
Ahmed Tamrawi

COMP 4384 Software Security
Module 4: Operating Systems Concepts

Operating System

Hardware

Applications

Realistic View of Operating System

Our Definition
An operating system is a program that

manages resources and provide abstractions

Main Ideas in OS

How do you share processors, memory, and
hardware devices among programs?

Manage Resources

Provide Abstractions

How do you provide programs with clean and
easy to use interfaces to resources, without

sacrificing (too much) efficiency and flexibility?

A View of Operating System Services
Operating systems provide an environment for execution of programs

and services to programs and users

Manage Resources

Provide Abstractions

Does it have an Operating System?

Introduction

• An operating system (OS) provides the interface between the users of
a computer and that computer’s hardware.
• In particular, an operating system manages the ways applications

access the resources in a computer, including its disk drives, CPU,
main memory, input devices, output devices, and network interfaces.
• It is the “glue” that allows users and applications to interact with the

hardware of a computer.

Introduction

• Operating systems allow application developers to write programs
without having to handle low-level details (provide abstractions) such
as how to deal with every possible hardware device, like the hundreds
of different kinds of printers that a user could possibly connect to his
or her computer.
• Operating systems handle a staggering number of complex tasks,

many of which are directly related to fundamental security problems.
• For example, operating systems must allow for multiple users with potentially

different levels of access to the same computer.

Introduction: A University Lab

• A university lab typically allows multiple users to access computer
resources, with some of these users, for instance, being students,
some being faculty, and some being administrators that maintain
these computers.
• Each different type of user has potentially unique needs and rights

with respect to computational resources, and it is the operating
system’s job to make sure these rights and needs are respected while
also avoiding malicious activities.

Introduction: Multitasking

• In addition to allowing for multiple users, operating systems also allow
multiple application programs to run at the same time, which is a concept
known as multitasking.
• This technique is extremely useful; however, this ability has an implied

security need of protecting each running application from interference by
other, potentially malicious, applications.
• Applications running on the same computer, even if not running

simultaneously might have access to shared resources, like the filesystem.
• Thus, the operating system should have measures in place so that

applications can’t maliciously or mistakenly damage resources needed by
other applications.

Our Computer System

Graphics
Adapter

USB
Controller

Disk
Controller

What happens at Computer Startup?

Finds itself in Real Mode

Executes the code at
address 0xFFFF0 which
corresponds to BIOS

Power-On Self-Test

Bootstrap	Program

Looks for bootloader in Boot Device

It loads the first sector of a bootable device at
0x7C00 and jumps to it. Then it executes the MBR
bootloader located in the first sector of a
bootable disk (/dev/hda or /dev/sda)

Autoprobing I/O ports

Finds itself in Real Mode

Executes the code at
address 0xFFFF0 which
corresponds to BIOS

Power-On Self-Test

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

Any program to run must be loaded in memory

Unit of Work in Computer

PROCESS

ةروــــــــنم ةــعمــش ةـــــلف

The kernel is decompressed from its
image and its loaded into memory

The kernel is decompressed from its
image and its loaded into memory

Autoprobing I/O ports

System
Processes

init process

System
Daemons

MODE

MODE

Wait for Event to Occur

Mouse sends out pulses,
one pulse for every 1000th

of an inch or so

What happens when you move the cursor?

Mouse sends out pulses,
one pulse for every 1000th

of an inch or so

The pulses are received
through a USB packet or
through an old serial line

What happens when you move the cursor?

USB
Controller

Mouse sends out pulses,
one pulse for every 1000th

of an inch or so

The pulses are received
through a USB packet or
through an old serial line

What happens when you move the cursor?

Hardware Interrupt

MODE

What happens when CPU is interrupted?

CPU preserves the current state of
the CPU by storing registers and the
program counter

Interrupt transfers control to the
interrupt service routine generally,
through the interrupt vector

MODE

What happens when CPU is interrupted?

CPU preserves the current state of
the CPU by storing registers and the
program counter

Reads the interrupt and realizes it’s
from the mouse, and calls the proper
ISR which calls the mouse driver.

Interrupt transfers control to the
interrupt service routine generally,
through the interrupt vector

Separate segments of code determine
what action should be taken for each
type of interrupt

MODE

What happens when CPU is interrupted?

CPU preserves the current state of
the CPU by storing registers and the
program counter

Reads the interrupt and realizes it’s
from the mouse, and calls the proper
ISR which calls the mouse driver.

Mouse Driver

Mouse driver adds the x and y
increments to its current cursor position

and return the result to OSInterrupt transfers control to the
interrupt service routine generally,
through the interrupt vector

Separate segments of code determine
what action should be taken for each
type of interrupt

MODE

MODE

How to notify Monitor of cursor movement?

OS preserves the current state of the
CPU by storing registers and the
program counter

Reads the interrupt and realizes it’s
from OS to monitor. It calls the display
driver with the updated screen

Display Driver

Monitor device drivers sets the proper
registers and buffer data in the graphics

adapter

MODE

Software Interrupt (Trap)

OS gets interrupted through a
system call to update the screen

EXECUTE
System	Call

Software Interrupt (Trap)

MODE

Any program to run must be loaded in memory
ةروــــــــنم ةــعمــش ةـــــلف

MODE

EXECUTE
System	Call

Software
Interrupt

Disk
Controller

Load Word
into Memory

System	Call

Disk Driver

MODE

An operating system is interrupt driven

As long as their processes fit in memory, we
do not have a memory problem

Each process needs resources to accomplish
its task: CPU, memory, I/O, files, etc.

Process termination requires reclaim of any
reusable resources

Typically system has many processes running concurrently,
how this is achieved?

Process Management

Many Processes
Creating/deleting user and system processes

Suspending/resuming processes

Process Synchronization & Communication

The memory is not enough memory for all
my processes!

Memory Management

Memory is not Enough
Keeping track of which parts of memory are currently being used and by whom

Deciding which processes and data to move into and out of memory

Allocating and deallocating memory space as needed

Level

Name

Typical size

Implementation
technology

Access time (ns)

Bandwidth (MB/sec)

Managed by

Backed by

1

registers

< 1 KB

custom memory
with multiple
ports CMOS

0.25 - 0.5

20,000 - 100,000

compiler

cache

2

cache

< 16MB

on-chip or
o!-chip
CMOS SRAM

0.5 - 25

5,000 - 10,000

hardware

main memory

3

main memory

< 64GB

CMOS SRAM

80 - 250

1,000 - 5,000

operating system

disk

4

solid state disk

< 1 TB

"ash memory

25,000 - 50,000

500

operating system

disk

5

magnetic disk

< 10 TB

magnetic disk

5,000,000

20 - 150

operating system

disk or tape

Mass-Storage Management

Different Kinds of Storage Devices
Usually disks is used to store data that does not fit in main memory or data that

must be kept for a “long” period of time

Entire speed of computer operation hinges on disk subsystem and its algorithms

Free-space management, Storage Allocation, and Disk Scheduling

OS provides uniform, logical view of
information storage Abstracts physical properties to

logical storage unit : files,
directories

File-System Management

Access control to determine who can access what

Creating and deleting files and directories

Mapping and Backing files onto secondary storage

Bits, Bytes, and Files

I/O Management

Many I/O Devices
Hides peculiarities of hardware devices from the user

Memory management of I/O including buffering, caching, spooling

General device-driver interface

Security – defense of the system against internal
and external attacks including: denial-of-service,

worms, viruses, identity theft, theft of service

Protection – any mechanism for controlling
access of processes or users to resources

defined by the OS

Protection & Security

An operating system is interrupt driven
ةروــــــــنم ةــعمــش ةـــــلف

System	Call

Programming interface to the services provided by the OS

System	Call
Typically written in a high-level language (C or C++)

Accessible via a high-level Application Programming
Interface (API) rather than direct system call use

Software Interrupt (Trap)

Create/Terminate/Load/Execute Process
Get/Set Process Attributes
Wait for Time/Event
wait event, signal event
Allocate/Free/Dump Memory
Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File
Get/Set File Attributes

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Create, Delete Communication Connection
Message Passing Model Host/Process Name
Shared-Memory Model
Transfer Status Information
Attach/Detach Remote Devices

Control access to resources
Get and set permissions
Allow and deny user access

System	Call

Provide Abstractions

User processes cannot perform privileged
operations themselves

MODE

MODE

Any program to run must be loaded in memory

Unit of Work in Computer

PROCESS

ةروــــــــنم ةــعمــش ةـــــلف

A Program In Execution

PROCESS

// File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

}

gcc –o test test.c

// File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

}

gcc –o test test.c

Program becomes process
when executable file
loaded into memory

Process Memory Layout

Text (Code) Segment is one of the sections of a program in an object file or
in memory, which contains executable instructions

Initialized Data Segment contains any global or static variables which have
a pre-defined value and can be modified

BSS Data Segment contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in source code.

Heap Area is the memory that is dynamically allocated during process run
time. The heap area is managed by malloc, calloc, realloc, and free,
which may use the brk and sbrk system calls to adjust its size

Stack Area contains the program stack, a LIFO structure. A “stack pointer”
register tracks the top of the stack; it is adjusted each time a value is
“pushed” onto the stack. The stack area contains temporary data: function
parameters, return addresses, and local variables.

https://en.wikipedia.org/wiki/Data_segment

Lower Address

Higher Address

Process execution
must progress in

sequential fashion

https://en.wikipedia.org/wiki/Data_segment

https://www.geeksforgeeks.org/memory-layout-of-c-program/

One program can be several processes

Chrome Browser is multiprocess with 3 different types of processes:
1. Browser Process manages user interface, disk and network I/O
2. Renderer Process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
3. Plug-in Process for each type of plug-in

Process State

The process is being created

Instructions are being executed

The process is waiting for some event to occur

The process is waiting to be
assigned to a processor

The process has finished execution

Context Switching

When the scheduler switches the CPU switches from
executing one process to another process, the system must
save the state “Context” of the old process and load the
saved state “Context” for the new process

The mechanism to store and restore the state or context of a
CPU in Process Control Block so that a process execution can
be resumed from the same point at a later time

enables multiple processes to share a single CPU

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Context

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Save P1 State

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Resto
re P2 State

Save P2 State

Restore P1 State

Resto
re P2 St

ate

Context Switching
Context switches are computationally intensive since register

and memory state must be saved and restored

enables multiple processes to share a single CPU PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Save P1 State

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Resto
re P2 State

Save P2 State

Restore P1 State

Resto
re P2 St

ate

The more complex the OS and the PCB; the longer the context
switching

To avoid the amount of context switching time, some hardware
systems employ two or more sets of processor registers so that

multiple contexts loaded at once.

Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

First process to run is the “systemd” process
that is started at system boot. This is the grand

parent of all processes in the whole system

If a process dies, then its orphan children are re-
parented to the “systemd” process

Process identified and managed via a process
identifier (PID) – Unique ID

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Process Creation

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

fork()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

Copy Address Space

Child Process

exec()

N
ew

 A
dd

re
ss

 S
pa

ce

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

creates new process

replace the process’s memory
space with a new program

On most systems, the new child process inherits the
permissions of its parent, unless the parent deliberately forks a

new child process with lower permissions than itself.

Process Creation

fork()

wait()

execlp()

exit()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

Re
su

m
es

Return value
of fork(): 0

Return value
of fork(): 980

OS prevents one process from accessing
another process’s memory

Inter-process Communication (IPC)
In order to manage shared resources, it is often necessary for processes to communicate with each other. Thus, operating

systems usually include mechanisms to facilitate inter-process communication (IPC).

Shared Memory Message Passing
A region of memory that is shared by cooperating processes
is established. Processes can then exchange information by

reading and writing data to the shared region

Communication takes place by means of messages
exchanged between the cooperating processes

Shared Memory
Greetings! How are
you today?

wr
it

e

re
ad

Kernel

Message Queuese
nd

re
ce

iv
e

Kernel

Pipes
A conduit allowing related processes to

communicate

Signals

• Sometimes, rather than communicating via shared memory or a shared
communication channel, it is more convenient to have a means by which
processes can send direct messages to each other asynchronously.
• Unix based systems incorporate signals, which are essentially notifications

sent from one process to another.
• When a process receives a signal from another process, the operating

system interrupts the current flow of execution of that process, and checks
whether that process has an appropriate signal handler (a routine designed
to trigger when a particular signal is received).
• If a signal handler exists, then that routine is executed; if the process does

not handle this particular signal, then it takes a default action.

Signals

• Terminating a nonresponsive process on a Unix system is typically
performed via signals.
• Typing Ctrl-C in a command-line window sends the INT signal to the

process, which by default results in termination.

The Filesystem

• Another key component of an operating system is the filesystem,
which is an abstraction of how the external, nonvolatile memory of
the computer is organized.
• Operating systems typically organize files hierarchically into folders, also

called directories.

File Access Control

• One of the main concerns of operating system security is how to
delineate which users can access which resources, that is, who can
read files, write data, and execute programs.
• In most cases, this concept is encapsulated in the notion of file

permissions, whose specific implementation depends on the
operating system.
• Namely, each resource on disk, including both data files and programs, has a

set of permissions associated with it.

Virtual Memory

• Even if all the processes had address spaces that could fit in memory,
there would still be problems.
• Idle processes in such a scenario would still retain their respective chunks of

memory, so if enough processes were running, memory would be needlessly
scarce.

• To solve these problems, most computer architectures incorporate a
system of virtual memory, where each process receives a virtual
address space, and each virtual address is mapped to an address in
real memory by the virtual memory system.

Virtual Memory

• When a virtual address is accessed, a hardware component known as
the memory management unit looks up the real address that it is
mapped to and facilitates access.
• Essentially, processes are allowed to act as if their memory is contiguous,

when in reality it may be fragmented and spread across RAM

Virtual Memory

• An additional benefit of virtual memory systems is that they allow for
the total size of the address spaces of executing processes to be larger
than the actual main memory of the computer.
• This extension of memory is allowed because the virtual memory

system can use a portion of the external drive to “park” blocks of
memory when they are not being used by executing processes.
• This is a great benefit, since it allows for a computer to execute a set

of processes that could not be multitasked if they all had to keep their
entire address spaces in main memory all the time.

Page Faults

• There is a slight time trade-off for benefit we get from virtual
memory, however, since accessing the hard drive is much slower than
RAM. Indeed, accessing a hard drive can be 10,000 times slower than
accessing main memory.
• So operating systems use the hard drive to store blocks of memory

that are not currently needed, in order to have most memory
accesses being in main memory, not the hard drive.
• If a block of the address space is not accessed for an extended period

of time, it may be paged out and written to disk. When a process
attempts to access a virtual address that resides in a paged out block,
it triggers a page fault.

Page Faults

Any program to run must be loaded in memory

Unit of Work in Computer

PROCESS

ةروــــــــنم ةــعمــش ةـــــلف

A Program In Execution

PROCESS

