COMP 4384 Software Security
Module 5: Integer Overflow Attacks

Ahmed Tamrawi

in| atamrawi é’atamrawi.gifhub.io DA ahmedtamrawi@gmail.com

Acknowledgment Notice
Part of the slides are based on content from CMSC414 course by Dave Levin and Niall Cooling’s blog “When integers go bad” (https://blog.feabhas.com/2014/10/vulnerabilities-in-c-when-
integers-go-bad/) and "Basic Integer Overflows” by Phrack magazine (http://phrack.org/issues/60/10.html)

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {
final long MICROS_PER DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS PER DAY = 24 * 60 * 60 * 1000;

System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {
final long MICROS_PER DAY = 24 * 60 * 60 * 1000 * 1000;
final long MILLIS PER DAY = 24 * 60 * 60 * 1000;

System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

It prints “5”|

What does the program print?

public class JavaPuzzle {
public static void main(String[] args) {
final long MICROS_PER DAY = 24L * 60 * 60 * 1000 * 1000;
final long MILLIS PER DAY = 24L * 60 * 60 * 1000;

System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

Takeaway 1 When working with large numbers, watch out for overflow—
it’s a silent killer!

-
N\

e XeXeXe1O
P R N D Lz L

What’s Wrong with this Code?

void wvulnerable()
{
size t len;
char *buf;

len = read int from network();
buf = malloc(len + 5);
read(fd, buf, len);

What’s Wrong with this Code?

int
4 bytes
-2,147,483,648
to
2,147,483,647

size t
4 bytes
@ to 4,294,967,295

void vulnerable()

{
size t len;
char *buf;

HUGE

[Ten =|read_int_from network();

buf = mallocf[ien + 5); Wrap-around

read(fd, buf,

len);

- void *malloc(size t size)

Takeaway 2 You have to know the semantics of your programming language
to avoid these errors.

Integer Overflow Prevalence

% of vulnerabilities that
involve integer overflows

> involveintegeroverfiows |
[T S S S —
N I ..
= 11 | .. |
o B

2002 2004 2006 2008 2010 2012 2014 2016

http://web.nvd.nist.gov/view/vuln/statistics

DB

Integers

 All built-in integral types (char, short, int, long, etc.) have a limited
capacity because they are represented with a fixed number of bits.

* In most 32-bit architectures, signed integers (those that can be either
positive or negative) are expressed in what is known as two’s
compliment notation.

Values represented increase by 1 (from -128 to +127)

oo + + +
. T T R T [S W WY
N NN« « « « 1 + F + e e e e N NN
00 ~J O+« o o+ WNRE ®R=N-* « « « o vt O~
I I l l I

[[| | |

=== =R ® O ®
@ o @ ooooo S S Y o @ @ ooooo [S S SN
A O ® + = + s === O O ® s e e =
® ® @ ooooo [S S Y @ @ @ ooooo S S SN
@ o @ ooooo [S SN o @ ® ooooo S W SN
® ® ® ooooo [S SU Y ® @ @ ooooo [S S Y
® ® = o+ s e e D R = O ® = v s s ® = =
O = O R O R @0 R ® = O =

Binary values increase by 1 (dropping the carry bit)

2’s Complement Representation

Integers

* Unlike integers in mathematics, program variables have a fixed range
and “wrap around” when they go above their maximum value or
below their minimum value; a very large positive number becomes a
very large negative number, or vice versa.

Action: ADD 1

Bin: 0001

Hex: . 1111
Unsighed: 1 %R OX %
Signhed: 1 1111
Zero: 0 + 0001
Carry: 0 —

Sign: 0 ' 0001 | 0000
Overflow: O (S

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255
unsigned char 1 byte 0 to 255
signed char 1 byte -128 to 127
int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295
short 2 bytes -32,768 to 32,767
unsigned short 2 bytes 0 to 65,535
long 8 bytes -9223372036854775808 to 9223372036854775807
unsigned long 8 bytes 0 to 18446744073709551615

https://www.tutorialspoint.com/cprogramming/c_data_types.htm

What are the potential underlaying problems
of fixed-sized representation of numbers?

* Arithmetic Overflow
e Arithmetic Underflow
 Promotion/extension
* Demotion/narrowing
* Sign conversion

Arithmetic Overflow

 When an attacker can take advantage of this behavior, the program is
said to contain an integer overflow vulnerability.

* Integer overflow can lead to any number of problems, but in C and
C++, an integer overflow is most frequently used as a lead-in to a
buffer overflow exploit.

* The buffer overflow might occur when the wrapped-around variable is used
to allocate memory, bound a string operation, or index into a buffer.

* Integer overflow can also occur in Java, but because Java enforces
memory safety properties, integer overflow is not as easy to exploit.

Example 1: Unsigned Overflow Vulnerability

#include <stdio.h>

int main(void) {
unsigned short a

unsigned short b unsigned short

0; 2 bytes
® to 65,535

unsigned short ¢

C =a+ b;
printf("Result is %u + %u = %u\n", a, b, c);
return 0;

overflow.c

Example 1: Unsigned Overflow Vulnerability

#include <stdio.h>

int main(void) {
unsigned short .
unsigned short unsigned short

unsigned short 0; 2 bytes
® to 65,535

= a + b;
printf("Result is %u + %u = %u\n", a, b, c);
return 0;

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc overflow.c —-o overflow

local-admins—-MacBook-Pro:module-05 ahmedtamrawi$./overflow
Result is 65000 + 540 = 4

65000 => 0Oxfde8 => b’1111 1101 1110 1000
540 => 0x021c => b’0000 0010 0001 1100
b’l 0000 0000 0000 0100

Example 2: Arithmetic Underflow Vulnerability

#include <stdio.h>
#include <limits.h>

#include <assert.h> .
unsigned short

int main(void) { 2 bytes
assert(sizeof(short)==2); ® to 65.535
J
unsigned short us 0;
short ss = SHRT_MIN; // -32768 short
us -= 1; 2 bytes
ss - ; -32,768 to 32,767

printf("%u %d\n",
return 9;

underflow.c

Example 2: Arithmetic Underflow Vulnerability

#include <stdio.h>
#include <limits.h>
#include <assert.h>

unsigned short

int main(void) { 2 bytes
assert(sizeof(short)==2); ® to 65.535
J
unsigned short us 0;
short ss = SHRT_MIN; // -32768 short
2 bytes

1;
1; 32,768 to 32,767

printf("%u %d\n",
return 9;

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc underflow.c —o0 underflow

local-admins—-MacBook-Pro:module-05 ahmedtamrawi$./underflow
65535 32767

Integer Promotion/Extension

* Type promotion occurs when we convert from a small
sized integer to a larger one, e.g. from short to int.

* For example, when a signed integer is converted from
a smaller number of bits to a larger number of bits, the
extra bits are filled in so that the new number retains
the same sign.

* Negative number casted to signed larger data type, its
signed value will remain the same. (1000 -> 1111 1000)

* Negative number casted to unsigned larger data type will
increase significantly because its most significant bits will be
set. (1000 -> 1111 1000)

1000

11111000

Sign Extension

long double
double
float
unsigned long int
long int
unsigned int
int

char short

Example 1: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>
#include <assert.h> short

2 bytes
-32,768 to 32,767

int main(void) {
assert(sizeof(short)==2);

short ss = SHRT_MIN;

int si = ss; int
4 bytes
printf("sd %d\n", ss, si); -2,147,483,648
printf("%sx %sx\n", ss, si); t
0]
return 0; 2,147,483,647

signedPromotion.c

Example 1: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>

#include <assert.h> short
2 bytes
int main(void) {
assert(sizeof(short)==2); -32,768 to 32,767
short ss = SHRT_MIN; int
int si = ss; L
4 bytes
printf("sd %d\n", ss, si); -2,147,483,648
printf("%sx %sx\n", ss, si); t
(@)
return 0; 2,147,483,647

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc signedPromotion.c —o signedPromotion
local-admins-MacBook-Pro:module-05 ahmedtamrawi$./signedPromotion

-32768 -32768
8000 ffff8000

Example 2: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>

#include <assert.h> short

- n(void) 1 2 bytes

int main(voi
assert(sizeof(short)==2); -32,768 to 32,767
short ss = SHRT_MIN; . d int
unsigned int si = ss; cliisegarse) o

4 bytes

printf("%sd S%su\n", ss, si); © to 4,294,967,295
printf("%sx %sx\n", ss, si);

return 0;

unsignedPromotion.c

Example 2: Integer Promotion/Extension

#include <stdio.h>
#include <limits.h>

#include <assert.h> short
2 bytes
int main(void) {
assert(sizeof(short)==2); -32,768 to 32,767
short ss = SHRT_MIN; . d i
unsigned int si = ss; unsigned int
4 bytes
%u\n", ss, si); © to 4,294,967,295
%x\n", ss, si);

return 0;

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc unsignedPromotion.c —o0 unsignedPromotion
local-admins-MacBook—-Pro:module-05 ahmedtamrawi$./unsignedPromotion

-32768 4294934528
ffff8000 ffff8000

Integer Demotion/Narrowing

* Integer truncation errors occur when an integer data
type with a larger number of bits is converted to a data
type with fewer bits.

* Narrowing occurs through truncating the bits to the
target type’s size.

* For example, going from int to short will result in the
bottom 16-bits of the 32-bit int being copied to the short.

* For unsigned numbers, this may result is a loss of
information (i.e. large numbers being truncated to small
numbers).

* For signed numbers, narrowing can result in unexpected
change of sign.

00011000

i 1[L000O

[I —

Truncation

long double
double
float
unsigned long int
long int
unsigned int
int

char short

Example 1: Integer Demotion/Narrowing

signed char
1 byte
-128 to 127

short
2 bytes
-32,768 to 32,767

int
4 bytes
-2,147,483,648
to
2,147,483,647

#include <stdio.h>
#include <limits.h>
#include <assert.h>

#define MAGIC_NUMBER OxFFFF7F8F

int main(void) {

assert(sizeof(short)==2);

unsigned int ui = MAGIC_NUMBER;

unsigned short us
unsigned char uc

= ui;
us;

int si = MAGIC_NUMBER;

short ss = si;
signed char sc =

printf("%10u S%5hu
printf("%10x %5hx
printf("%10d %5hd
printf("%10x %5hx
return 0;

SS,

%s4hhu\n",
%4hhx\n",
%s4hhd\n",
%4hhx\n",

narrowing.c

unsigned char
1 byte
0@ to 255

unsigned short
2 bytes
® to 65,535

unsigned int
4 bytes
© to 4,294,967,295

signed char
1 byte
-128 to 127

short
2 bytes
-32,768 to 32,767

int
4 bytes
-2,147,483,648
to
2,147,483,647

#include <stdio.h>
#include <limits.h>
#include <assert.h>

#define MAGIC_NUMBER @xFFFF7F8F

int main(void) {
assert(sizeof(short)==2);

unsigned int ui = MAGIC_NUMBER;
unsigned short us = ui;
unsigned char uc = us;

int si = MAGIC_NUMBER;
short ss = sij;
signed char sc = ss;

printf("%10u %5hu %4hhu\n",
printf("%10x %5hx %4hhx\n",
printf("%10d %5hd %4hhd\n",
printf("%10x %5hx %4hhx\n",
return 0;

unsigned char
1 byte
0@ to 255

unsigned short
2 bytes
® to 65,535

unsigned int
4 bytes
© to 4,294,967,295

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc narrowing.c —0 narrowing

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$./narrowing

4294934415 32655 143

ffff7f8f 7f8f 8f

-32881 32655 -113

Note the change in sign for short
ffff7f8f 7f8f 8f

Sign Conversion

* Both signed and unsigned data types are capable of representing the
same number of values because they have the same number of bits
available to them.

* However there is only partial overlap between the range of numbers that the
two types can express.

-2 S 2 14 o 2
-3
. 13 3 4-bit Unsigned
\ et e e L e P et s}
| ' 4-bit Signed

10 11 12 13 14 15

\
)}’\A
o
—
—h
P
—
70//
J
)}‘\/\
o
|
~N
|
D ——
&
|
W ——
|
[LC .
|
—_
o —+
-y
N ——
w ——
N
o ——
o —+
~N
o —+
© —+

Sign Conversion

* The result of this partial overlap is that some values can be converted
from an unsigned data type to a signed data type and vice versa
without a change in meaning, while others cannot.

* Intuitively, this is the case for signed-to-unsigned conversions because
a negative value cannot be represented as an unsigned data type.

4-bit Unsigned

|
~N
|
o ——
|
o ——
|
W ——
|
N ——
|
—r ——
O ——
—
N ——
w ——
_b ——
m ———
o’ ——
\l ——
m ——
<o ——

10 11 12 13 14 15

Sign Conversion

* In the case of positive values, the problem is that the largest 50% of
unsigned values require setting the high-order bit.

* The same bit pattern interpreted as a sighed quantity will be negative.

* If the most-significant-bit (MSB) is a zero (0) then there are no issues with the
conversion in either direction.

* |f, however, the MSB is a 1 then a change in sign and value will occur.

1000 | =8 1000 | =715

Sighed Unsigned

Example 1: Sign Conversion

#include <stdio.h>
#include <limits.h>
#include <assert.h>

int main(void) {
assert(sizeof(short)==2);

unsigned short us = 0x8080;
short ss = us;

printf("%s6hu %6hd\n", us, ss);
printf("%s6hx %6hx\n", us, ss);
return 0;

conversion.c

unsigned short
2 bytes
® to 65,535

short
2 bytes
-32,768 to 32,767

Example 1: Sign Conversion

#lnclude <stdio.h> unsigned short
#include <limits.h> b
#include <assert.h> 2 bytes
© to 65,535
int main(void) {
assert(sizeof(short)==2); short
unsigned short us = 0x8080; 2 bytes
short ss = us; -32,768 to 32,767

printf("%s6hu %6hd\n", us, ss);
printf("%s6hx %6hx\n", us, ss);
return 0;

local-admins-MacBook-Pro:module-05 ahmedtamrawi$ gcc conversion.c —0 conversion
local-admins-MacBook—-Pro:module-05 ahmedtamrawi$./conversion

32896 -32640
8080 8080

Arithmetic Conversion/Promotion

 So far, we have mostly focused on types of the same size
(e.g. short and unsigned short), but if we have arithmetic or
logic operations a pattern called the usual arithmetic conversions are
applied.

* This means, that for arithmetic and logic operations, integer types
shorter than an int are promoted to an int for the operation.

* The promotions can sometimes lead to unexpected consequences, such as
signed values being interpreted as unsigned and vice versa.

Example 1: Arithmetic Conversion/Promotion

#include <stdio.h> unsigned char
#include <limits.h> 1 bvte
#include <assert.h> y

© to 255

int main(void) {
assert(sizeof(unsigned char)==1);

unsigned char ucl = Oxff;
unsigned char uc2 9,

if(~ucl == uc2) {
printf("%shhx == %hhx\n", ~ucl, uc2);
} else {

Iy

return 0;

printf("%shhx !'= %hhx\n", ~ucl, uc2);

promotion.c

#include <stdio.h> unsiened char
#include <limits.h> g

#include <assert.h> 1 byte
0 to 255
int main(void) {
assert(sizeof(unsigned char)==1);

Oxff;
0;

unsigned char ucl
unsigned char uc2

if(~ucl == uc2) {

printf("%shhx == %hhx\n", ~ucl, uc2);
} else {

printf("%shhx != %hhx\n", ~ucl, uc2);
}

return 0;

local-admins-MacBook-Pro:module-05 ahmedtamrawi$ gcc promotion.c —o promotion
promotion.c:13:30: warning: format specifies type 'unsigned char' but the argument has type 'int' [-Wformat]
printf("shhx == %hhx\n", ~ucl, uc2);

NN oot

promotion.c:15:30: warning: format specifies type 'unsigned char' but the argument has type 'int' [-Wformat]
printf("shhx != %hhx\n", ~ucl, uc2);

Lo a ¥ o ¥ o V] oo

2 warnings generated.
local-admins-MacBook—-Pro:module-05 ahmedtamrawi$./promotion
0 '=0

Example 2: Arithmetic Conversion/Promotion

#include <stdio.h> unsigned char
#include <limits.h> 1 bvte
#include <assert.h> y
0@ to 255

int main(void) {

As ucl has been promoted assert(sizeof(unsigned char)==1);

to the unsigned _

integer 0x000000Ff, unsigned char ucl = OXTT;

_ : unsigned char uc2 = 0;

when complimented it

results in Oxfffff{00, as if(~ucl == uc2) {

shown and thus not equal printf("%08x == %08x\n", ~ucl, uc2);

to zero.

} else {
printf("%08x != %08x\n", ~ucl, uc2);
}

return 0;

promotion2.c

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc promotion2.c —o promotion2
local-admins-MacBook—-Pro:module-05 ahmedtamrawi$./promotion2

fff 100 != 00000000

INT MIN

* There is one other anomaly to be aware of based around INT_MIN.
When using 2's compliment the number range of an integer is not
symmetrical, i.e. the range is:

-2147483648..2147483647

* All negative values, apart from INT MIN, have a positive
representation. Unfortunately we cannot represent -2147483648 as a

positive sighed number.

* This leads to the strange behavior that the absolute
of INT _MIN and -INT MIN both are likely to yield INT _MIN.

Example 1: INT_MIN

int #include <stdio.h>
#include <limits.h>
4 bytes #include <assert.h>
-2,147,483,648 #include <stdlib.h>
to
2,147,483,647 int main(void) {

assert(sizeof(int)==4):;

int intMin = INT_MIN;

printf("%d %d %d\n'", intMin, abs(intMin), -intMin);
return 0;

intMin.c

local-admins-MacBook—-Pro:module-05 ahmedtamrawi$ gcc intMin.c —o intMin

local-admins—-MacBook—-Pro:module-05 ahmedtamrawi$./intMin
-2147483648 -2147483648 -2147483648

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack

* Suppose a network service keeps track of the number of connections

it has received since it has started, and only grants access to the first
five users.

#include <stdio.h>

int main(int argc, char * argv[])
{
unsigned int connections = 0;
/I Insert network code here
...
...
/I Does nothing to check overflow conditions
connections++;
if(connections < 5)
grant_access();
else
deny_access();
return 1;

;

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack

* An attacker could compromise the #include <stdio.h>
above SyStem by makmg d huge int main(int argc, char * argv[])
number of connections until the {
. unsigned int connections = 0;
connections counter overflows and 1/ Insert network code here
wraps around to zero. z
At this point, the attacker will be // Does nothing to check overflow conditions
. . . connections++;
authenticated to the system, which is if(connections < 5)
clearly an undesirable outcome. grant_access();

else
deny_access();
return 1;

Example 1: Exposing Integer Overflow
Vulnerability for Privilege Escalation Attack

#include <stdio.h>

#include <stdio.h>
int main(int argc, char * argv|]))

int main(int argc, char * argv[])) {

(S . . unsigned int connections = 0;
unsigned int connections = 0; // Insert network code here
/I Insert network code here /]

... l "
/I Does nothing to check overflow conditions /I Prevents overflow conditions

if(connections < 5)

connections++; : _
if(connections < 5) . connectl.ons++,
grant_access(); if(connections < 5)
else grant_access();
deny_access(); else
return 1; deny_access();
] return 1;

;

Example 2: Integer Underflow Vulnerability

* The most common root problem using integer-based attacks is where

the implementation of an algorithm has mixed signed and unsigned
values.

* Good targets are where standard library functions, such

asmalloc or memcpy have been used, as in both cases they take
parameters of type size t (unsigned integer data type).

int copySize;

// do work, copySize calculated..

if (copySize > MAX BUF SZ) {
return -1;

}
memcpy (&d, &s, copySize*sizeof(type));

Defense Against the Dark Arts

* In short, it can be very difficult to protect ourselves against building
programs which accidentally or deliberately use the undefined or
implementation defined integer behavior.

* Nevertheless, there are several things we can do:
* Education
* Use your compiler flags
* Follow a Security based coding standard
* Enforce the Coding Standard using a Static Analysis (SA) Tool

Defense Mechanisms: Education

* Assuming you’ve made it this far without skipping the content then
you already, hopefully, have a better understanding of the potential
issues and vulnerabilities associated with using integers; spread the
word.

* Further reading includes:

» Secure Coding in C and C++ / Robert C. Seacord — 2" ed.
(cert.org/books/secure-coding)

* Hacking : the art of exploitation / Jon Erickson. — 2"d ed.
(www.nostarch.com/hacking2.htm)

Defense Mechanisms: Compiler Flags

* Some compilers support compiler flags that affect the behavior of
Integers.

* For example, it is not uncommon for gcc programmers to utilize
these flags:

-ftrapv

This option generates traps for signed overflow on addition, subtraction, multiplication operations.
The options -ftrapv and -fwrapv override each other, so using -ftrapv -fwrapv on the command-line
results in -fwrapv being effective. Note that only active options override, so using -ftrapv -fwrapv -
fno-wrapv on the command-line results in -ftrapv being effective.

-fwrapv

This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction
and multiplication wraps around using twos-complement representation. This flag enables some
optimizations and disables others. The options -ftrapv and -furapv override each other, so using -
ftrapv -furapv on the command-line results in -fwrapv being effective. Note that only active options
override, so using -ftrapv -furapv -fno-wrapv on the command-line results in -ftrapv being
effective.

-fwrapv-pointer

This option instructs the compiler to assume that pointer arithmetic overflow on addition and
subtraction wraps around using twos-complement representation. This flag disables some
optimizations which assume pointer overflow is invalid.

Defense Mechanisms: Security Standards

5 Integers (INT) 132
5.1 INT30-C. Ensure that unsigned integer operations do not wrap 132
5.2 INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data 138
5.3 INT32-C. Ensure that operations on signed integers do not result in overflow 147

5.4 INT33-C. Ensure that division and remainder operations do not result in divide-by-zero
errors 157

5.5 INT34-C. Do not shift an expression by a negative number of bits or by greater than or
equal to the number of bits that exist in the operand 160
5.6 INT35-C. Use correct integer precisions 166
5.7 INT36-C. Converting a pointer to integer or integer to pointer 169

5.1.1.1 Noncompliant Code Example

This noncompliant code example can result in an unsigned integer wrap during the addition of the
unsigned operands ui_a and ui_b. If this behavior is unexpected, the resulting value may be

S E I C E R I used to allocate insufficient memory for a subsequent operation or in some other manner that can
lead to an exploitable vulnerability.

C C d H St d d void func(unsigned int ui_a, unsigned int ui_b) {
o In an ar unsigned int usum = ui_a + ui_b;
/* o0 %/
}

Rules for Developing Safe, Reliable, and Secure Systems

5.1.1.2 Compliant Solution (Precondition Test)

2016 Edition This compliant solution performs a precondition test of the operands of the addition to guarantee

there is no possibility of unsigned wrap:
#include <limits.h>

void func(unsigned int ui_a, unsigned int ui_b) {
unsigned int usum;
if (UINT_MAX - ui_a < ui_b) {
/* Handle error */
} else {
usum = ui_a + ui_b;

}

oftware Engineering Institute /* ... %/
ie Mellon U i }

Defense Mechanisms: Software Analysis

* It is so important that any coding standard is enforced through
automation; ideally it is a natural part of a Continuous Integration (Cl)
strategy.

e Source code is checked after a clean build but before tests are executed.

* Importantly for embedded systems we want consistency of checking
across compilers, so you’ll need to seek out analyzers that understand
your compiler’s dialect.

e Static analyzers supporting the CERT standard:
* ParaSoft: https://www.parasoft.com/solutions/compliance/cert/

* Coverity: https://www.synopsys.com/software-integrity/security-
testing/static-analysis-sast.html

