COMP 4384 Software Security
Module 4: Operating Systems Concepts

Ahmed Tamrawi

in| atamrawi ({’)atamrawi.gifhub.io ahmedtamrawi@gmail.com

An operating system is a program that manages a computer’s hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect of
operating systems is how they vary in accomplishing these tasks. Mainframe
operating systems are designed primarily to optimize utilization of hardware.
Personal computer (PC) operating systems support complex games, business
applications, and everything in between. Operating systems for mobile com-
puters provide an environment in which a user can easily interface with the
computer to execute programs. Thus, some operating systems are designed to
be convenient, others to be efficient, and others to be some combination of the
two.

A more common
definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called
the kernel. (Along with the kernel, there are two other types of programs:
system programs, which are associated with the operating system but are not
necessarily part of the kernel, and application programs, which include all
programs not associated with the operation of the system.)

“Abraham Silberschatz

Peter Baer Galvin

Greg Gagne

ANDREW S,

TANENBAUM MODERN
BOS OPERATING
SYSTEMS

Fourth Edition

1.1 WHAT IS AN OPERATING SYSTEM?

Pe Mevoge
wten Priag

-

It 1s hard to pin down what an operating system 1s other than saying it 1s the
software that runs in kernel mode—and even that is not always true. Part of the
problem 1is that operating systems perform two essentially unrelated functions:

providing application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
hardware resources. Depending on who 1s doimng the talking, you might hear mostly
about one function or the other. Let us now look at both.

1.1
OPERATING
SYSTEMS

What's an operating system? You might say it's what's between you and the hardware, but
that would cover pretty much all software. So let's say it’s the software that sits between your
software and the hardware. But does that mean that the library you picked up from some web
site 15 part of the operanng system? We probably want our operating-system defininion 1o be
a bar less inclusive. So, let's say that it's that software thar almost everything else depends
upon. This 1s sull vague, but thea the term is used 1a a rather pebulous manser throughout the
ndustry.

Perhaps we can do better by describing what an operating system is actually supposed to
do. From a programmer’s point of view, operating systems provide useful abstractions of the
undlerlying hardware facilities. Since many programs can use these facilities at once, the operat
ing system 15 also responsible for managing how these facilities are shared

THOMAS W. DOEPPNER

Operating
-~ Systems

Three_E_asy Pieces:

There is a body of software, in fact, that is responsible for making it
easy to run programs (even allowing you to seemingly run many at the
same time), allowing programs to share memory, enabling programs to
interact with devices, and other fun stuff like that. That body of software
is called the operating system (OS)’, as it is in charge of making sure the
system operates correctly and efficiently in an easy-to-use manner.

Remzi H.Arpa;i-Dusééau
Andrea C.Arpaci-Dussean

Realistic View of Operating System

Applications

l

Operating System

l

Hardware

a i
_—
75 /
P
e
=

p- N
l'l
an>0Id

Jimited

Our Definition

An operating system is a program that
manages resources and provide abstractions

Main Ideas in OS
Manage Resources.

How do you share processors, memory, and
hardware devices among programs?

How do you provide programs with clean and
easy to use interfaces to resources, without
sacrificing (too much) efficiency and flexibility?

A View of Operating System Services

Operating systems provide an environment for execution of programs
and services to programs and users

user and other system programs

Gul batch command line

user interfaces

-

execution communication |

operations systems | aliccation accounting
| i 1 i

program ‘ [e) | file resource

. .
“ ermor p’ﬁen%"m
: detection

| securiy
e operating system

L B — —
hardware

Does it have an Operating System?

Introduction

* An operating system (OS) provides the interface between the users of
a computer and that computer’s hardware.

* In particular, an operating system manages the ways applications
access the resources in a computer, including its disk drives, CPU,
main memory, input devices, output devices, and network interfaces.

* It is the “glue” that allows users and applications to interact with the
hardware of a computer.

Introduction

* Operating systems allow application developers to write programs
without having to handle low-level details (provide abstractions) such
as how to deal with every possible hardware device, like the hundreds

of different kinds of printers that a user could possibly connect to his
or her computer.

* Operating systems handle a staggering number of complex tasks,
many of which are directly related to fundamental security problems.

* For example, operating systems must allow for multiple users with potentially
different levels of access to the same computer.

Introduction: A University Lab

* A university lab typically allows multiple users to access computer
resources, with some of these users, for instance, being students,
some being faculty, and some being administrators that maintain

these computers.

* Each different type of user has potentially unique needs and rights
with respect to computational resources, and it is the operating
system’s job to make sure these rights and needs are respected while

also avoiding malicious activities.

Introduction: Multitasking

 |n addition to allowing for multiple users, operating systems also allow
multiple application programs to run at the same time, which is a concept
known as multitasking.

* This technique is extremely useful; however, this ability has an implied
security need of protecting each running application from interference by
other, potentially malicious, applications.

e Applications running on the same computer, even if not running
simultaneously might have access to shared resources, like the filesystem.

* Thus, the operating system should have measures in place so that
applications can’t maliciously or mistakenly damage resources needed by
other applications.

Our Computer System

Disk
Controller

uUsB
Controller

What happens at Computer Startup?

Finds itself in Real Mode
Power-On Self-Test

Executes the code at
address OxFFFFO which
corresponds to BIOS

DRI - DAL 1O/ WIT-FATN -

Finds itself in Real Mode
Power-On Self-Test

Executes the code at
address OxFFFFO which
corresponds to BIOS

BIOS SETUP UTILITY
cot secur ity

OF v B, An Bomrwys Blar)
) 19 -2eet oard Sefteare. I

Advanced Settings Section for Advanced
Inlan 1RT Beta W1 ~ g ACPI Configuration.
i o WARNING: Setting wrong values in below sections
may cause systes to malfunction.

» CPU Configuration
» IDE Configuration
» Superl0 Cosfiguration

» Event Log Comfiguration
» Myper Transport Configuratiom
» IPHI 2.0 Comfiguration

» HPS Configuration ++ Select Screen
» PCI Express Comfiguration 11 Select Item
» D PowerNow Configuration Enter Go to Sub Screen
» Remote ficcess Configuration F1 General Help
» USB Configuration F10 Save and Exit
» swlee SETUP. ANL-FZ w0 - wtility ESC Exit

Bootstrap Program

Autoprobing I/O ports
Looks for bootloader in Boot Device

It loads the first sector of a bootable device at
0x7C00 and jumps to it. Then it executes the MBR
bootloader located in the first sector of a
bootable disk (/dev/hda or /dev/sda)

Cald MASTER B0OOT RECORD

)4\

BOOT Jump to Boot program
B 1]

CODE

.......

PARTITION

TABLE

"END OF MBR

FIELDS

82D48A7I(
0x00 - Non-Bootable
0x20
ng Ox3F
63

VALUES-

0x80 - Bootable

e

NTFS

VOLUME B0OOT RECORD ™+

> INVOKE-IR

KINGON

.

§§§§§§§§§§§3d

H=s%
8583

358388883888y

.

FIELDS VALUES—

FILE HEADER OEM ID NTFS
$ per ¢ Ix08
ed sec Ix00
media descript OxF8
rrrrrrrrrrrrr x3F
I%80C
Ox6368FFF
MH l OxC0000
ESL.()(:f<l a0
BOOTSTRAP —
Error Message BOOTMGR is compressed
Press Ciri+ +Del

CODE

~END OF SECTOR

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

Any program to run must be loaded in memory

Unit of Work in Computer

The kernel is decompressed from its
image and its loaded into memory

Autoprobing 1/O ports

N\
‘MODE’

st

init process

The kernel is decompressed from its

image and its loaded into memory
System System
Processes Daemons

QS A\ @B Cie L

What happens when you move the cursor?

Mouse sends out pulses,
one pulse for every 1000th
of an inch or so

What happens when you move the cursor?

@ I

Mouse sends out pulses, The pulses are received
one pulse for every 1000th through a USB packet or
of aninch or so through an old serial line

What happens when you move the cursor?

(“” Hardware Interrupt f@

Mouse sends out pulses, The pulses are received
one pulse for every 1000th through a USB packet or
of an inch or so through an old serial line

— 7

By
v —
' | | tatus
) o —
[[Buter

o |
SR
C_]| oaal
C_ | | Bo-2z]

on-1]

What happens when CPU is interrupted?

CPU preserves the current state of
the CPU by storing registers and the
program counter

Interrupt transfers control to the
interrupt service routine generally,
through the interrupt vector

What happens when CPU is interrupted?

:‘MBODE ‘ MODE’ Mainline Code /l\ Interrupt Service Routine

s N s N

Interrupt
loop() { » ISR() {
instruction 1 instruction 1
instruction 2 instruction 2

instruction ;5'_ | : instruction 3

instruction 4
instruction 5

}

CPU preserves the current state of Separate segments of code determine
the CPU by storing registers and the what action should be taken for each
program counter type of interrupt

Interrupt transfers control to the Reads the interrupt and realizes it’s
interrupt service routine generally, from the mouse, and calls the proper

through the interrupt vector ISR which calls the mouse driver.

What happens when CPU is interrupted?

CPU preserves the current state of
the CPU by storing registers and the
program counter

Interrupt transfers control to the
interrupt service routine generally,
through the interrupt vector

Mainline Code

N

Interrupt Service Routine

1) Interrupt {]

loop() { » ISR() {
instruction 1 instruction 1
instruction 2 instruction 2
m‘——_ instruction 3
instruction 4 =
instruction 5 h

)

Separate segments of code determine

what action should be taken for each

type of interrupt

Reads the interrupt and realizes it’s

from the mouse, and calls the proper

ISR which calls the mouse driver.

- —|
| staws (TTIOTD
, Cmd |
— T —
[l
| om
—
C_——— (on -1]

Mouse Driver

Mouse driver adds the x and y
increments to its current cursor position
and return the result to OS

& - MODE"

How to notify Monitor of cursor movement?

7\

™
L

OS gets interrupted through a
system call to update the screen

OS preserves the current state of the
CPU by storing registers and the
program counter

Mainline Code

VAN

Software Interrupt (Trap)

Interrupt Service Routine

1 R Interrupt i]
loop() { » ISR() {
instruction 1 instruction 1
instruction 2 instruction 2
instruction 3 | | Instruction 3
instruction 4 : }

}

instruction 5

Reads the interrupt and realizes it’s
from OS to monitor. It calls the display
driver with the updated screen

(.-&t.

‘ : S8

SO
[]| Status mﬂm}lﬂ]
I\ om[____]
] outer |
: 1

1| oaal

— | o]
— ([on -1]

Display Driver

Monitor device drivers sets the proper
registers and buffer data in the graphics
adapter

& _ MQDE‘

(t

) Software Interrupt (Trap)

EXECUTE
System Call

N

Any program to run must be loaded in memory

ystem Call
N

Softwa re
Interrupt

(‘i B

MODE

Load Word
into Memory
EXECUTE

System CaII /,‘

Disk Driver

Disk

Controller

An operating system is interrupt driven

7\

QS A\ @B Ciive Ul

gHem

As long as their processes fit in memory, we
do not have a memory problem

gHem

Each process needs resources to accomplish
its task: CPU, memory, I/0, files, etc.

gHem

Process termination requires reclaim of any
reusable resources

Typically system has many processes running concurrently,
how this is achieved?

Many Processes

Creating/deleting user and system processes
Suspending/resuming processes

Process Synchronization & Communication

Process Management

vI @) v

Tasks (10) @, | rop 14 | Prop | Preview | Versions | Evertiog

Task Sae % Progress Status Speed
& Downlocadiag sample-domin comyDSCO4233 PG 0 Clsersimones . 3820155 2732 - Runseng %.97KBjs
& Downloadiag sample-doman comyDSCO4231 PG w Clsersimones . 4402289 5973 | Runsing 158 60 XB{s

& Downloading sample-doman comyDSC04230 PG o Cilsersmonee . 4371329 7515 sy Running 28312KB{s
& Downloading sample-doman comyDSC04229 PG Cllsersmonee 4211952 3665 g Runeing 101 64 KB/
& Downloading sample-doman comyNew FoldeDSCM223 PG CIU.. 407587 210 Runseng T3EIKB/s
& Downloading sample-doman comyNew FoldeDSCMZ2I PG CIU.. 4211952 4727 e Runeing 171.15K8{s
& Downloading sample-doman comyNew FoldeDSCMZN PG CIU.. 4371329 W27 g Runrng 3555 KB/s
& Downloading sampie-doman comyNew FoldenDSCM2IIIPG 1 CI\U.. 3820155 989 n Runnng W2 77 K8{s
& Downloading sample-doman comyNew FoldeDSCMZM JPGIo CIU.. 3148555 41,11 e Runneng 63229K8(s
& Downloading sample-doman comyNew Folder/sutfoldenOSCO3S83.) . 4201270 13 Runnengy

P Rennieg (10) € Quesed M Sopped B raded L AN(10) Bostat Al W pouse A1 Q) Cancel AN

The memory is not enough memory for all
my processes!

Memory is not Enough

Keeping track of which parts of memory are currently being used and by whom
Deciding which processes and data to move into and out of memory

Allocating and deallocating memory space as needed

Level 1 p ; - 5

Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip
ports CMOS CMOS SRAM
/]
F Access time (ns) 0.25-05 0.5-25 80-250 25,000 -50,000 | 5,000,000

registers

" “ - Bandwidth (MB/sec) | 20,000 - 100,000 | 5,000- 10,000 | 1,000 - 5,000 500 20-150

11 "4 —Zl Managed by compiler hardware operating system | operating system | operating system

cache ”7 Backed by cache main memory | disk disk disk or tape

main memory
S |
1l v

solid-state disk

1

hard disk

£ I

L 4

optical disk

magnetic tapes

Different Kinds of Storage Devices

Usually disks is used to store data that does not fit in main memory or data that
must be kept for a “long” period of time

Entire speed of computer operation hinges on disk subsystem and its algorithms

Free-space management, Storage Allocation, and Disk Scheduling

Mass-Storage Management

viad

‘ wr mes omw e

frsi X second tt format stats old

SAmsung

OS provides uniform, logical view of

information storage Abstracts physical properties to

logical storage unit : files,
directories

Bits, Bytes, and Files

Access control to determine who can access what
Creating and deleting files and directories

Mapping and Backing files onto secondary storage

File-System Management

Many 1/O Devices

Hides peculiarities of hardware devices from the user

Memory management of |/O including buffering, caching, spooling

General device-driver interface

Protection — any mechanism for controlling
access of processes or users to resources
defined by the OS

Security — defense of the system against internal
and external attacks including: denial-of-service,
wormes, viruses, identity theft, theft of service

An operatmg system is interrupt driven

)
System Call
JJ X

(“” Software Interrupt (Trap)

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Accessible via a high-level Application Programming
Interface (API) rather than direct system call use

System Call
N

Create, Delete Communication Connection
Message Passing Model Host/Process Name
Shared-Memory Model

Transfer Status Information

Attach/Detach Remote Devices

System Call y

’

Control access to resources
Get and set permissions

\\ / Allow and deny user access

Get/Set Time or Date
Get/Set System Data

Create/Terminate/Load/Execute Process
Get/Set Process Attributes

Wait for Time/Event

wait event, signal event
Allocate/Free/Dump Memory

Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File

7@ Get/Set File Attributes

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

User processes cannot perform privileged
operations themselves

Library Functions

System Calls

@ | & - MODE’

l Anciuoe «sico h»
I intman ()
H
— print! {"Groetrgs™). |=
retum 0 user process
1
. user mode
MODE | user process execuling = calls system call return from system call (mode bt = 1)
o \ F
o X -
kernel ((‘) return
mode bit = mode bit = 1
‘Mﬁbﬁ write () (A > kernel mode
Tah execute system call (mode bit = 0)
;7 wae()
\ systom cal

Any program to run must be loaded in memory

Unit of Work in Computer

pERRRRRRRRRBRRRREMEREREREMERERBRERREREDRINED)
SELRRERERRRRRRRRRRRRIRBRRRRRRRRCEARESEAASSLLES
SEERERRRRERERERERRRRERERERRRRARIEMMISHANISEALS
SEnRRREGRRBIRRBRRRBRIERBECRNRECEREENIERIIEGEES
mmmmmmwmwmmmmmmmnmwm NWN mmmm#mmwmmwmmm WWWM

Emwmm

gcc -o test test.c

J

tf(“I love Mansaf!\n”)

A

<
U O
o o
+ T)
n + - ()
v wn
+ Vv ~ (=

~— (<

oo Cc C S
U T Ll BT o B
— 5 m < @
o= — E a <
w o

c +
~ e c
~ o -~

Source Code (.¢, .Cpp h]l

Preprocessing

e Header, Expand Macro (.1, .ii)‘

rprocessor (cpp)

Step 1: Pre

Includ

Step 2: Compiler (gcc, ge+)

Compilation

Assembly Code (. 5)L

‘:" \:’

Assembile Step 3. Assembler

Machine Code (.0, -Objl‘

Static Library (.11b, .8) —»

Step 4: Linker (1d)

Linking

Executable Machne Code I.cxc]l

(V5
O
O L X
O= L
o % O
Qo &
“w .o w
Q
s S &€
S
S T
Q mm.m
bo-.d
c Q
S8
¥
O —
g
Q.

)

BIGRRRIRRRBRIRRRBBRIRRBREREEBBEREBBREIEREENGILID
& 11l mwmmmmmmx Ewwwwwm xm i w.mmmmw

tf(“I love Mansaf!\n”)

A
= = 1351341 mﬁamummum@ mﬂm m m
U o + mmwwmwm&&&
o o wn
+ O o]
wn == (o) +
v wn
+ Vv ~ C +
~ [7))
e QO c Cc S5 Q
U T e~ o P +
— 35 c < @
- — s a C o
. o |
(e +
~ - [(@)
~ ¥ or ~ @)
o]4]

Process Memory Layout

Higher Address

uninitialized data

bss

initialized data

data

text

Lower Address

https://en.wikipedia.org/wiki/Data segment

Stack Area contains the program stack, a LIFO structure. A “stack pointer”
register tracks the top of the stack; it is adjusted each time a value is
“pushed” onto the stack. The stack area contains temporary data: function
parameters, return addresses, and local variables.

Heap Area is the memory that is dynamically allocated during process run
time. The heap area is managed by malloc, calloc, realloc, and free,
which may use the brk and sbrk system calls to adjust its size

BSS Data Segment contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in source code.

Initialized Data Segment contains any global or static variables which have
a pre-defined value and can be modified

Text (Code) Segment is one of the sections of a program in an object file or
in memory, which contains executable instructions

Process execution
must progress in
sequential fashion

https://en.wikipedia.org/wiki/Data_segment

https://www.geeksforgeeks.org/memory-layout-of-c-program/

[0 #include <stdio.h>
Z int main(void)

> return 9;

ﬂ}

[narendra@Cent0S]$ gcc memory-layout.c -o memory-layout
[narendra@Cent0S]$ size memory-layout

text data bss dec hex filename
960 248 8 1216 4c0 memory-layout

fﬁ #include <stdio.h>
f int global; /* Uninitialized variable stored in bss*/

P int main(void)

{
a static int i; /* Uninitialized static variable stored in bss */

return ©;

[narendra@Cent0S]$ gcc memory-layout.c -o memory-layout
[narendra@Cent0S]$ size memory-layout

text data bss dec hex filename

960 248 16 1224 4c8 memory-layout

[0 #include <stdio.h>

ID #include <stdio.h>
/' int global; /* Uninitialized variable stored in bss*/

P int main(void)

{
Q return @;
}

[narendra@Cent0S]$ gcc memory-layout.c -o memory-layout
[narendra@Cent0S]$ size memory-layout

text data bss dec hex filename

960 248 12 1220 4c4 memory-layout

ID #include <stdio.h>
/) int global; /* Uninitialized variable stored in bss*/
P int main(void)

ﬂ static int i = 100; /* Initialized static variable stored in DS*/
return 0;

[narendra@Cent0S]$ gcc memory-layout.c -o memory-layout
[narendra@Cent0S]$ size memory-layout

text data bss dec hex filename

960 252 12 1224 4c8 memory-layout

I’ int global = 10; /* initialized global variable stored in DS*/

P int main(void)

0 static int i = 100; /* Initialized static variable stored in DS*/

return 0;

[narendra@Cent0S]$ gcc memory-layout.c -o memory-layout

[narendra@Cent0S]$ size memory-layout

text data bss
960 256 8

filename
memory-layout

One program can be several processes

L] "
Ove JN~—3
- |

;-) Task Manager

‘ En(Q;h_n) V-

N

») B
o
o

\\”\;F'l:)ln\ ":\(dcm tor.i/:i.:nm: . : '.' '.‘;" . o s Frocewser Pedormance | App history atup Users Detals | Servcen
dtarniig Aw ol "J IJJ ”
Chrome Browser is multiprocess with 3 different types of processes: '
@ Google Ohvrome (32 bt 0% g2mve O ME/s

1. Browser Process manages user interface, disk and network 1/0 R et e I
2. Renderer Process renders web pages, deals with HTML, e e -

Javascript. A new renderer created for each website opened © Gosgle Chrome 6202 .
3. Plug-in Process for each type of plug-in e TSRS e

@ Google Ovome (32 bt % &s60V8 o ME/'s
On this day W Pwiety !

0 Wbgps
0V
0 Mbgs

0 Mbgs

Rocondy asbored - R baa @ Goosgle Ovome (12 bt 0% BIVE MBS 0 Mbgs
2, et sowwd Mthoe WOVT
A u \ 5
. Alat %0 peidercal L . -
Ol peuk e we A) Fewer detais End task
Fars Wageden QOuincy Adawa ‘el eesdes g
. A growp of wen waible pcway much of the e e \f
. Bt B roch scalop otnd M e md Yhw oy
A 1esboard of Noth and Sourh Amercs Madng $aronormen
o Dt Mopearohd Nus ow Lada Sad pedoams o 3 Madeca” .
- _ CanCiace S o8 bad Seen 2 sl 2o bevd s
© LAVIR G) DO Y« = 0@ 15

Process State ,
7\ M

admitted interrupt exit terminated

The process is being created The process has finished execution

The process is waiting to be running

assigned to a processor

Instructions are being executed

scheduler dispatch G A aaREvaail

o

The process is waiting for some event to occur

I/O or event completion

Context Switchin

enables multiple processes to share a single CPU

The mechanism to store and restore the state or context of a
CPU in Process Control Block so that a process execution can

be resumed from the same point at a later time

When the scheduler switches the CPU switches from
executing one process to another process, the system must
save the state “Context” of the old process and load the

saved state “Context” for the new process

OPERATING SYSTEM KINGDOM

Context

ocess Control Block (PCB)

IS

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:

ACCOUNTING INFO:
_NIRHENTIARIE vosmaros weo

WL T

OPERATING SYSTEM KINGDOM

PROCESS STATE:
PROGE INTER:

g

]

H

¢ crum
P

g
g
H
H
H

T T

,f%

PROCESS STATE:

PROGRAM COUNTER:

OPERATING SYSTEM KINGDOM

PROCESS
s PRocEssSTATE:

Context Switching g

enables multiple processes to share a single CPU

Context switches are computationally intensive since register
and memory state must be saved and restored

The more complex the OS and the PCB; the longer the context
switching

To avoid the amount of context switching time, some hardware
systems employ two or more sets of processor registers so that
multiple contexts loaded at once.

(LA DR wososusno \O(QJ /

@y
OPERATING SYSTEM KINGDOM

H /
3 p—

N NT

g

3

b

:

H

T T

Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

howtogeek@ubuntu: ~

. .o . to - 03:48:40 uwp 19 min, 1 user, LO& verage: 0.16 p.0%9, 0.16
Process identified and managed via a process asks: 143 total, 1 ruaning, 142 sleeplng, O stopped, © zomble
C i 2.0%us, O0.7%sy, 0.0%n\, 6. 75ld, 0.0%wa, D.OXhL, 0O.0%s\i,
|dent|f|er (PID) _— Unique ID : 1025656k total, 678580k used, 347076k free, 719930k buffer
S - ok total, 0k used, 0k free, 510528k cached
OPERATING SYSTEM KINGDOM I¢ \ SHR S XCPU SMEM TIME+ COMMAND
root <0) 320624 P4 > - 0. 003 v 0 ¢
= Pnociss 2025 howt » 20 » 81456 2 S 0.7 2 0:01.41 &
g 17 root <0)) . 0 5 - 0.¢ 0:00.34
]
= PROCESS STATE: 3 root <0)) . 0 5 - 0. 0:00.1¢C
?';3 PROGRAM COUNTER: reot ‘ : S 6.¢
S CPU REGISTERS: howtogee
§ CPU SCHEDULING INFO: ogee 20 : » 0.3 ¢ 4 9:03.63 unity-pane
s MEMORY MANAGEMENT INFO: how re 20 : s 0.3 .4 0:00.84 gnome -tern
ACCOUNTING INFO: howtogee 20 . R 0.3 0, 0:00.05 top

5 kthreadd

[IATIERIN vosmaros weo 20 o
\ ; / AOR : . 0:
. S « G . 4 - .~ Ll W » W » s
3

] ksoftirqd/

{root@linoxide ~]# pstree
Systend-w-NetworkManage r—-dhclient

—3*| (NetworkManager}|
=2 [agetty)

auditd—{auditd)

-avah | - datnon——avahl -daeson

ehroad First process to run is the “systemd” process

=L rong

i that is started at system boot. This is the grand

Ciprinit parent of all processes in the whole system
—iprepdate
wpolkitdes*[{polkitd})
—~rsyslogd—2*[{rsyslogd}]

et A POl it LI If a process dies, then its orphan children are re-

—sshd——sshd " ”
systend. journsl parented to the “systemd” process
—~systend- logind
systemd-petwork
—=5ystend - udevd
tuneded®* [{tuned}]
[root@linoxide ~)# |}

Process Creation

NH Copy Address Space

exec()

replace the process’s memory
space with a new program

Address Space
Address Space

New Address Space

fork
OPERATING SYSTEM KINGDOM creates new p(ro)cess

OPERATING SYSTEM KINGDOM

= OPERATING SYSTEM KINGDOM
5 : PROCESS PROCESS
3 g
3 PROCESS STATE: s erocess sTaTe: PROCESS STaTE:
5 PROGRAM COUNTER: §
§ CPU REGISTERS: e
8
1
E CPU SCHEDULING INFO: TN voswrusnee IR vo starusweo:
MEMORY MANAGEMENT INFO:
ACCOUNTING INFO: Ch Id
TN vostaros e Y, ila Process

On most systems, the new child process inherits the
permissions of its parent, unless the parent deliberately forks a
new child process with lower permissions than itself.

Process Creation

OPERATING SYSTEM KINGDOM

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
id_t pid;
- — —R-t- _I— = Return value it e
eturn value .
(of fork(): 0 of fork(): 580 /* fork a child process */
OPERATING SYSTEM KINGDOM pld = for k(),
execlp() {| o g | PROCESS
~501 if (pid < 0) { /* error occurred */
| TR fprintf(stderr, "Fork Failed");
| return 1;
v }
. else if (pid == 0) { /* child process */
ex1it () execlp("/bin/1s","1s" ,NULL);
,,,,,, n }
\ - = = — else { /* parent process */
- /* parent will wait for the child to complete */
. wait(NULL);
walt () printf("Child Complete");
}
(V)
g return 0;
S }
(7
)
<

OS prevents one process from accessing
another process’s memory

Inter-process Communication (IPC)

In order to manage shared resources, it is often necessary for processes to communicate with each other. Thus, operating
systems usually include mechanisms to facilitate inter-process communication (IPC).

- fd[e] f'd[l]x —

r
1
) 1
+ 1 =
o 1 c
S o 1 v
=| .. Shared Memory:. ... I n
.. l
..... b .'... .I...
you today?. .o i
© I
8 I
< |
I : —
— i
.- I Hello, world! I
A region of memory that is shared by cooperating processes A conduit allowing related processes to Communication takes place by means of messages
is established. Processes can then exchange information by communicate exchanged between the cooperating processes

reading and writing data to the shared region

Signhals

e Sometimes, rather than communicating via shared memory or a shared
communication channel, it is more convenient to have a means by which
processes can send direct messages to each other asynchronously.

* Unix based systems incorporate signals, which are essentially notifications
sent from one process to another.

 When a process receives a signal from another process, the operating
system interrupts the current flow of execution of that process, and checks
whether that process has an appropriate signal handler (a routine designed
to trigger when a particular signal is received).

* |f a signal handler exists, then that routine is executed; if the process does
not handle this particular signal, then it takes a default action.

Signhals

* Terminating a nonresponsive process on a Unix system is typically
performed via signals.

* Typing Ctrl-C in a command-line window sends the INT signal to the
process, which by default results in termination.

The Filesystem

* Another key component of an operating system is the filesystem,
which is an abstraction of how the external, nonvolatile memory of
the computer is organized.

* Operating systems typically organize files hierarchically into folders, also
called directories. T—

File Access Control

* One of the main concerns of operating system security is how to
delineate which users can access which resources, that is, who can
read files, write data, and execute programs.

* In most cases, this concept is encapsulated in the notion of file
permissions, whose specific implementation depends on the
operating system.

* Namely, each resource on disk, including both data files and programs, has a
set of permissions associated with it.

Understanding The Linux File Permissions

Column: 1A

e

User Rights Group Rights

while the " dalines »

ory, | link, the nast 2 coldemns (2.). 4) dafive
the permissscns for the User, Group and ! .) groupa

Linux Permissions Made Easy

@ Oup
rwx

421 421
14 1131%

\l/\y

7 7

s och nurber Dottan e vwin (44241 =)
by rotfostion | corwert R 1o decred then you should have e value (7x = 101 bawe

2 =5ham 30

filename

date/time last modihed
size
group name

usSer (owner) name rwx

number of hard links ‘

executable

wriieable

readable

Virtual Memory

* Even if all the processes had address spaces that could fit in memory,
there would still be problems.

* |dle processes in such a scenario would still retain their respective chunks of
memory, so if enough processes were running, memory would be needlessly
scarce.

* To solve these problems, most computer architectures incorporate a
system of virtual memory, where each process receives a virtual
address space, and each virtual address is mapped to an address in
real memory by the virtual memory system.

Virtual Memory

* When a virtual address is accessed, a hardware component known as
the memory management unit looks up the real address that it is
mapped to and facilitates access.

* Essentially, processes are allowed to act as if their memory is contiguous,
when in reality it may be fragmented and spread across RAM

Program Sees: Actual Memory:

Virtual Memory

* An additional benefit of virtual memory systems is that they allow for
the total size of the address spaces of executing processes to be larger
than the actual main memory of the computer.

* This extension of memory is allowed because the virtual memory
system can use a portion of the external drive to “park” blocks of
memory when they are not being used by executing processes.

* This is a great benefit, since it allows for a computer to execute a set
of processes that could not be multitasked if they all had to keep their
entire address spaces in main memory all the time.

Page Faults

* There is a slight time trade-off for benefit we get from virtual
memory, however, since accessing the hard drive is much slower than
RAM. Indeed, accessing a hard drive can be 10,000 times slower than
accessing main memory.

* So operating systems use the hard drive to store blocks of memory
that are not currently needed, in order to have most memory
accesses being in main memory, not the hard drive.

* If a block of the address space is not accessed for an extended period
of time, it may be paged out and written to disk. When a process
attempts to access a virtual address that resides in a paged out block,
it triggers a page fault.

Page Faults

1. Process requests virtual addrass not in memory,
causng a page fault

Paging supervisor pages oul
an old block of RAM memory
“read 0110101"
“Page fault, P
Paging supervisor
"4
Blocks in 1
RAM memory I I I

ko ~ _ - Extemal disk

3 Pagng supervisor locates requestied block
on the disk and brings 2 into RAM memaory

Any program to run must be loaded in memory

Unit of Work in Computer

