ! i 2.3: Card Id, PIN, Start Date, Expiration Date i
: : : : : 2.4: PIN Validation Transaction :
[| [I < !
[| [I ! [' '
! i ! ! 2.5: PIN Entered (PIN ValidationT ransaction) I I
= i | [
i : i l | | | |
I : I : : 2.6: Validate PIN (PIN Validation Transaction) \:
i , [I , + i |
i ! | ! ! | 2.7 [Valid]: Valid PIN (Account #s) |
I | I | [I 1 1
: | | | | | ' |
: | : : 2.8: Display Menu (Account #s) : :
! i ! ! ! i | |
! : ! ! : 2.8a: Update Status (PIN Valid) | !
| :
: [' 1 2.9: Selection Menu | ' 7 :
[fl | I | [! !
! ! H . I } I I
I ' I 1 ! I I !

Figure 21.12. Sequence diagram: ATM client Validate PIN use case

«external
I/O device»
:Card
Reader

«entity»
:ATM
Transaction

(Withdrawal Transaction)

«external «V/O» «state «user
user» : Card dependent interaction»
- ATM Reader control» : Customer
Customer Interface - ATMControl Interface
Keypad i H i
Display) ! H
3: Witﬁdraw, Account #,.Amou nt \;
3.3:lWithdrawaI
Selected

3.1: Withdraw,
Account #, Amount

>
1 3.2: Withdrawal

1
| Transaction 1

= 2 .
: 3.4: Request Withdr

«output»
: CashDispenser
Interface

«entity»
: ATMCash

awal (Withdrawal Transaction)

«output»
: ReceiptPrinter
Interface

«subsystem»
: Banking
Service

3.17: Card Peader Output

S e EEEE R R EEE PR et

Figure 21.17. Sequence diagram: ATM client Withdraw Funds use case

i i
1 1
T : :
; : :
1 1 1
1 I 1
I 1 1
: : :
I L ~]
1] H ! ! 1 “l
: 13.4a: Display Wait; : : : ! :
! 3.4a.1: Wait Prompt | 1 H] | 1 :
i - | - | | i i i
: : L : : 3.5: Withdrawal Approved (Amount, Balance) ! !
1 I o= t I i i 1 1
1 .
E : : 3.6::D|spense Cash (Amount) \: ! <oxternal | | !
i [I ! i 3.7: Withdraw (Amount) | output | | !
: : 3.6a: Update Status (Amount, Balance) i k.1 device» 1 1
I ! H ! ’: : ’i : Cash : i
! ' i i 1 13.8: Cash Response | |_Dispenser | | '
I - 1 : 1 < | : 1 1
] 1 1 1 1 1 ! 1 1 1
! i : i ! | 3.9: Dispenser Output d : :
! ! 1 3.10: Cash Dispensed ; i - i | «external |,
!) 1 T i : i i 1 : output]
1 H 1 : o311 Print Receipt ! : | device» |
] : : , T i i i i > | :Receipt | |
: h 1 3.11a: Display Cash : : : : 1 Printer 1
. : I Dispensed H | | : : : :
1 1 1
E : : : I 3.11b: Confirm Cash Dispensed I ' : : :
1 ! 1 I 1 1 1 1 \ 1 I
: ; 1 ‘ .
1 3.11a.1:Cash Dispensed Prompt 1 H 3.12: Transaction Request d : i .
L= T + 1 = 3 3 } 1
i - ! - e = . | i : 1 :
1 1 | 1 1 3.13: Transaction Data | 1) 314 Printer |
: | : | : : ———>{ oupu I |
1 ! 1 ! [1 1 1 > |
1 1 y oy 1
: : 3.16: Eject :(: 3.'15' Receipt Printed : : i I : :
1] 1 1 1
. — | ! : : ! - | |
H 3.18: Card Ejected ' 1 1 1 1 i H i
I ; o 1
E : 3.19: Display Ejected i i i i : : :
! >
1 3.20: Card Ejected Plrompt ' 1 ! 1 ! i ! i
:< 1 H 1 : : : : ! : !

Every course in the system has lecturers assigned to it. This is done
by one of the course administrators, who is also a lecturer. As part of
a course, lecturers may create tasks and assess papers submitted by
students. Therefore, the lecturers award points and give feedback.
The course administrator defines which lecturer assesses which pa-
pers. At the end of the course, the course administrator also arranges
for certificates to be issued. A student’s grade is calculated based on
the total number of points achieved for the submissions handed in.
Students can take courses and upload papers.

All users—students and lecturers—can manage their user data, view
the courses and the tasks set for the courses (provided the respective
user 1s involved in the course), and view submitted papers as well as
grade points. However, students can only view their own papers and
the related grades. Lecturers can only view the papers assigned to
them and the grades they have given. The course administrator has
access rights for all data.

A course is created and deleted by an administrator.

When a course is created, at least one administrator must be assigned
to it. Further course administrators can be assigned at a later point in
time or assignments to courses can be deleted. The administrator can
also delete whole courses.

Information about users and administrators is automatically trans-
ferred from another system. Therefore, functions that allow the cre-
ation of user data are not necessary.

All of the system functions can only be used by persons who are
logged in.

Submissions Management

View
assessment View

submission

View

—] course

—
p—

Student

y—

Lecturer

Manage
user data

Create task
Assign paper
for correction

Take course

Manage
course

Course
Administrator

]
%§

Admin

Issue
certificate

Create course
o
\ iIllclude»
Delete
course

Assign course
administrator

Remove course
administrator

Vs «enu;;;r{;e:ion»
Every course in the system has lecturers assigned to it. This is done — admin
by one of the course administrators, who is also a lecturer. As part of < ki
a course, lecturers may create tasks and assess papers submitted by authorization:BType
students. Therefore, the lecturers award points and give feedback. oray <
The course administrator defines which lecturer assesses which pa- getAuthorization()
pers. At the end of the course, the course administrator also arranges ;2?522?;0
for certificates to be issued. A student’s grade is calculated based on I
the total number of points achieved for the submissions handed in. Rtbmission -eciings
Students can take courses and upload papers. paper * assesses 1 |getCourses)
y . date getCourseAdministration()
All users—students and lecturers—can manage their user data, view points — —
the courses and the tasks set for the courses (provided the respective corection P courseAdministrator
user 1s involved in the course), and view submitted papers as well as ﬁsﬁ,z?;ag(;ta() =
grade points. However, students can only view their own papers and o s 1
the related grades. Lecturers can only view the papers assigned to setPaper() Task gives participates
them and the grades they have given. The course administrator has s -
access rights for all data. 14 g:zgﬂﬁgm
A course 1s created and deleted by an administrator. Participation ||P0™
When a course is created, at least one administrator must be assigned e po— * 1.%
to it. Further course administrators can be assigned at a later point in /Grade updateData() Course
time or assignments to courses can be deleted. The administrator can ::?;TI::(I)S = getSme'sions() —
also delete whole courses. getSubmissions() | [semester
Information about users and administrators is automatically trans- :Jsgﬂ?atgzg;géz(t)ez() —‘32:’&‘1‘:;%";?::522‘;8)
ferred from another system. Therefore, functions that allow the cre- N\ getData()
ation of user data are not necessary. Student \\ :gg;ﬁ?};ﬁzion()
All of the system functions can only be used by persons who are —= N\ ?s‘lﬂzacikr(t?ﬁcate()
: \ informStudent()
logged " g:tggizé)ipations() ® \\\ il ::Ig:méeozt:]sr:;gministrator()
certificatelnfo() uploadPaper()

% :Course :Submission :Participation % %
Student i i : Course Lecturer
I | | | Administrator I

- (1,numberTask) / | | | |

oop(1,numberTasks
T T | | | |
| | | | | |
| uploadPaper() | : : : :
P>
| | | | |
: | setPaper() : : : :

—>

| | | | | |
: ! ! notification() ! >]! :
| | | | | |
| notification() | I I I |
k< ! | | | |
| | | | | |
| | | ianLect | |
I I € assign fac urer() : |
| | inform | | | |
: | Lecturer() ! : : :
| | | | | |
: ! ! notification() ! N
| | : | | |
| | | etData | |
| I I t g 0 t i
| | | | | |
| | | | setGrade() | |
| | : I t t i
| | informStu- | | | |
I I dent() | | | [
| | | |
| | | update | | |
: : | Points() | : :
| | | | | |
!/ notification() ! : : : :
| | | | | |
t t t t t t
	issueCertificate()			
	t t {			
issueCer-				
@<tficatel				
certifi- I	I			
e catelnfo() !				

Vs «enumeration»
BType
name admin
login standard
password
authorization:BType
notification()
updateData() =
getAuthorization()
checkPW()
getData()
Submission Lecturer
paper * assesses 1 |getCourses()
date getCourseAdministration()
ik ; 1..% 1.%
correction bk
courseAdministrator
* for
getData()
updateData()
assignLecturer() 1
setGrade()
Soape) Task gives participates
*
name
description
X J deadline
e . points
Participation submissionDeadline
e 1..%
[totalPoints getData()
/Grade updateData() Course
certificatelssued getSubmissions()
getPoints() * e
getSubmissions() 1 semester
updatePoints() s
issueCertificate() e addCourseAdn'IlrIlstrator()
8 delCourseAdministrator()
\ getData()
\\ updateData()
Student \\ addParticipation()
\ addTask()
matNo % issueCertificate()

\ informStudent()
getData() informLecturer()
getParticipations() ® il informCourse Administrator()
certificatelnfo() uploadPaper()

