
Ahmed Tamrawi

COMP 4384 Software Security
Module 3: The Software Security Problem

https://gist.github.com/atamrawi/aa1147ef8161349f8276a05f849559c4

What is Software Security?

What is Software Security?
the state of being free from danger or threat

set of instructions, data or programs used to
operate computers and execute specific tasks

First stored-program to calculate
the highest factor of 218

1948vaccination, nations, banks, needs, law, rights, etc.

1960
First
Packaged
Software

1990

Internet

What is Software Security?
is the umbrella term used to describe software that is engineered

such that it continues to function correctly under malicious attack

Why do we need Software Security?

“Each technology goes through a cycle of
development and weaponization, followed
only later by the formulation of doctrine and
occasionally by efforts to control the
weapon’s use.”

The Internet technology has developed rapidly and it is now being
weaponized to sabotage the electronic or physical assets of an

adversary!

Software is an integral part of nearly all technology
and almost all prominent attacks on cyber physical
systems (CPS) have exploited vulnerabilities
rooted in the underlying systems software.

NASA - Mariner 1
$18 million

Car Recalls - $3 Billion Knight Capital Trading
$440 million

Android Lollipop
https://threatpost.com/google-aware-of-
memory-leakage-issue-in-android-5-1-fix-
forthcoming/111640/

Zero-Day Flaw Linux
Taking control and privacy

Ukraine power grid attacks

Dec 2015 & Dec 2016

July 21, 2015

Jeep remotely hijacked

November 29, 2011

HP printers remotely set on fire

Deployed in 2005, Identified in 2010

STUXnet Worm

August 17, 2009

Destruction Sayano-Shushenskaya
Hydroelectric Power Plant

August 2003

Northeast Power Blackout Davis-Besse Nuclear Power Plant

August 2003

No need for bombs, Plant Malware!

is investing billions of dollars
into Securing Software

APAC

CHESS

Automated Program
Analysis for Cybersecurity VET Vetting Commodity IT

Software and Firmware

HACMS High Assurance Cyber
Military Systems

CASE

STAC Space/Time Analysis for
Cybersecurity

Cyber Assured Systems
Engineering

Computers and Humans
Exploring Software Security

ARCOS Automated Rapid
Certification Of Software

Software Security

• On the first day of class, mechanical engineers learn a critical lesson:
Pay attention and learn this stuff, or the bridge you build could fall
down.
• By contrast, on the first day of software engineering class, budding

developers are taught that they can build anything that they can
dream of. They usually start with “hello world.”

Software Security

• An overly optimistic approach to software development has certainly led to
the creation of some mind-boggling stuff, but it has likewise allowed us to
paint ourselves into the corner from a security perspective.
• Simply put, we neglected to think about what would happen to our

software if it were intentionally and maliciously attacked.
• Much of today’s software is so fragile that it barely functions properly

when its environment is pristine and predictable.
• If the environment in which our fragile software runs turns out to be

pugnacious and pernicious (as much of the Internet environment turns out
to be), software fails spectacularly, splashing into the metaphorical Puget
Sound.

Software Security

• The biggest problem in computer security today is that most systems
aren’t constructed with security in mind.
• Reactive network technologies such as firewalls can help alleviate

obvious script kiddie attacks on servers, but they do nothing to
address the real security problem: bad software.
• If we want to solve the computer security problem, we need to do

more to build secure software.
• Software security is the practice of building software to be secure

and function properly under malicious attack.

The Real Problem

• The problem is that most developers have little idea what bugs to
look for, or what to do about bugs if they do find them.
• We live in a time of unprecedented economic growth, increasingly

fueled by computer and communications technology.
• We use software to automate factories, streamline commerce, and

put information into the hands of people who can act upon it.
• We live in the information age, and software is the primary means by

which we tame information.

The Real Problem

• Virus scanners, firewalls, patch management, and intrusion detection
systems are all means by which we make up for shortcomings in
software security.
• The software industry puts more effort into compensating for bad

security than it puts into creating secure software in the first place.
• Just as every ship should have lifeboats, it is both good and healthy

that our industry creates ways to quickly compensate for a newly
discovered vulnerability.
• Changing the state of software security requires changing the way

software is built. This is not an easy task.

The Software Security Problem

• We believe that the most effective way to improve software security
is to study past security errors and prevent them from happening in
the future.
• Our philosophy is similar to that of Henry Petroski: To build a strong

system, you have to understand how the system is likely to fail
[Petroski, 1985]
• Mistakes are inevitable, but you have a measure of control over your

mistakes. Although you can’t have precise knowledge of your next
blunder, you can control the set of possibilities.

The Software Security Problem

• Being aware of common pitfalls might sound like a good way to avoid
falling prey to them, but awareness by itself often proves to be
insufficient.
• Children learn the spelling rule “i before e except after c,” but

widespread knowledge of the rule does not prevent believe from
being a commonly misspelled word.
• Understanding security is one thing; applying your understanding in

a complete and consistent fashion to meet your security goals is
quite another.

Defensive Programming Is Not Enough

• Defensive programming refers to the practice of coding with the
mindset that errors are inevitable and that, sooner or later, something
will go wrong and lead to unexpected conditions within the program.
• Kernighan and Plauger call it “writing the program so it can cope with

small disasters” [Kernighan and Plauger, 1981].
• Good defensive programming requires adding code to check one’s

assumptions.
• Good defensive programming makes bugs both easier to find and

easier to diagnose.

Defensive Programming Is Not Enough

• But defensive programming does not guarantee secure software
(although the notion of expecting anomalies is very much a step in
the right direction).
• When we talk about security, we assume the existence of an

adversary— someone who is intentionally trying to subvert the
system.
• Instead of trying to compensate for typical kinds of accidents (on the

part of either the programmer or the user), software security is about
creating programs that behave correctly even in the presence of
malicious behavior.

Defensive Programming Is Not Enough

Implement function printMsg that accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file and flushes the writing buffer.

Defensive Programming Is Not Enough

Although, the implemented
program does not violate any of the

requirements, the program will
crash If either argument is NULL.

#include <stdio.h>

void printMsg(FILE* file, char* msg) {
fprintf(file, msg);
fflush(file);

}

int main(int argc, char** argv) {
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Implement function printMsg that
accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file
and flushes the writing buffer.

Defensive Programming Is Not Enough
#include <stdio.h>

void printMsg(FILE* file, char* msg) {
if(file == NULL) {

printf("%s", "File is NULL\n");
} else if(msg == NULL) {

printf("%s", "Message is NULL\n");
} else {

fprintf(file, msg);
fflush(file);

}
}

int main(int argc, char** argv) {
if(argc < 2) {

return 0;
}
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Apply a defensive programming
approach to avoid program crashes

fi either argument is NULL

Implement function printMsg that
accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file
and flushes the writing buffer.

Defensive Programming Is Not Enough

From a security perspective, these checks
simply do not go far enough

Implement function printMsg that
accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file
and flushes the writing buffer.

Apply a defensive programming
approach to avoid program crashes

fi either argument is NULL

#include <stdio.h>

void printMsg(FILE* file, char* msg) {
if(file == NULL) {

printf("%s", "File is NULL\n");
} else if(msg == NULL) {

printf("%s", "Message is NULL\n");
} else {

fprintf(file, msg);
fflush(file);

}
}

int main(int argc, char** argv) {
if(argc < 2) {

return 0;
}
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Defensive Programming Is Not Enough

From a security perspective, these checks
simply do not go far enough

Implement function printMsg that
accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file
and flushes the writing buffer.

#include <stdio.h>

void printMsg(FILE* file, char* msg) {
if(file == NULL) {

printf("%s", "File is NULL\n");
} else if(msg == NULL) {

printf("%s", "Message is NULL\n");
} else {

fprintf(file, msg);
fflush(file);

}
}

int main(int argc, char** argv) {
if(argc < 2) {

return 0;
}
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Although we have prevented a caller from
crashing the program by providing NULL
values, the code does not account for the
fact that the value of the msg parameter
itself might be malicious.

fprintf - Write formatted data to stream
Similar to printf

fmt_part2.c Disable Address space layout randomization (ASLR)
https://en.wikipedia.org/wiki/Address_space_layout_randomization

Compile/Build the program

Run the program with malicious content

AAA%p.%p
.%p.%
p.%p.
%p.%p
.%p.%
p.%p.%p.%p.%p.%p.%p.%p.%p.%p.%p.%p.%p.

%p.

AAA

We have been able to print memory contents

#include <stdio.h>

void printMsg(FILE* file, char* msg) {
if(file == NULL) {

printf("%s", "File is NULL\n");
} else if(msg == NULL) {

printf("%s", "Message is NULL\n");
} else {

fprintf(file, msg);
fflush(file);

}
}

int main(int argc, char** argv) {
if(argc < 2) {

return 0;
}
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Print memory content

%p.

AAA

We have been able to print memory contents

Defensive Programming Is Not Enough

By providing msg as the format
string argument to fprintf, the
code leaves open the possibility
that an attacker could specify a
malicious format string designed to
carry out a format string attack.

#include <stdio.h>

void printMsg(FILE* file, char* msg) {
if(file == NULL) {

printf("%s", "File is NULL\n");
} else if(msg == NULL) {

printf("%s", "Message is NULL\n");
} else {

fprintf(file, msg);
fflush(file);

}
}

int main(int argc, char** argv) {
if(argc < 2) {

return 0;
}
FILE *file = fopen(argv[1], "w");
char* msg = argv[2];
printMsg(file, msg);
return 0;

}

Implement function printMsg that
accepts two arguments from the user:
• file: A pointer of type FILE.
• msg: A string message.
printMsg writes the given msg to file
and flushes the writing buffer.

Defensive Programming Is Not Enough

• This attempt at defensive programming shows how a straightforward
approach to solving a programming problem can turn out to be
insecure.
• The people who created the programming languages, libraries,

frameworks, protocols, and conventions that most programmers build
upon did not anticipate all the ways their creations would be assailed.
• Because of a design oversight, format strings became an attack vector,

and seemingly reasonable attempts at error handling turn out to be
inadequate in the face of attack.

Defensive Programming Is Not Enough

• A security-conscious programmer will deprive an attacker of the
opportunity this vulnerability represents by supplying a fixed format
string.

Defensive Programming Is Not Enough

• In considering the range of things that might go wrong with a piece of
code, programmers tend to stick with their experience:
• The program might crash, it might loop forever, or it might simply fail to

produce the desired result.

• All these failure modes are important but preventing them does not
lead to software that stands up to attack.
• This results in code that might be well defended against the types of

problems that a programmer is familiar with but that is still easy for
an attacker to subvert.

Security Features != Secure Features

• As Michael Howard, a program manager on the Microsoft Security
Engineering Team, says, “Security features != Secure features”
[Howard and LeBlanc, 2002].
• For a program to be secure, all portions of the program must be

secure, not just the bits that explicitly address security.
• In many cases, security failings are not related to security features at all.

• A security feature can fail and jeopardize system security in plenty of
ways, but there are usually many more ways in which defective non-
security features can go wrong and lead to a security problem.

Security Features != Secure Features

• Security features are (usually) implemented with the idea that they must function
correctly to maintain system security, but non-security features often fail to
receive this same consideration, even though they are often just as critical to the
system's security.
• Imagine a burglar who wants to break into your house. He might start by walking

up to the front door and trying to turn the doorknob. If the door is locked, he has
run into a security feature. Now imagine that the door’s hinges are on the outside
of the house.
• The builder probably didn’t think about the hinge in relation to security; the

hinges are by no means a security feature—they are present so that the door will
meet the “easy to open and close” requirement.
• But now it’s unlikely that our burglar will spend time trying to pick the lock or pry

open the door. He’ll simply lift out the hinge bolts and remove the door.

Vulnerabilities in image display code
over the last five years. All are significant

vulnerabilities. None have anything to
do with security features.

The Quality Fallacy

• Anyone who has ever written a program knows that mistakes are
inevitable.
• Anyone who writes software professionally knows that producing

good software requires a systematic approach to finding bugs.
• By far the most widely used approach to bug finding is dynamic

testing, which involves running the software and comparing its output
against an expected result.

The Quality Fallacy

• Advocates of extreme programming want to see a lot of small tests
(unit tests) written by the programmer even before the code is
written.
• Large software organizations have big groups of dedicated QA

engineers who are responsible for nothing other than writing tests,
running tests, and evaluating test results.
• It is almost impossible to improve software security merely by

improving quality assurance.
• In practice, most software quality efforts are geared toward testing

program functionality. The purpose is to find the bugs that will affect
the most users in the worst ways.

The Quality Fallacy

• Functionality testing works well for making sure that typical users
with typical needs will be happy, but it just won’t work for finding
security defects that aren’t related to security features.
• Most software testing is aimed at comparing the implementation to

the requirements, and this approach is inadequate for finding
security problems.

The Quality Fallacy

• The software (the implementation) has a list of things it’s supposed to
do (the requirements).
• Imagine testing a piece of software by running down the list of

requirements and making sure the implementation fulfills each one.
• If the software fails to meet a particular requirement, you’ve found a

bug. This works well for testing software functionality, even security
functionality, but it will miss many security problems.
• Security problems are often not violations of the requirements.

Instead, security problems are frequently “unintended functionality”
that causes the program to be insecure.

The Quality Fallacy

• Ivan Arce, CTO of Core Security Technologies, put it like this: Reliable
software does what it is supposed to do. Secure software does what it
is supposed to do, and nothing else.

$conn = pg_pconnect("dbname=user_accounts");

$result = pg_query(conn, “SELECT * from user_accounts WHERE username=“'.$_GET['user'].’” AND password =“'.$_GET[‘pwd'].’””);

if(pg_query_num($result) > 0) {

echo "Admin logged in";

admin_control_panel_redirect();

}

SQL Command to be executed

admin

@dm!n_2020

SELECT * from user_accounts WHERE username=‘admin’ AND password =‘@dm!n_2020’

Result: Redirects the user to the admin control panel page if there is a single
match for the passed credentials in user_accounts database

$conn = pg_pconnect("dbname=user_accounts");

$result = pg_query(conn, “SELECT * from user_accounts WHERE username=“'.$_GET['user'].’” AND password =“'.$_GET[‘pwd'].’””);

if(pg_query_num($result) > 0) {

echo "Admin logged in";

admin_control_panel_redirect();

}

SQL Command to be executed

admin

@dm!n_2020

SELECT * from user_accounts WHERE username=‘admin’ AND password =‘@dm!n_2020’

Result: Redirects the user to the admin control panel page if there is a single
match for the passed credentials in user_accounts database

$conn = pg_pconnect("dbname=user_accounts");

$result = pg_query(conn, “SELECT * from user_accounts WHERE username=“'.$_GET['user'].’” AND password =“'.$_GET[‘pwd'].’””);

if(pg_query_num($result) > 0) {

echo "Admin logged in";

admin_control_panel_redirect();

}

SQL Command to be executed

This code might meet the program’s requirements,
but it enables an SQL Injection attack as it does not
sanitize the query parameters provided by the user

and so the attacker is free to provide malicious input

admin'; DROP TABLE user_accounts #

anypassword SELECT * from user_accounts WHERE username=‘admin’; DROP TABLE user_accounts #’
AND password =‘anypassword’

Result: Queries all user accounts with username “admin” and drops
user_accounts table causing system corruption.

$conn = pg_pconnect("dbname=user_accounts");

$result = pg_query(conn, “SELECT * from user_accounts WHERE username=“'.$_GET['user'].’” AND password =“'.$_GET[‘pwd'].’””);

if(pg_query_num($result) > 0) {

echo "Admin logged in";

admin_control_panel_redirect();

}

SQL Command to be executed

This code might meet the program’s requirements,
but it enables an SQL Injection attack as it does not
sanitize the query parameters provided by the user

and so the attacker is free to provide malicious input

Comment the rest of
the SQL command

The Quality Fallacy

• A growing number of organizations attempt to overcome the lack of
focus on security by mandating a penetration test.
• After a system is built, testers stage a mock attack on the system.

• A black-box test gives the attackers no information about how the
system is constructed. This might sound like a realistic scenario, but in
reality, it is both inadequate and inefficient.
• Testing cannot begin until the system is complete, and testers have

exclusive access to the software only until the release date.
• After the release, attackers and defenders are on equal footing;

attackers are now able to test and study the software, too.

The Quality Fallacy

• The narrow window means that the sum total of all attackers can
easily have more hours to spend hunting for problems than the
defenders have hours for testing.
• The testers eventually move on to other tasks, but attackers get to

keep on trying.
• The end result of their greater investment is that attackers can find a

greater number of vulnerabilities.

The Quality Fallacy

• Black-box testing tools try to automate some of the techniques
applied by penetration testers by using pre-canned attacks.
• Because these tools use close to the same set of attacks against every

program, they are able to find only defects that do not require much
meaningful interaction with the software being tested.
• Failing such a test is a sign of real trouble, but passing doesn’t mean

very much; it’s easy to pass a set of pre-canned tests.

The Quality Fallacy

• Another approach to testing, fuzzing, involves feeding the program
randomly generated input [Miller, 2007].
• Testing with purely random input tends to trigger the same conditions in the

program again and again, which is inefficient.
• To improve efficiency, a fuzzer should skew (mutate) the tests it generates

based on knowledge about the program under test.
• If the fuzzer generates tests that resemble the file formats, protocols, or

conventions used by the target program, it is more likely to put the
program through its paces.
• Even with customization, fuzzing is a time-consuming process, and without

proper iteration and refinement, the fuzzer is likely to spend most of its
time exploring a shallow portion of the program’s state space.

The Trinity of Trouble

• Why is making software behave so hard? Three factors work together
to make software risk management a major challenge today.
• We call these factors the trinity of trouble:
• Complexity - Modern software is complicated, and trends suggest that it will

become even more complicated in future.
• More Lines, More Bugs.
• More configurations
• More artifacts.

• Extensibility
• Malicious content can slip through extensions and affect core.

• Connectivity
• Malicious content can go from one place to another.

