
Ahmed Tamrawi

COMP 4384 Software Security
Module 5: Integer Overflow Attacks

Acknowledgment Notice
Part of the slides are based on content from CMSC414 course by Dave Levin and Niall Cooling’s blog ”When integers go bad” (https://blog.feabhas.com/2014/10/vulnerabilities-in-c-when-
integers-go-bad/) and "Basic Integer Overflows” by Phrack magazine (http://phrack.org/issues/60/10.html)

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

It prints “5”!

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {

final long MICROS_PER_DAY = 24L * 60 * 60 * 1000 * 1000;
final long MILLIS_PER_DAY = 24L * 60 * 60 * 1000;
System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}
}

1
2
3
4
5
6
7

Takeaway 1 When working with large numbers, watch out for overflow—
it’s a silent killer!

What’s Wrong with this Code?

What’s Wrong with this Code?

Takeaway 2 You have to know the semantics of your programming language
to avoid these errors.

int
4 bytes

-2,147,483,648
to

2,147,483,647

size_t
4 bytes

0 to 4,294,967,295

Integer Overflow Prevalence

http://web.nvd.nist.gov/view/vuln/statistics

Integers

• All built-in integral types (char, short, int, long, etc.) have a limited
capacity because they are represented with a fixed number of bits.
• In most 32-bit architectures, signed integers (those that can be either

positive or negative) are expressed in what is known as two’s
compliment notation.

Integers

• Unlike integers in mathematics, program variables have a fixed range
and “wrap around” when they go above their maximum value or
below their minimum value; a very large positive number becomes a
very large negative number, or vice versa.

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

What are the potential underlaying problems
of fixed-sized representation of numbers?
• Arithmetic Overflow
• Arithmetic Underflow
• Promotion/extension
• Demotion/narrowing
• Sign conversion

Arithmetic Overflow

• When an attacker can take advantage of this behavior, the program is
said to contain an integer overflow vulnerability.
• Integer overflow can lead to any number of problems, but in C and

C++, an integer overflow is most frequently used as a lead-in to a
buffer overflow exploit.
• The buffer overflow might occur when the wrapped-around variable is used

to allocate memory, bound a string operation, or index into a buffer.

• Integer overflow can also occur in Java, but because Java enforces
memory safety properties, integer overflow is not as easy to exploit.

Example 1: Unsigned Overflow Vulnerability

#include <stdio.h>

int main(void) {
unsigned short a = 65000;
unsigned short b = 540;
unsigned short c = 0;

c = a + b;
printf("Result is %u + %u = %u\n", a, b, c);
return 0;

}

overflow.c

unsigned short
2 bytes

0 to 65,535

Example 1: Unsigned Overflow Vulnerability

#include <stdio.h>

int main(void) {
unsigned short a = 65000;
unsigned short b = 540;
unsigned short c = 0;

c = a + b;
printf("Result is %u + %u = %u\n", a, b, c);
return 0;

}

unsigned short
2 bytes

0 to 65,535

Example 2: Arithmetic Underflow Vulnerability
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

unsigned short us = 0;
short ss = SHRT_MIN; // -32768

us -= 1;
ss -= 1;

printf("%u %d\n", us, ss);
return 0;

}

underflow.c

unsigned short
2 bytes

0 to 65,535

short
2 bytes

-32,768 to 32,767

Example 2: Arithmetic Underflow Vulnerability
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

unsigned short us = 0;
short ss = SHRT_MIN; // -32768

us -= 1;
ss -= 1;

printf("%u %d\n", us, ss);
return 0;

}

unsigned short
2 bytes

0 to 65,535

short
2 bytes

-32,768 to 32,767

Integer Promotion/Extension

• Type promotion occurs when we convert from a small
sized integer to a larger one, e.g. from short to int.
• For example, when a signed integer is converted from

a smaller number of bits to a larger number of bits, the
extra bits are filled in so that the new number retains
the same sign.
• Negative number casted to signed larger data type, its

signed value will remain the same. (1000 -> 1111 1000)
• Negative number casted to unsigned larger data type will

increase significantly because its most significant bits will be
set. (1000 -> 1111 1000)

Example 1: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

short ss = SHRT_MIN;
int si = ss;

printf("%d %d\n", ss, si);
printf("%x %x\n", ss, si);

return 0;
}

signedPromotion.c

short
2 bytes

-32,768 to 32,767

int
4 bytes

-2,147,483,648
to

2,147,483,647

Example 1: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

short ss = SHRT_MIN;
int si = ss;

printf("%d %d\n", ss, si);
printf("%x %x\n", ss, si);

return 0;
}

short
2 bytes

-32,768 to 32,767

int
4 bytes

-2,147,483,648
to

2,147,483,647

Example 2: Integer Promotion/Extension

unsignedPromotion.c

#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

short ss = SHRT_MIN;
unsigned int si = ss;

printf("%d %u\n", ss, si);
printf("%x %x\n", ss, si);

return 0;
}

short
2 bytes

-32,768 to 32,767

unsigned int
4 bytes

0 to 4,294,967,295

Example 2: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

short ss = SHRT_MIN;
unsigned int si = ss;

printf("%d %u\n", ss, si);
printf("%x %x\n", ss, si);

return 0;
}

short
2 bytes

-32,768 to 32,767

unsigned int
4 bytes

0 to 4,294,967,295

Integer Demotion/Narrowing

• Integer truncation errors occur when an integer data
type with a larger number of bits is converted to a data
type with fewer bits.
• Narrowing occurs through truncating the bits to the

target type’s size.
• For example, going from int to short will result in the

bottom 16-bits of the 32-bit int being copied to the short.
• For unsigned numbers, this may result is a loss of

information (i.e. large numbers being truncated to small
numbers).
• For signed numbers, narrowing can result in unexpected

change of sign.

Example 1: Integer Demotion/Narrowing
#include <stdio.h>
#include <limits.h>
#include <assert.h>

#define MAGIC_NUMBER 0xFFFF7F8F

int main(void) {
assert(sizeof(short)==2);

unsigned int ui = MAGIC_NUMBER;
unsigned short us = ui;
unsigned char uc = us;

int si = MAGIC_NUMBER;
short ss = si;
signed char sc = ss;

printf("%10u %5hu %4hhu\n", ui, us, uc);
printf("%10x %5hx %4hhx\n", ui, us, uc);
printf("%10d %5hd %4hhd\n", si, ss, sc);
printf("%10x %5hx %4hhx\n", si, ss, sc);
return 0;

}

narrowing.c

unsigned int
4 bytes

0 to 4,294,967,295

unsigned short
2 bytes

0 to 65,535

unsigned char
1 byte
0 to 255

short
2 bytes

-32,768 to 32,767

int
4 bytes

-2,147,483,648
to

2,147,483,647

signed char
1 byte

-128 to 127

Note the change in sign for short

unsigned int
4 bytes

0 to 4,294,967,295

unsigned short
2 bytes

0 to 65,535

unsigned char
1 byte
0 to 255

short
2 bytes

-32,768 to 32,767

int
4 bytes

-2,147,483,648
to

2,147,483,647

signed char
1 byte

-128 to 127

Sign Conversion

• Both signed and unsigned data types are capable of representing the
same number of values because they have the same number of bits
available to them.
• However there is only partial overlap between the range of numbers that the

two types can express.

Sign Conversion

• The result of this partial overlap is that some values can be converted
from an unsigned data type to a signed data type and vice versa
without a change in meaning, while others cannot.
• Intuitively, this is the case for signed-to-unsigned conversions because

a negative value cannot be represented as an unsigned data type.

Sign Conversion

• In the case of positive values, the problem is that the largest 50% of
unsigned values require setting the high-order bit.
• The same bit pattern interpreted as a signed quantity will be negative.
• If the most-significant-bit (MSB) is a zero (0) then there are no issues with the

conversion in either direction.
• If, however, the MSB is a 1 then a change in sign and value will occur.

Example 1: Sign Conversion
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

unsigned short us = 0x8080;
short ss = us;

printf("%6hu %6hd\n", us, ss);
printf("%6hx %6hx\n", us, ss);
return 0;

}

conversion.c

unsigned short
2 bytes

0 to 65,535

short
2 bytes

-32,768 to 32,767

Example 1: Sign Conversion
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

unsigned short us = 0x8080;
short ss = us;

printf("%6hu %6hd\n", us, ss);
printf("%6hx %6hx\n", us, ss);
return 0;

}

unsigned short
2 bytes

0 to 65,535

short
2 bytes

-32,768 to 32,767

Arithmetic Conversion/Promotion

• So far, we have mostly focused on types of the same size
(e.g. short and unsigned short), but if we have arithmetic or
logic operations a pattern called the usual arithmetic conversions are
applied.
• This means, that for arithmetic and logic operations, integer types

shorter than an int are promoted to an int for the operation.
• The promotions can sometimes lead to unexpected consequences, such as

signed values being interpreted as unsigned and vice versa.

Example 1: Arithmetic Conversion/Promotion
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(unsigned char)==1);

unsigned char uc1 = 0xff;
unsigned char uc2 = 0;

if(~uc1 == uc2) {
printf("%hhx == %hhx\n", ~uc1, uc2);

} else {
printf("%hhx != %hhx\n", ~uc1, uc2);

}
return 0;

}

promotion.c

unsigned char
1 byte
0 to 255

unsigned char
1 byte
0 to 255

Example 2: Arithmetic Conversion/Promotion
#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(unsigned char)==1);

unsigned char uc1 = 0xff;
unsigned char uc2 = 0;

if(~uc1 == uc2) {
printf("%08x == %08x\n", ~uc1, uc2);

} else {
printf("%08x != %08x\n", ~uc1, uc2);

}
return 0;

}

promotion2.c

As uc1 has been promoted
to the unsigned
integer 0x000000ff,
when complimented it
results in 0xffffff00, as
shown and thus not equal
to zero.

unsigned char
1 byte
0 to 255

INT_MIN

• There is one other anomaly to be aware of based around INT_MIN.
When using 2’s compliment the number range of an integer is not
symmetrical, i.e. the range is:

-2147483648..2147483647
• All negative values, apart from INT_MIN, have a positive

representation. Unfortunately we cannot represent -2147483648 as a
positive signed number.
• This leads to the strange behavior that the absolute

of INT_MIN and -INT_MIN both are likely to yield INT_MIN.

Example 1: INT_MIN
#include <stdio.h>
#include <limits.h>
#include <assert.h>
#include <stdlib.h>

int main(void) {
assert(sizeof(int)==4);

int intMin = INT_MIN;

printf("%d %d %d\n", intMin, abs(intMin), -intMin);
return 0;

}

intMin.c

int
4 bytes

-2,147,483,648
to

2,147,483,647

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack
• Suppose a network service keeps track of the number of connections

it has received since it has started, and only grants access to the first
five users.

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack
• An attacker could compromise the

above system by making a huge
number of connections until the
connections counter overflows and
wraps around to zero.
• At this point, the attacker will be

authenticated to the system, which is
clearly an undesirable outcome.

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack

Example 2: Integer Underflow Vulnerability

• The most common root problem using integer-based attacks is where
the implementation of an algorithm has mixed signed and unsigned
values.
• Good targets are where standard library functions, such

as malloc or memcpy have been used, as in both cases they take
parameters of type size_t (unsigned integer data type).

Defense Against the Dark Arts

• In short, it can be very difficult to protect ourselves against building
programs which accidentally or deliberately use the undefined or
implementation defined integer behavior.
• Nevertheless, there are several things we can do:
• Education
• Use your compiler flags
• Follow a Security based coding standard
• Enforce the Coding Standard using a Static Analysis (SA) Tool

Defense Mechanisms: Education

• Assuming you’ve made it this far without skipping the content then
you already, hopefully, have a better understanding of the potential
issues and vulnerabilities associated with using integers; spread the
word.
• Further reading includes:
• Secure Coding in C and C++ / Robert C. Seacord — 2nd ed.

(cert.org/books/secure-coding)
• Hacking : the art of exploitation / Jon Erickson. — 2nd ed.

(www.nostarch.com/hacking2.htm)

Defense Mechanisms: Compiler Flags

• Some compilers support compiler flags that affect the behavior of
integers.
• For example, it is not uncommon for gcc programmers to utilize

these flags:

Defense Mechanisms: Security Standards

Defense Mechanisms: Software Analysis

• It is so important that any coding standard is enforced through
automation; ideally it is a natural part of a Continuous Integration (CI)
strategy.
• Source code is checked after a clean build but before tests are executed.

• Importantly for embedded systems we want consistency of checking
across compilers, so you’ll need to seek out analyzers that understand
your compiler’s dialect.
• Static analyzers supporting the CERT standard:
• ParaSoft: https://www.parasoft.com/solutions/compliance/cert/
• Coverity: https://www.synopsys.com/software-integrity/security-

testing/static-analysis-sast.html

