
Ahmed Tamrawi

COMP 4384 Software Security
Module 6: Buffer Overflow Attacks

Acknowledgment Notice
Part of the slides are based on content from CMSC414 course by Dave Levin (https://www.cs.umd.edu/class/spring2019/cmsc414/), Ben Holland’s notes on the Program Analysis for Cybersecurity
training for US Cyber Challenge security boot camps (https://github.com/benjholla/PAC) and Smashing The Stack For Fun And Profit by Phrack Magazine (http://phrack.org/issues/49/14.html)

Can we view /etc/shadow without password?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;

}

Compile/Build the program

“-fno-stack-protector” option will disable
overflow security checks

Run the program

with superuser (root) privileges

Important Notes on the Details discussed in this Module
• We consider the process stack to grow down towards low memory addresses and the process heap to

expand up towards high memory addresses.
• Unless stated otherwise, we do not take into consideration possible padding of values in memory for

maintaining proper alignment in illustrations.
• Unless stated otherwise, we consider the operating system to place local variables on the stack in the order

they occur in the source code and in a contiguous manner.
• In reality, there are no requirements for the stack to be contiguous in the language, the OS, or the hardware.

The only requirement of the stack is that frames are linked. Thus allowing the stack to push/pop frames as
scopes/functions are entered/left.

• Stack organization is completely unspecified and is implementation specific.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;

} 0x00000000

0xFFFFFFFF

St
ac

k
Gr

ow
s

Va
ria

bl
es

/B
uf

fe
rs

 fi
lle

d???

passCheck

Password[16]

???

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

NOTE: Program execution goes in the direction of higher memory addresses

.text

The drawing does not take into consideration possible padding
of values in memory for maintaining proper alignment*

*Read more about possible padding for proper alignment in x86 architecture:
https://stackoverflow.com/questions/4162964/whats-this-between-local-var-and-ebp-on-the-stack
https://stackoverflow.com/questions/35249788/waste-in-memory-allocation-for-local-variables
https://stackoverflow.com/questions/2399072/why-gcc-4-x-default-reserve-8-bytes-for-stack-on-
linux-when-calling-a-method

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;

}

???

0x00000000

0xFFFFFFFF

St
ac

k
Gr

ow
s

Va
ria

bl
es

/B
uf

fe
rs

 fi
lle

d

passCheck

Password[16]

???

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

*Read more about possible padding for proper alignment in x86 architecture:
https://stackoverflow.com/questions/4162964/whats-this-between-local-var-and-ebp-on-the-stack
https://stackoverflow.com/questions/35249788/waste-in-memory-allocation-for-local-variables
https://stackoverflow.com/questions/2399072/why-gcc-4-x-default-reserve-8-bytes-for-stack-on-
linux-when-calling-a-method

NOTE: Program execution goes in the direction of higher memory addresses

.text

The drawing does not take into consideration possible padding
of values in memory for maintaining proper alignment*

• A classic example of an application program attack, which allows for
privilege escalation, is known as a buffer overflow attack.
• In any situation, where a program allocates memory to store

information, care must be taken to ensure that copying user-supplied
data to this memory is done securely and with boundary checks.

• If this is not the case, then it may be possible for an attacker to
provide input that exceeds the length of the allocated memory.
• Because the provided input is larger than the allocated memory, this

may overwrite data beyond the location of the allocated memory,
and potentially allow the attacker to gain control of the entire
process and execute arbitrary code on the machine.

Allocation Strategies: Static Buffer Allocation

• Memory for a buffer is allocated once and the buffer retains its initial
size for the duration of its existence. (located into program’s stack)
• The biggest advantage of this approach is simplicity. Because a buffer

remains the same size throughout its lifetime, it is easier for
programmers to keep track of the size of the buffer and ensure that
operations performed on it are safe.

Allocation Strategies: Dynamic Buffer Allocation

• Allows for buffers to be resized according
to runtime values as required by the
program. (located into program’s heap).
• By decoupling decisions about buffer sizes

from the compilation of the program, a
dynamic solution enables programs to
function more flexibly when the data they
operate on vary significantly at runtime.

Allocation Strategies: Dynamic Buffer Allocation

• The additional complexity involved in
dynamic allocation is obvious.
• The addition of code to determine the desired

buffer size.

• Allocation of the new memory.

• Checking to see that the allocation succeeds.

• The program’s correctness is harder to
verify because a runtime value controls the
size of the dynamically allocated

Why is this C code vulnerable?

• Program is soliciting input from the user through the program
arguments and the input is stored to memory (buf).
• Input bounds are not checked and data in memory can be

overwritten
• The main function has a return address that can be overwritten to

point to data in the buffer

#include <stdio.h>
int main(int argc, char **argv) {
char buf[64];
strcpy(buf, argv[1]);
return 0;

}

Buffer Overflow Basics

• In 2001, the National Science Foundation funded an initiative to
create interactive learning modules for a variety of security subjects
including buffer overflows. The project was not maintained after it’s
release and has recently become defunct.
• Fortunately, Ben Holland (https://github.com/benjholla) was able to

salvage the buffer overflow module and refactor the examples to
work again. Resurrected Fork: https://github.com/benjholla/bomod
• We will use these interactive modules to examine execution jumps,

stack space, and the consequences of buffer overflows at a high-level
before we attempt the real thing.

https://github.com/benjholla
https://github.com/benjholla/bomod

Buffer Overflow Module (bomod)
Demonstrates how stacks are used to keep

track of subroutine calls.

Demonstrates stack attack or stack smashing

Demonstrates "variable attack" buffer
overflow, where the target is data.

Demonstrates how the StackGuard compiler
can help prevent stack attacks

Demonstrates the way languages like C use
stack frames to store local variables, pass

variables from function to function by value
and by reference and return control to the

calling subroutine when the called
subroutine exits.

https://github.com/benjholla/bomod

https://github.com/benjholla/bomod

Stack Data Structure

1

1 1
2

1
2

pushEmpty Stack

TOP: NULL TOP: 1

2
push

3
push

3
pop

3

TOP: 2 TOP: 3 TOP: 2

Memory Layout

JumpsDemo.jar

0x00
Memory Address

0xFF
Memory Address

Memory Layout

StacksDemo.jar

Hello Dr. Bones!

• If we are attempting to login as
Dr. Bones and enter “TEST” as his
password this program will print
“Access denied.”
• If we don’t know Dr. Bones’

password can we still log in?

SpockDemo.jar

Hello Dr. Bones!

SpockDemo.jar

What happened?

• The program first declares a
single character variable
correct_password with value
‘F’, then declares an 8-character
buffer called input.
• Since the stack grows towards
0x00 this means that if the
input buffer overflows the next
value overwritten will be
correct_password. SpockDemo.jar

What happened?

• If we can overwrite the
correct_password variable to ‘T’
then we can bypass the security
check and login as Dr. Bones
without knowing his password.
• To do this we just need to fill the

buffer with 8 characters,
followed by a 9th character of ‘T’.
• So logging in with password

“AAAAAAAAT” will log us in as Dr.
Bones. SpockDemo.jar

Entering forbidden_function?

SmasherDemo.jar

Oh, Bother!

• Entering a long string of ’A’
characters allows us to overflow
the input buffer and overwrite the
return address of main, but if the
return address does not point to a
valid region in memory a
segmentation fault will occur.

Hint: Think of the different ways the

program could interpret the data that

was entered into the array. As humans

typing input into the program, we are

entering ASCII characters, but ASCII

characters can also be interpreted as

Decimal, Hex, or Octal values.

Oh, Bother!

• Entering a long string of ’A’
characters allows us to overflow
the input buffer and overwrite the
return address of main, but if the
return address does not point to a
valid region in memory a
segmentation fault will occur.

Oh, Bother!

• The buffer my_string is 10
characters long.
• When get_string is called it

allocates another buffer of 10
characters for its str parameter as
well as a return address for
get_string to return back to main
after it is finished.
• The return pointer to main is

stored immediately after the str
buffer.

Oh, Bother!

• So entering a string of any 10
characters to fill the buffer
followed by an 11th character
that overwrites the return
address to main to point to
the starting address of the
forbidden_function would
cause the program to jump to
executing the
forbidden_function after the
get_string function is finished.

Oh, Bother!

• The starting address of the
forbidden function is at hex
address 0x44 which is the
ASCII letter ‘D’. So entering
“AAAAAAAAAAD” will cause
the forbidden function to print
“Oh, bother.”.

Oh, Bother!

• This example demonstrates how
a buffer overflow could be used
to compromise the integrity of a
program’s control flow.

• Instead of a pre-existing
function, an attacker could craft
an input of arbitrary machine
code and then redirect the
program’s control flow to
execute his malicious code that
was never part of the original
program.

The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)

The details discussed in
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering

1 word = 4 bytes = 32 bits

1 word = 4 bytes = 32 bits

1 word = 4 bytes = 32 bits

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed

%eip

E
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed

%eipE
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed
%eip

E
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed

%eip

E
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed

%eip

E
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Instruction Pointer Register

Instruction pointer register (%eip)

containing the address of the

instruction to be executed

%eip

When calling functions, we should store the
location of the next instruction to be executed
after the function call returns, otherwise, the

program will continue to increment %eip.

E
x
e

c
u

ti
o

n
 D

ir
e

c
ti

o
n

Stack Related Registers
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

%ebp %esp

push 1

%ebp

%esp

%ebp

%esp1

Stack Related Registers
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

push 2

%ebp

%esp1
%ebp

%esp

1
%ebp

%esp

1
2

Stack Related Registers
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

push 3

%ebp

%esp

1
2

%ebp

%esp

1
2

%ebp

%esp

1
2
3

Stack Related Registers
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

pop

%ebp

%esp

1
2
3

%ebp

%esp

1
2

pop

%ebp

%esp1

pop

%ebp %esp

Referencing Stack Variables
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C
%ebp - 4 0xFF334408
%ebp - 8 0xFF334404
-4(%ebp) 1
-8(%ebp) 2
-C(%ebp) 3
(%ebp) 9
+4(%ebp) ???

9

Referencing Stack Variables
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp)
containing the address of the

bottom of the stack frame

Stack Pointer Register (%esp)
containing the address of the

top of the stack frame

0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C 0xFF334408
%ebp - 4 0xFF334408 0xFF334404
%ebp - 8 0xFF334404 0xFF334400
-4(%ebp) 1 2
-8(%ebp) 2 3
-C(%ebp) 3 ???
(%ebp) 9 1
+4(%ebp) ??? 9

9

%ebp

Referencing Stack Variables
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C 0xFF334408
%ebp - 4 0xFF334408 0xFF334404
%ebp - 8 0xFF334404 0xFF334400
-4(%ebp) 1 2
-8(%ebp) 2 3
-C(%ebp) 3 ???
(%ebp) 9 1
+4(%ebp) ??? 9

9

%ebp

It is really important to keep track of the %ebp and %esp registers at the right positions for
correct variable referencing and indexing, otherwise, we result on a chaos!

%ebp

0x
00
00
00
00

0x
FF
FF
FF
FF

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

%ebp

0x
00
00
00
00

0x
FF
FF
FF
FF

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp%esp

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp

%ebp

%esp

%ebp

%esp

Undecidable at
Compile-Time

Variable Number
of Arguments

%ebp

%esp

Undecidable at
Compile-Time

Variable Number
of Arguments

%ebp
Set proper value for %ebp register to properly

setup called function stack frame

%ebp

%esp

%ebp
Set proper value for %ebp register to properly

setup called function stack frame

Expression Value
-4(%ebp) loc1[0]

-2(%ebp) loc1[2]

-8(%ebp) loc2

-C(%ebp) loc3

+8(%ebp) arg1

+C(%ebp) arg2

0xbfff01fc

0xbfff01fc

0xbfff0200

0xbfff0200

0xbfff0200

0xbfff0200

0xbfff0200

0xbfff0200

0xbfff0200

0xbfff0200

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

Instruction pointer register

(EIP) containing the address of
the instruction to be executed

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp
Stack Frame for func call

0x
00
00
00
00

0x
FF
FF
FF
FF

%ebp

%esp
Stack Frame for func call

Push next %eip

%eip

The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)

http://phrack.org/issues/49/14.html

The details discussed in
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering

get really serious

Buffer Overflow Attack – Hands-On Lab
The following is based on Ben Holland’s notes on buffer overflow attacks as a part of the Program Analysis for Cybersecurity

training for 2020 US Cyber Challenge security boot camps - https://ben-holland.com/pac2020/

http://phrack.org/issues/49/14.html https://www.gnu.org/software/gdb/

The details discussed in
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering

What do we need for this Lab?

• Virtual Box (6.0.x):
https://www.virtualbox.org/wiki/Download_Old_Builds_6_0
• The free hacking-live-1.0 live Linux distribution created by NoStarch

Press for the Hacking – The Art of Exploitation (2nd Edition) book.
• Virtual Machine: http://www.benjaminsbox.com/pac/HackingLive.ova

• The distribution is an x86 (32-bit) Ubuntu distribution and contains all the
tools you will need to complete the lab already preinstalled.

• Credentials: pac:badpass

http://www.benjaminsbox.com/pac/HackingLive.ova

What are we going to do?

• We are going to exploit the buffer overflow vulnerability in the code
below by injecting a shellcode that prints Owned!!! on terminal.

#include <stdio.h>
int main(int argc, char **argv) {

char buf[64];
strcpy(buf, argv[1]);

}

Before we start!

Shell Basics
The presented exploitation process merely

provides a set of guidelines on how to perform
buffer overflow attacks. The associated virtual
machine has security features turned off and

everything setup for performing the lab.
Therefore, the discussed exploitation may not

work on other Linux distributions.

Important Note

Compile and Run the Vulnerable Program

“-g” denotes that debug symbols should
be added to the compiled binary

runs our program with a string input of 5 As

Compilation command

❶
❷

Inspecting Compiled Code with GNU objdump

The “–M intel” option specifies that the assembly instructions should

be printed in Intel syntax instead of the alternative AT&T syntax

The objdump program will spit out a lot of information, so we can pipe

the output into grep to only display 20 lines after the line that matches

the regular expression “main.:”

Our program code is stored in memory, and every
instruction is assigned a memory address

Notice that the call to strcpy occurs at

memory address 0x08048396

❶

❷

Using GDB to Run our Vulnerable Program
Running the GNU Debugger (GDB) in

quite mode (-q) for basic_vuln.o
Set a breakpoint at the

main function

Run the program “run”

with empty arguments
Reached the breakpoint at

function main

Inspect the registers

“info registers”

A CPU register is like a special internal
variable that is used by the processor

To view the value of a single
register (e.g., EIP), then we use the

command: “info register eip”

Answer “y” to confirm quitting

❶

❷

❸

❹

❺

❻Quit GDB
❼

X86 (32-bit) Registers

Using GDB to Run our Vulnerable Program

Next, we will set a breakpoint at the memory address

of the return instruction after strcpy completes

Run GDB on basic_vuln.o❶
View the program’s

source code
❷

Disassembles function main❸

❻Quit GDB

Notice that the call to strcpy occurs

at memory address 0x08048396❹

❺

The goal is to be able to inspect machine registers before and after the strcpy function call

Inspecting Registers with Normal Input

We entered a string that easily fit within our buffer,

so the state of these registers is within the expected
operation of the program.

What would happen if we entered a string that was longer than 64
characters? and how would it impact the operation of the program?

Run GDB on basic_vuln.o❶Set a breakpoint at the

memory address of the

return instruction after

strcpy completes

❷

Run the program

with 5 As input

❸

Inspect the registers

“info registers”

❺

Reached the breakpoint❹

Answer “y” to confirm quitting
❻Quit GDB

❼

Crafting a Long Input

Outputs 100 As and stores

it into long_input file
❶

Inspecting Registers with Long Input

Notice that we got a memory violation and the EBP register

was overwritten with 0x41414141 (hex for AAAA). This
means we have some control of the EBP register!

Note that the EIP register has been

overwritten with 0x41414141 (hex for AAAA)

Run GDB on basic_vuln.o❶Set a breakpoint at the

memory address of the

return instruction after

strcpy completes

❷

Run the program with the

long input

run `cat long_input`

❸

Note the difference between ` and ‘

Reached the breakpoint❹

Inspect the registers

“info registers”

❺

❾Quit GDB
Answer “y” to confirm quitting❿

❼Continue running past the

breakpoint

❻

❽

Memory Layout

#include <stdio.h>
int main(int argc, char **argv) {
char buf[64];
strcpy(buf, argv[1]);

}

argv

0x00000000

0xFFFFFFFF

St
ac

k
G

ro
w

s

Va
ria

bl
es

/B
uf

fe
rs

 fi
lle

dargc
Next Instruction

Previous EBP

buf[64]

buf[0]

buf[63]

EBP
EBP+4
EBP+8
EBP+12

EBP-4
8-byte Padding

see footnote

EBP-72

The drawing does take into consideration possible padding of
values in memory for maintaining proper alignment*

*Read more about possible padding for proper alignment in X86 architecture:
https://stackoverflow.com/questions/4162964/whats-this-between-local-var-and-ebp-on-the-stack
https://stackoverflow.com/questions/35249788/waste-in-memory-allocation-for-local-variables
https://stackoverflow.com/questions/2399072/why-gcc-4-x-default-reserve-8-bytes-for-stack-on-
linux-when-calling-a-method

EBP-8

Exploitation Idea

• The first local variable is located at
EBP-4. Can we use this information
can we exploit the program?

• Since we can control the data
placed in the buffer and we can
control what the program will
return to (address: EBP+4) and
execute next we could place some
machine code in the buffer and
trick the program into running our
malicious code.

Exploitation Idea

• First, we should figure out exactly
what offset in our input the EBP
register gets overwritten.

• Second, we should build some
simple Shellcode (machine code) to
test our exploit.

Finding Exact Offset for EBP and EIP Registers

Crafting the Malicious Input (Shellcode)
We should create an input of 76-4=72 bytes to use as malicious input (shellcode)

before overwriting the address values of EBP an EIP to run our shellcode.

One technique for finding the exact offset of where the EBP register

is overwritten is to perform a binary search on length of the input.

Here we see that the EBP register is

probably overwritten at the 76th byte.

❶

We get an illegal instruction at offset 76
because we overwrote the EBP not the EIP.

Writing Shellcode

• Next, let’s write some simple shellcode to
print “Owned!!” if we are successful.
• Writing shellcode is hard problem, so feel

free to choose from available online
resources the shellcode you like:
• Shell Storm - http://shell-storm.org/
• Exploit Database - https://www.exploit-

db.com/shellcodes

Writing Shellcode

section .data
msg db 'Owned!!',0xa
section .text
global _start
_start:

;write(int fd, char *msg, unsigned int len)
mov eax,4 ; kernel write command
mov ebx,1 ; set output to stdout
mov ecx,msg ; set msg to Owned!! string
mov edx,8 ; set parameter len=8 (7 characters followed by newline character)
int 0x80 ; triggers interrupt 80 hex, kernel system call

;exit(int ret)
mov eax,1 ; kernel exit command
mov ebx,0 ; set ret status parameter 0=normal
int 0x80 ; triggers interrupt 80 hex, kernel system call

shellcode.asm

More on the Linux x86 (32-bit) System Calls
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

Note that the “;” character indicates a

comment and does not need to included

in the assembly source

Compiling the Shellcode

compile the shellcode, it produces shellcode.o❶

The “-f elf” option specifies that this should produce Executable and Linkable
Format (ELF) machine code, which is executable by most x86 *nix systems.

Inspecting Compiled Shellcode with objdump

Inspect the compiled shellcode with objdump❶

Notice that there are several 0x00 bytes!
This is a problem because we intend to pass our input over the

command line as a string and strings a terminated with a NULL (0x00).
The command line will stop reading our input after just two bytes once

Note: Depending on our architecture we may also need to avoid some other bytes as well. For

example, the C standard library treats 0x0A (a new line character) as a terminating character as well.

We need to use some tricks to rewrite our shellcode so that it does not contain any 0x00 bytes

Fixing Shellcode
section .text
global _start
_start:

;clear out the registers we are going to need
xor eax,eax
xor ebx,ebx
xor ecx,ecx
xor edx,edx

; write(int fd, char *msg, unsigned int len)
mov al,4
mov bl,1
; Owned!!!=0x4F,0x77,0x6E,0x65,0x64,0x21,0x21
push 0x21212164
push 0x656E774F
mov ecx,esp
mov dl,8
int 0x80

; exit(int ret)
mov al,1
xor ebx,ebx
int 0x80

section .data
msg db 'Owned!!',0xa
section .text
global _start
_start:

;write(int fd, char *msg, unsigned int len)
mov eax,4
mov ebx,1
mov ecx,msg
mov edx,8
int 0x80

;exit(int ret)
mov eax,1
mov ebx,0
int 0x80

Create the needed null bytes using an

XOR of the same value

(anything XOR’d with itself is just 0)

Store the string on the stack and use the stack
pointer to pass the value to the system call.

Remember that since we are pushing these characters
onto a stack, we have to push them on in reverse order so

that they are popped of later in the correct order.

For more information on developing shellcode refer to: The Shellcoder's
Handbook: Discovering and Exploiting Security Holes 2nd Edition by Chris Anley

shellcode.asm shellcode2.asm

Compiling the Shellcode

compile the shellcode, it produces shellcode2.o❶

Inspecting Compiled Shellcode with objdump

Inspect the compiled shellcode with objdump❶

Notice that there are
no 0x00 bytes!

Building the Exploit: Appending Shellcode

Inspect the compiled shellcode with objdump❶

Print out the content of

the compiled shellcode

❷

Print out the hex representation

of the compiled shellcode

content to file payload
❸

Using the wc command we count the number of bytes in

the file and observe that our shellcode consists of 34 bytes

❹

❺

Building the Exploit: Appending Shellcode

• Using the wc command we counted the
number of bytes in the file and observed
that our shellcode consists of 34 bytes.

• Since our target buffer (buf) can
comfortably hold 64 bytes we fill the first
64-34=30 bytes with No Operation (NOP
0x90) instructions.

sh
el

lco
de

sh
el

lco
de

Building the Exploit: NOP Sledding

• This instruction tells the CPU to do nothing
for one cycle before moving onto the next
instruction.

• A series of NOPs creates what we call a
NOP sled, which adds robustness to our
exploit.

• This way we can jump the execution of the
program to any instruction in the NOP sled
and still successfully run our shellcode. NOP

NOP
NOP

Building the Exploit: NOP Sledding

Write (64-34) NOPs “\x90”❶

Put the NOPs first into exploit file❷
❸

Append the shellcode to exploit file

Observe that our exploit consists of 64 bytes
❹

Testing the Exploit

• At this point it would be a good idea to test out your exploit, if it will
be able to successfully print “Owned!!!”.

int main(int argc, char **argv){
int *ret;
ret = (int *)&ret+2;
(*ret) = (int)argv[1];

} harness.c

Compile harness.c❶

Run harness.o with the

exploit content as argument

❷

You should see that “Owned!!!”
got printed to the console.

The harness works by returning main to the argv
buffer, forcing the CPU to execute data passed in
the program arguments.
Probably not a best practice as far as C programs go!

Is it good enough to exploit our program?

How to fill this data for
the exploit to work?

Building the Exploit: Overwriting EBP and EIP

Placeholder for overwriting

EIP register’s valuePlaceholder for overwriting

EBP register’s value

NOP Sled

Shellcode

Write (72+4+4-64) “\xCC”

just as a palceholders

❶

View the exploit file

❶

We know the EBP register starts getting overwritten after 72 bytes of our input, so after our payload we add 72-
64=8 bytes of filler followed by another 4 bytes for the EBP address and another 4 bytes for the return address
(remember the return address is just EBP+4).

Building the Exploit: Overwriting EBP and EIP

Placeholder for overwriting

EIP register’s valuePlaceholder for overwriting

EBP register’s value

NOP Sled

Shellcode

Note: In hexedit use CTRL+w to save and CTRL+x to quit.

Overwriting EBP value with

0xDEADBEEF

Overwriting EIP value with

0xCAFEBABE
If our exploit is correct, we should be able to see the

values 0xDEADBEEF, 0xCAFEBABE when we inspect

the registers after the call to strcpy.

Building the Exploit: Overwriting EBP and EIP

Notice that we did overwrite the EBP register, but it doesn’t

exactly say 0xDEADBEEF. This is because x86 is a little-
endian format which interprets bytes from right-to-left

instead of big-endian which is how we normally read and

write binary numbers from left-to-right.

Segmentation fault caused by overwriting the

EIP register with the 0xBEBAFECA.

Run GDB on basic_vuln.o❶Set a breakpoint at the

memory address of the

return instruction after

strcpy completes

❷

Run the program with our

exploit file

❸

Reached the breakpoint❹

❾Quit GDB
Answer “y” to confirm quitting

❿

❼Continue running past the

breakpoint

❻

❽

Inspect the registers

“info registers”

❺

If we wanted the address to be displayed as 0xDE 0xAD 0xBE 0xEF
we would have to write it as 0xEF 0xBE 0xAD 0xDE.

Building the Exploit: Overwriting EBP and EIP

Overwriting EBP value with

0xDEADBEEF

Overwriting EIP value with

0xCAFEBABE

Overwriting EBP value with

0xEFBEADDE

Overwriting EIP value with

0xBEBAFECA

Building the Exploit: Overwriting EBP and EIP

Run GDB on basic_vuln.o❶Set a breakpoint at the

memory address of the

return instruction after

strcpy completes

❷

Run the program with our

exploit file

❸

❾Quit GDB

Answer “y” to confirm quitting

❿

❻Continue running past the

breakpoint

Reached the breakpoint❹

Inspect the register EBP

“info register ebp”
❺

Segmentation fault caused by overwriting the

EIP register with the 0xCAFEBABE. ❼

The “x/li $eip” prints the address and

corresponding instruction for a given register

❽

Building the Exploit: Guessing EIP’s Value

• Next, let’s figure out the address of our NOP
sled to set the EIP pointer to.
• We can definitely select any location within

the NOP sled region.
• To do so, we are going to see what happens

to memory before and after the call to
strcpy function call.

Building the Exploit: Guessing EIP’s Value

Run GDB on basic_vuln.o❶Set a breakpoint at the

memory address before the

call to function strcpy.

❷

Run the program with our

exploit file

❸

Reached the breakpoint❹

Dump 64 bytes of the

current stack in hex format

starting at ESP (the current

stack pointer location)

❺

❺

runs the next instruction

(the strcpy call instruction)
❻

exploit file content
Address 0xBFFFF7C0 is

the start of our NOP sled,

but let’s use 0xBFFFF7C8
since it is safely in the

middle of our NOPs.

Building the Exploit: Guessing EIP’s Value

Overwriting EIP value with

0xBFFFF7C8
Remember that you need to store is in reverse byte order

because it will be interpreted as little-endian format.

At this point we could overwrite the EBP register (currently 0xDEADBEEF), but our exploit
doesn’t depend on the EBP register since we aren’t using any local variables or parameters

and for our purposes its not hurting anything so we’ll leave it as 0xDEADBEEF.

Moment of Truth: Running the Exploit

Run GDB on basic_vuln.o❶

Run the program with our exploit file
❷

Running the Exploit outside GDB

This is because the offsets are slightly different as a result of the debugger adding
instrumentation. So how do we calculate the new offsets?
• Proprietary software is always compiled without debug options, so we might want to re-compile the

basic_vuln.c code without the “-g” option.
• Note that for this lab we left debug options enabled because it makes debugging significantly easier.

Running the Exploit outside GDB

Brute force a targeted search space. Since we don’t care what
registers we overwrite as long as we eventually overwrite the
EIP return address, we could try writing a script to spam the
target return address at the end of our payload.

Compile without debug options❶Copy exploit file into

final-exploit file
❷

Iterate 20 times by appending the

final-exploit file with 0xBFFFF7D8

❸

The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)

Writing Secure Code

• The root cause of buffer overflows is not the operating system itself,
but rather insecure programming practices.
• Programmers must be educated about the risks of insecurely copying

not bounded user-supplied data into allocated memory.
• Many popular programming languages, including C and C++, are

susceptible to this attack, but other languages do not allow the
behavior that makes buffer overflow attacks possible.
• Safer C Dialects: Various safe dialects of C have been designed and

implemented in academic circles but are not widely used in industry

Safe C Dialects

Writing Secure Code

Writing Secure Code

Detecting Buffer Overflow with Canaries

StackGuardDemo.jar

Detecting Buffer Overflow with Canaries

• One prevention technique is to reorganize the stack data allotted to
programs and incorporates a canary, a value that is placed between a
buffer and control data (which plays a similar role to a canary in a coal
mine).
• The system regularly checks the integrity of this canary value, and if

it has been changed, it knows that the buffer has been overflowed
and it should prevent malicious code execution.

Detecting Buffer Overflow with Canaries

https://www.youtube.com
/watch?v=2F8pdMmeuew

Non-executable Memory Segments

• Prevent running code on the stack by enforcing a no-execution
permission on the stack segment of memory.
• If the attacker’s shellcode were not able to run, then exploiting an application

would be difficult.

• Finally, many operating systems now feature address space layout
randomization (ASLR), which rearranges the data of a process’s
address space at random, making it extremely difficult to predict
where to jump in order to execute code.

Non-executable Memory Segments

• Despite these protection mechanisms, researchers and hackers alike
have developed newer, more complicated ways of exploiting buffer
overflows.
• For example, popular ASLR implementations on 32-bit Windows and

Linux systems have been shown to use an insufficient amount of
randomness to fully prevent brute-force attacks, which has required
additional techniques to provide stack-smashing protection.

Other Attack Techniques: Trampolining

• NOP sledding makes stack-based buffer overflows much more likely to
succeed, however, they still require a good deal of guesswork and are not
extremely reliable.
• jump-to-register or trampolining, is considered more precise.
• On initialization, most processes load the contents of external libraries into

their address space.
• These external libraries contain instructions that are commonly used by

many processes, system calls, and other low-level operating system code.
Because they are loaded into the process’s address space in a reserved
section of memory, they are in predictable memory locations.
• Attackers can use knowledge of these external libraries to perform a trampolining

attack.

Other Attack Techniques: Trampolining

• For example, an attacker might be aware of a particular assembly code
instruction in a Windows core system DLL and suppose this instruction tells
the processor to jump to the address stored in one of the processor’s
registers, such as ESP.
• If the attacker can manage to place his malicious code at the address pointed to by

ESP and then overwrite the return address of the current function with the address
of this known instruction, then on returning, the application will jump and execute
the jmp esp instruction, resulting in execution of the attacker’s malicious code.

• Once again, specific examples will vary depending on the application and
the chosen library instruction, but in general this technique provides a
reliable way to exploit vulnerable applications that is not likely to change
on subsequent attempts on different machines, provided all of the
machines involved are running the same version of the operating system.

Other Attack Techniques: Return-to-libc

• A return-to-libc attack, also uses the external libraries loaded at
runtime—in this case, the functions of the C library, libc.
• If the attacker can determine the address of a C library function within a

vulnerable process’s address space, such as system() or execv, this
information can be used to force the program to call this function.

• The attacker can overflow the buffer as before, overwriting the return
address with the address of the desired library function.
• Following this address, the attacker must provide a new address that the libc

function will return to when it is finished execution (this may be a dummy
address if it is not necessary for the chosen function to return), followed by
addresses pointing to any arguments to that function.

Other Attack Techniques: Return-to-libc

• When the vulnerable stack frame returns, it will call the chosen
function with the arguments provided, potentially giving full control
to the attacker.
• This technique has the added advantage of not executing any code on the

stack itself.
• The stack only contains arguments to existing functions, not actual shellcode.

Therefore, this attack can be used even when the stack is marked as
nonexecutable.

Virtual Execution Environments

• Adds a layer between the program and its execution environment by
running it inside a specially designed virtual machine (VM).
• The VM identifies anomalous behavior in the sequence of instructions

executed at runtime.

• The potential benefits of the approach are obvious: no modification
to the existing development process, compilation, or binary itself is
required, and security checks are enforced in a flexible fashion.
• On the downside, because the protected program must run in a

virtual environment with many of its instructions incurring a
monitoring overhead, performance costs are hard to predict.

Heap-Based Buffer Overflow Attacks

Heap-Based Buffer Overflow Attacks

• Recall that memory on the stack is either allocated
statically, which is determined when the program
is compiled, or it is allocated and removed
automatically when functions are called and
returned.
• However, it is often desirable to give programmers

the power to allocate memory dynamically and
have it persisted across multiple function calls.
• This memory is allocated in a large portion of unused

memory known as the heap.

Heap-Based Buffer Overflow Attacks

• Dynamic memory allocation presents potential problems for
programmers:
• If programmers allocate memory on the heap and do not explicitly deallocate

(free) that block, it remains used and can cause memory leak problems.
• From a security standpoint, the heap is subject to similar problems as the

stack; A program that copies user-supplied data into a block of memory
allocated on the heap in an unsafe way can result in overflow conditions,
allowing an attacker to execute arbitrary code on the machine.

Heap-Based Buffer Overflow Attacks

Heap-Based Buffer Overflow Attacks

• Heap-based overflows are generally more complex than the more
prevalent stack-based buffer overflows and require a more in-depth
understanding of how garbage collection and the heap are
implemented.
• Unlike the stack, which contains control data that if altered changes the

execution of a program, the heap is essentially a large empty space for data.
• Rather than directly altering control, heap overflows aim to either alter data

on the heap or abuse the functions and macros that manage the memory on
the heap in order to execute arbitrary code.

An Example Heap-Based Overflow Attack

• Let us consider an older version of the GNU compiler (GCC)
implementation of malloc, the function that allocates a block of
memory on the heap.
• In this implementation, free blocks of memory on the heap are

maintained as into circular double-linked lists (bins).
• Each chunk on a free list contains forward and back pointers to the

next and previous free chunks in the list.

An Example Heap-Based Overflow Attack

When a block is marked as free, the
unlink macro is used to set the
pointers of the adjacent blocks to
point to each other, effectively
removing the block from the list and
allowing the space to be reused

An Example Heap-Based Overflow Attack

unlink routine
Freed Memory

Links After
Freeing Memory

Links Before
Freeing Memory

An Example Heap-Based Overflow Attack*

• A program’s heap is usually managed by the C library
functions malloc and free.
• The heap is divided into groups of free blocks of similar

size, and blocks in each group are organized using a
doubly linked list.
• For efficiency reasons, the forward pointer, fd, and

backward pointer, bd, that maintain the doubly linked
lists are stored at the beginning of each free block.
• An attacker can exploit unchecked heap buffer

vulnerabilities to change these pointers and thereby seize
control of the program.

*Xu, Jun, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. "Transparent runtime randomization for security." In 22nd
International Symposium on Reliable Distributed Systems, 2003. Proceedings., pp. 260-269. IEEE, 2003.

An Example Heap-Based Overflow Attack

not part of any free list When block U is freed, it is consolidated with
the neighboring free block B, and B is taken

out of its current free block list
1. (B->fd)->bk=B->bk (equivalent to A->bk=C)
2. (B->bk)->fd=B->fd (equivalent to C->fd=A)

Referenced by another
larger free block

An Example Heap-Based Overflow Attack

not part of any free list

The attacker can send malicious messages to
overflow buffer U:
1. Overwriting B->fd to point to p (the address

of a function pointer).
2. Overwriting B->bk to point to m (the location

where the malicious code will be placed)

An Example Heap-Based Overflow Attack

When U is freed, B is taken out of the doubly linked

lists through two pointer operations:

1. (B->fd)->bk=B->bk (equivalent to p->bk=m)

2. (B->bk)->fd=B->fd

The next time the function pointer at p->bk is
used, the malicious code will be executed.

The attacker needs to determine the address values
m and p and in order to seize control of the program.

An Example Heap-Based Overflow Attack

• One such location that may be written to in order to compromise a
program is known as .dtors.
• Programs compiled with GCC may feature functions marked as constructor or

destructor functions.
• Constructors are executed before main, and destructors are called after
main has returned.

• Therefore, if an attacker adds the address of his shellcode to the
.dtors section, which contains a list of destructor functions, his
code will be executed before the program terminates.

An Example Heap-Based Overflow Attack

• Another potential location that is vulnerable to attacks is known as
the global offset table (GOT). This table maps certain functions to
their absolute addresses.
• If an attacker overwrites the address of a function in the GOT with the

address of his shellcode and this function is called, the program will
jump to and execute the shellcode, once again giving full control to
the attacker.

