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Can we view /etc/shadow without password?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){ 
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;

}



Compile/Build the program

“-fno-stack-protector” option will disable 
overflow security checks

Run the program

with superuser (root) privileges





Important Notes on the Details discussed in this Module
• We consider the process stack to grow down towards low memory addresses and the process heap to 

expand up towards high memory addresses.
• Unless stated otherwise, we do not take into consideration possible padding of values in memory for 

maintaining proper alignment in illustrations.
• Unless stated otherwise, we consider the operating system to place local variables on the stack in the order 

they occur in the source code and in a contiguous manner. 
• In reality, there are no requirements for the stack to be contiguous in the language, the OS, or the hardware. 

The only requirement of the stack is that frames are linked. Thus allowing the stack to push/pop frames as 
scopes/functions are entered/left.

• Stack organization is completely unspecified and is implementation specific.



#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){ 
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;
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NOTE: Program execution goes in the direction of higher memory addresses

.text

The drawing does not take into consideration possible padding 
of values in memory for maintaining proper alignment*

*Read more about possible padding for proper alignment in x86 architecture:
https://stackoverflow.com/questions/4162964/whats-this-between-local-var-and-ebp-on-the-stack
https://stackoverflow.com/questions/35249788/waste-in-memory-allocation-for-local-variables
https://stackoverflow.com/questions/2399072/why-gcc-4-x-default-reserve-8-bytes-for-stack-on-
linux-when-calling-a-method



#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(){ 
int passCheck = 0;
char password[16];

printf("Enter password: ");
scanf("%s", password);

if(strcmp(password, "secret")) {
printf("\nWrong Password!\n");

} else {
printf("\nCorrect Password\n");
passCheck = 1;

}
if(passCheck) {

system("cat /etc/shadow");
}
return 0;

}
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NOTE: Program execution goes in the direction of higher memory addresses

.text

The drawing does not take into consideration possible padding 
of values in memory for maintaining proper alignment*



• A classic example of an application program attack, which allows for 
privilege escalation, is known as a buffer overflow attack.
• In any situation, where a program allocates memory to store 

information, care must be taken to ensure that copying user-supplied 
data to this memory is done securely and with boundary checks.



• If this is not the case, then it may be possible for an attacker to 
provide input that exceeds the length of the allocated memory.
• Because the provided input is larger than the allocated memory, this 

may overwrite data beyond the location of the allocated memory, 
and potentially allow the attacker to gain control of the entire 
process and execute arbitrary code on the machine.



Allocation Strategies: Static Buffer Allocation

• Memory for a buffer is allocated once and the buffer retains its initial 
size for the duration of its existence. (located into program’s stack)
• The biggest advantage of this approach is simplicity. Because a buffer 

remains the same size throughout its lifetime, it is easier for 
programmers to keep track of the size of the buffer and ensure that 
operations performed on it are safe.



Allocation Strategies: Dynamic Buffer Allocation

• Allows for buffers to be resized according 
to runtime values as required by the 
program. (located into program’s heap).
• By decoupling decisions about buffer sizes 

from the compilation of the program, a 
dynamic solution enables programs to 
function more flexibly when the data they 
operate on vary significantly at runtime.



Allocation Strategies: Dynamic Buffer Allocation

• The additional complexity involved in 
dynamic allocation is obvious.
• The addition of code to determine the desired 

buffer size.

• Allocation of the new memory.

• Checking to see that the allocation succeeds.

• The program’s correctness is harder to 
verify because a runtime value controls the 
size of the dynamically allocated



Why is this C code vulnerable?

• Program is soliciting input from the user through the program 
arguments and the input is stored to memory (buf).
• Input bounds are not checked and data in memory can be 

overwritten
• The main function has a return address that can be overwritten to 

point to data in the buffer

#include <stdio.h>
int main(int argc, char **argv) {
char buf[64];
strcpy(buf, argv[1]);
return 0;

}



Buffer Overflow Basics

• In 2001, the National Science Foundation funded an initiative to 
create interactive learning modules for a variety of security subjects 
including buffer overflows. The project was not maintained after it’s 
release and has recently become defunct. 
• Fortunately, Ben Holland (https://github.com/benjholla) was able to 

salvage the buffer overflow module and refactor the examples to 
work again. Resurrected Fork: https://github.com/benjholla/bomod
• We will use these interactive modules to examine execution jumps, 

stack space, and the consequences of buffer overflows at a high-level 
before we attempt the real thing.

https://github.com/benjholla
https://github.com/benjholla/bomod


Buffer Overflow Module (bomod)
Demonstrates how stacks are used to keep 

track of subroutine calls.

Demonstrates stack attack or stack smashing

Demonstrates "variable attack" buffer 
overflow, where the target is data.

Demonstrates how the StackGuard compiler 
can help prevent stack attacks

Demonstrates the way languages like C use 
stack frames to store local variables, pass 

variables from function to function by value 
and by reference and return control to the 

calling subroutine when the called 
subroutine exits.

https://github.com/benjholla/bomod

https://github.com/benjholla/bomod


Stack Data Structure
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Memory Layout

JumpsDemo.jar

0x00 
Memory Address

0xFF 
Memory Address



Memory Layout

StacksDemo.jar



Hello Dr. Bones!

• If we are attempting to login as 
Dr. Bones and enter “TEST” as his 
password this program will print 
“Access denied.” 
• If we don’t know Dr. Bones’ 

password can we still log in? 

SpockDemo.jar



Hello Dr. Bones!

SpockDemo.jar



What happened?

• The program first declares a 
single character variable 
correct_password with value 
‘F’, then declares an 8-character 
buffer called input.
• Since the stack grows towards 
0x00 this means that if the 
input buffer overflows the next 
value overwritten will be 
correct_password. SpockDemo.jar



What happened?

• If we can overwrite the 
correct_password variable to ‘T’ 
then we can bypass the security 
check and login as Dr. Bones 
without knowing his password.
• To do this we just need to fill the 

buffer with 8 characters, 
followed by a 9th character of ‘T’. 
• So logging in with password 

“AAAAAAAAT” will log us in as Dr. 
Bones. SpockDemo.jar



Entering forbidden_function?

SmasherDemo.jar



Oh, Bother!

• Entering a long string of ’A’ 
characters allows us to overflow
the input buffer and overwrite the 
return address of main, but if the 
return address does not point to a 
valid region in memory a 
segmentation fault will occur.



Hint: Think of the different ways the 

program could interpret the data that 

was entered into the array. As humans 

typing input into the program, we are 

entering ASCII characters, but ASCII 

characters can also be interpreted as 

Decimal, Hex, or Octal values.



Oh, Bother!

• Entering a long string of ’A’ 
characters allows us to overflow
the input buffer and overwrite the 
return address of main, but if the 
return address does not point to a 
valid region in memory a 
segmentation fault will occur.



Oh, Bother!

• The buffer my_string is 10 
characters long. 
• When get_string is called it 

allocates another buffer of 10 
characters for its str parameter as 
well as a return address for 
get_string to return back to main
after it is finished.
• The return pointer to main is 

stored immediately after the str
buffer.



Oh, Bother!

• So entering a string of any 10 
characters to fill the buffer 
followed by an 11th character 
that overwrites the return 
address to main to point to 
the starting address of the 
forbidden_function would 
cause the program to jump to 
executing the 
forbidden_function after the 
get_string function is finished. 



Oh, Bother!

• The starting address of the 
forbidden function is at hex 
address 0x44 which is the 
ASCII letter ‘D’. So entering 
“AAAAAAAAAAD” will cause 
the forbidden function to print 
“Oh, bother.”. 



Oh, Bother!

• This example demonstrates how 
a buffer overflow could be used 
to compromise the integrity of a 
program’s control flow. 

• Instead of a pre-existing 
function, an attacker could craft 
an input of arbitrary machine 
code and then redirect the 
program’s control flow to 
execute his malicious code that 
was never part of the original 
program.





The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)



The details discussed in 
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering







1 word = 4 bytes = 32 bits

1 word = 4 bytes = 32 bits

1 word = 4 bytes = 32 bits



































Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed
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Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed
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Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed
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Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed
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Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed
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Instruction Pointer Register

Instruction pointer register (%eip) 

containing the address of the 

instruction to be executed

%eip

When calling functions, we should store the 
location of the next instruction to be executed 
after the function call returns, otherwise, the 

program will continue to increment %eip.
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Stack Related Registers
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Base Pointer Register (%ebp) 
containing the address of the 

bottom of the stack frame

Stack Pointer Register (%esp) 
containing the address of the      

top of the stack frame

%ebp %esp

push 1

%ebp

%esp

%ebp

%esp1



Stack Related Registers
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bottom of the stack frame
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Stack Related Registers
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containing the address of the 

bottom of the stack frame

Stack Pointer Register (%esp) 
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Stack Related Registers
S

ta
c
k

 G
ro

w
th

 D
ir

e
c
ti

o
n

Base Pointer Register (%ebp) 
containing the address of the 

bottom of the stack frame

Stack Pointer Register (%esp) 
containing the address of the      

top of the stack frame
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Referencing Stack Variables
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Base Pointer Register (%ebp) 
containing the address of the 

bottom of the stack frame

Stack Pointer Register (%esp) 
containing the address of the      

top of the stack frame

0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C
%ebp - 4 0xFF334408
%ebp - 8 0xFF334404
-4(%ebp) 1
-8(%ebp) 2
-C(%ebp) 3
(%ebp) 9
+4(%ebp) ???

9



Referencing Stack Variables
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Base Pointer Register (%ebp) 
containing the address of the 

bottom of the stack frame

Stack Pointer Register (%esp) 
containing the address of the      

top of the stack frame

0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C 0xFF334408
%ebp - 4 0xFF334408 0xFF334404
%ebp - 8 0xFF334404 0xFF334400
-4(%ebp) 1 2
-8(%ebp) 2 3
-C(%ebp) 3 ???
(%ebp) 9 1
+4(%ebp) ??? 9

9

%ebp



Referencing Stack Variables
S
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0x00000000

0xFFFFFFFF

0xFF33440C

0xFF334400

0xFF334404

0xFF334408

Expression Value

%ebp 0xFF33440C 0xFF334408
%ebp - 4 0xFF334408 0xFF334404
%ebp - 8 0xFF334404 0xFF334400
-4(%ebp) 1 2
-8(%ebp) 2 3
-C(%ebp) 3 ???
(%ebp) 9 1
+4(%ebp) ??? 9

9

%ebp

It is really important to keep track of the %ebp and %esp registers at the right positions for 
correct variable referencing and indexing, otherwise, we result on a chaos!
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Undecidable at 
Compile-Time

Variable Number 
of Arguments



%ebp

%esp

Undecidable at 
Compile-Time

Variable Number 
of Arguments

%ebp
Set proper value for %ebp register to properly 

setup called function stack frame



%ebp

%esp

%ebp
Set proper value for %ebp register to properly 

setup called function stack frame

Expression Value
-4(%ebp) loc1[0]

-2(%ebp) loc1[2]

-8(%ebp) loc2

-C(%ebp) loc3

+8(%ebp) arg1

+C(%ebp) arg2
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Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed



Instruction pointer register 

(EIP) containing the address of 
the instruction to be executed
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The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)



http://phrack.org/issues/49/14.html



The details discussed in 
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering



















































































































































































































get really serious



Buffer Overflow Attack – Hands-On Lab
The following is based on Ben Holland’s notes on buffer overflow attacks as a part of the Program Analysis for Cybersecurity 

training for 2020 US Cyber Challenge security boot camps - https://ben-holland.com/pac2020/



http://phrack.org/issues/49/14.html https://www.gnu.org/software/gdb/



The details discussed in 
this module assumes a
32-bit x86 architecture

Addresses are 1 Word/4 bytes/32 bitsX86 (32-bit) Registers Little Endian Bytes Ordering



What do we need for this Lab?

• Virtual Box (6.0.x): 
https://www.virtualbox.org/wiki/Download_Old_Builds_6_0
• The free hacking-live-1.0 live Linux distribution created by NoStarch

Press for the Hacking – The Art of Exploitation (2nd Edition) book. 
• Virtual Machine: http://www.benjaminsbox.com/pac/HackingLive.ova

• The distribution is an x86 (32-bit) Ubuntu distribution and contains all the 
tools you will need to complete the lab already preinstalled.

• Credentials: pac:badpass

http://www.benjaminsbox.com/pac/HackingLive.ova


What are we going to do?

• We are going to exploit the buffer overflow vulnerability in the code 
below by injecting a shellcode that prints Owned!!! on terminal.

#include <stdio.h>
int main(int argc, char **argv) {

char buf[64];
strcpy(buf, argv[1]);

}



Before we start!

Shell Basics
The presented exploitation process merely 

provides a set of guidelines on how to perform 
buffer overflow attacks. The associated virtual 
machine has security features turned off and 

everything setup for performing the lab. 
Therefore, the discussed exploitation may not 

work on other Linux distributions.

Important Note



Compile and Run the Vulnerable Program

“-g” denotes that debug symbols should 
be added to the compiled binary 

runs our program with a string input of 5 As

Compilation command

❶
❷



Inspecting Compiled Code with GNU objdump

The “–M intel” option specifies that the assembly instructions should 

be printed in Intel syntax instead of the alternative AT&T syntax

The objdump program will spit out a lot of information, so we can pipe 

the output into grep to only display 20 lines after the line that matches 

the regular expression “main.:” 

Our program code is stored in memory, and every 
instruction is assigned a memory address

Notice that the call to strcpy occurs at 

memory address 0x08048396

❶

❷



Using GDB to Run our Vulnerable Program
Running the GNU Debugger (GDB) in 

quite mode (-q) for basic_vuln.o
Set a breakpoint at the 

main function

Run the program “run” 

with empty arguments
Reached the breakpoint at 

function main

Inspect the registers

“info registers”

A CPU register is like a special internal 
variable that is used by the processor

To view the value of a single 
register (e.g., EIP), then we use the 

command: “info register eip”

Answer “y” to confirm quitting

❶

❷

❸

❹

❺

❻Quit GDB
❼

X86 (32-bit) Registers



Using GDB to Run our Vulnerable Program

Next, we will set a breakpoint at the memory address 

of the return instruction after strcpy completes

Run GDB on basic_vuln.o❶
View the program’s 

source code
❷

Disassembles function main❸

❻Quit GDB

Notice that the call to strcpy occurs 

at memory address 0x08048396❹

❺

The goal is to be able to inspect machine registers before and after the strcpy function call



Inspecting Registers with Normal Input

We entered a string that easily fit within our buffer, 

so the state of these registers is within the expected 
operation of the program.

What would happen if we entered a string that was longer than 64 
characters? and how would it impact the operation of the program?

Run GDB on basic_vuln.o❶Set a breakpoint at the 

memory address of the 

return instruction after 

strcpy completes

❷

Run the program 

with 5 As input

❸

Inspect the registers

“info registers”

❺

Reached the breakpoint❹

Answer “y” to confirm quitting
❻Quit GDB

❼



Crafting a Long Input

Outputs 100 As and stores 

it into long_input file
❶



Inspecting Registers with Long Input

Notice that we got a memory violation and the EBP register 

was overwritten with 0x41414141 (hex for AAAA). This 
means we have some control of the EBP register! 

Note that the EIP register has been 

overwritten with 0x41414141 (hex for AAAA)

Run GDB on basic_vuln.o❶Set a breakpoint at the 

memory address of the 

return instruction after 

strcpy completes

❷

Run the program with the 

long input

run `cat long_input`

❸

Note the difference between ` and ‘

Reached the breakpoint❹

Inspect the registers

“info registers”

❺

❾Quit GDB
Answer “y” to confirm quitting❿

❼Continue running past the 

breakpoint

❻

❽



Memory Layout

#include <stdio.h>
int main(int argc, char **argv) {
char buf[64];
strcpy(buf, argv[1]);

}

argv

0x00000000

0xFFFFFFFF
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buf[63]

EBP
EBP+4
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EBP+12

EBP-4
8-byte Padding

see footnote

EBP-72

The drawing does take into consideration possible padding of 
values in memory for maintaining proper alignment*

*Read more about possible padding for proper alignment in X86 architecture:
https://stackoverflow.com/questions/4162964/whats-this-between-local-var-and-ebp-on-the-stack
https://stackoverflow.com/questions/35249788/waste-in-memory-allocation-for-local-variables
https://stackoverflow.com/questions/2399072/why-gcc-4-x-default-reserve-8-bytes-for-stack-on-
linux-when-calling-a-method

EBP-8



Exploitation Idea 

• The first local variable is located at 
EBP-4. Can we use this information 
can we exploit the program?

• Since we can control the data 
placed in the buffer and we can 
control what the program will 
return to (address: EBP+4) and 
execute next we could place some 
machine code in the buffer and 
trick the program into running our 
malicious code. 



Exploitation Idea 

• First, we should figure out exactly 
what offset in our input the EBP 
register gets overwritten. 

• Second, we should build some 
simple Shellcode (machine code) to 
test our exploit.



Finding Exact Offset for EBP and EIP Registers

Crafting the Malicious Input (Shellcode)
We should create an input of 76-4=72 bytes to use as malicious input (shellcode) 

before overwriting the address values of EBP an EIP to run our shellcode.

One technique for finding the exact offset of where the EBP register 

is overwritten is to perform a binary search on length of the input. 

Here we see that the EBP register is 

probably overwritten at the 76th byte. 

❶

We get an illegal instruction at offset 76 
because we overwrote the EBP not the EIP.



Writing Shellcode

• Next, let’s write some simple shellcode to 
print “Owned!!” if we are successful. 
• Writing shellcode is hard problem, so feel 

free to choose from available online 
resources the shellcode you like:
• Shell Storm - http://shell-storm.org/
• Exploit Database - https://www.exploit-

db.com/shellcodes



Writing Shellcode

section .data
msg db 'Owned!!',0xa
section .text
global _start
_start:

;write(int fd, char *msg, unsigned int len)
mov eax,4 ; kernel write command
mov ebx,1 ; set output to stdout
mov ecx,msg ; set msg to Owned!! string
mov edx,8 ; set parameter len=8 (7 characters followed by newline character)
int 0x80 ; triggers interrupt 80 hex, kernel system call

;exit(int ret)
mov eax,1 ; kernel exit command
mov ebx,0 ; set ret status parameter 0=normal
int 0x80 ; triggers interrupt 80 hex, kernel system call

shellcode.asm

More on the Linux x86 (32-bit) System Calls
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

Note that the “;” character indicates a 

comment and does not need to included 

in the assembly source



Compiling the Shellcode

compile the shellcode, it produces shellcode.o❶

The “-f elf” option specifies that this should produce Executable and Linkable 
Format (ELF) machine code, which is executable by most x86 *nix systems.



Inspecting Compiled Shellcode with objdump

Inspect the compiled shellcode with objdump❶

Notice that there are several 0x00 bytes! 
This is a problem because we intend to pass our input over the 

command line as a string and strings a terminated with a NULL (0x00). 
The command line will stop reading our input after just two bytes once 

Note: Depending on our architecture we may also need to avoid some other bytes as well. For 

example, the C standard library treats 0x0A (a new line character) as a terminating character as well.

We need to use some tricks to rewrite our shellcode so that it does not contain any 0x00 bytes 



Fixing Shellcode
section .text
global _start
_start:

;clear out the registers we are going to need
xor eax,eax
xor ebx,ebx
xor ecx,ecx
xor edx,edx

; write(int fd, char *msg, unsigned int len)
mov al,4
mov bl,1
; Owned!!!=0x4F,0x77,0x6E,0x65,0x64,0x21,0x21
push 0x21212164
push 0x656E774F
mov ecx,esp
mov dl,8
int 0x80

; exit(int ret)
mov al,1
xor ebx,ebx
int 0x80

section .data
msg db 'Owned!!',0xa
section .text
global _start
_start:

;write(int fd, char *msg, unsigned int len)
mov eax,4
mov ebx,1
mov ecx,msg
mov edx,8
int 0x80

;exit(int ret)
mov eax,1
mov ebx,0
int 0x80

Create the needed null bytes using an 

XOR of the same value 

(anything XOR’d with itself is just 0)

Store the string on the stack and use the stack 
pointer to pass the value to the system call. 

Remember that since we are pushing these characters 
onto a stack, we have to push them on in reverse order so 

that they are popped of later in the correct order. 

For more information on developing shellcode refer to: The Shellcoder's
Handbook: Discovering and Exploiting Security Holes 2nd Edition by Chris Anley

shellcode.asm shellcode2.asm



Compiling the Shellcode

compile the shellcode, it produces shellcode2.o❶



Inspecting Compiled Shellcode with objdump

Inspect the compiled shellcode with objdump❶

Notice that there are 
no 0x00 bytes! 



Building the Exploit: Appending Shellcode

Inspect the compiled shellcode with objdump❶

Print out the content of 

the compiled shellcode

❷

Print out the hex representation 

of the compiled shellcode 

content to file payload
❸

Using the wc command we count the number of bytes in 

the file and observe that our shellcode consists of 34 bytes

❹

❺



Building the Exploit: Appending Shellcode

• Using the wc command we counted the 
number of bytes in the file and observed 
that our shellcode consists of 34 bytes.

• Since our target buffer (buf) can 
comfortably hold 64 bytes we fill the first 
64-34=30 bytes with No Operation (NOP 
0x90) instructions.

sh
el

lco
de



sh
el

lco
de

Building the Exploit: NOP Sledding

• This instruction tells the CPU to do nothing
for one cycle before moving onto the next 
instruction.

• A series of NOPs creates what we call a 
NOP sled, which adds robustness to our 
exploit.

• This way we can jump the execution of the 
program to any instruction in the NOP sled 
and still successfully run our shellcode. NOP

NOP
NOP



Building the Exploit: NOP Sledding

Write (64-34) NOPs “\x90”❶

Put the NOPs first into exploit file❷
❸

Append the shellcode to exploit file

Observe that our exploit consists of 64 bytes
❹



Testing the Exploit

• At this point it would be a good idea to test out your exploit, if it will 
be able to successfully print “Owned!!!”.

int main(int argc, char **argv){
int *ret;
ret = (int *)&ret+2;
(*ret) = (int)argv[1];

} harness.c

Compile harness.c❶

Run harness.o with the 

exploit content as argument

❷

You should see that “Owned!!!” 
got printed to the console.

The harness works by returning main to the argv
buffer, forcing the CPU to execute data passed in 
the program arguments.
Probably not a best practice as far as C programs go!



Is it good enough to exploit our program?

How to fill this data for 
the exploit to work?



Building the Exploit: Overwriting EBP and EIP

Placeholder for overwriting 

EIP register’s valuePlaceholder for overwriting 

EBP register’s value

NOP Sled

Shellcode

Write (72+4+4-64) “\xCC” 

just as a palceholders

❶

View the exploit file

❶

We know the EBP register starts getting overwritten after 72 bytes of our input, so after our payload we add 72-
64=8 bytes of filler followed by another 4 bytes for the EBP address and another 4 bytes for the return address 
(remember the return address is just EBP+4).



Building the Exploit: Overwriting EBP and EIP

Placeholder for overwriting 

EIP register’s valuePlaceholder for overwriting 

EBP register’s value

NOP Sled

Shellcode

Note: In hexedit use CTRL+w to save and CTRL+x to quit.

Overwriting EBP value with 

0xDEADBEEF

Overwriting EIP value with 

0xCAFEBABE
If our exploit is correct, we should be able to see the 

values 0xDEADBEEF, 0xCAFEBABE when we inspect 

the registers after the call to strcpy.



Building the Exploit: Overwriting EBP and EIP

Notice that we did overwrite the EBP register, but it doesn’t 

exactly say 0xDEADBEEF. This is because x86 is a little-
endian format which interprets bytes from right-to-left 

instead of big-endian which is how we normally read and 

write binary numbers from left-to-right.

Segmentation fault caused by overwriting the 

EIP register with the 0xBEBAFECA. 

Run GDB on basic_vuln.o❶Set a breakpoint at the 

memory address of the 

return instruction after 

strcpy completes

❷

Run the program with our 

exploit file

❸

Reached the breakpoint❹

❾Quit GDB
Answer “y” to confirm quitting

❿

❼Continue running past the 

breakpoint

❻

❽

Inspect the registers

“info registers”

❺

If we wanted the address to be displayed as 0xDE 0xAD 0xBE 0xEF 
we would have to write it as 0xEF 0xBE 0xAD 0xDE. 



Building the Exploit: Overwriting EBP and EIP

Overwriting EBP value with 

0xDEADBEEF

Overwriting EIP value with 

0xCAFEBABE

Overwriting EBP value with 

0xEFBEADDE

Overwriting EIP value with 

0xBEBAFECA



Building the Exploit: Overwriting EBP and EIP

Run GDB on basic_vuln.o❶Set a breakpoint at the 

memory address of the 

return instruction after 

strcpy completes

❷

Run the program with our 

exploit file

❸

❾Quit GDB

Answer “y” to confirm quitting

❿

❻Continue running past the 

breakpoint

Reached the breakpoint❹

Inspect the register EBP

“info register ebp”
❺

Segmentation fault caused by overwriting the 

EIP register with the 0xCAFEBABE. ❼

The “x/li $eip” prints the address and 

corresponding instruction for a given register

❽



Building the Exploit: Guessing EIP’s Value

• Next, let’s figure out the address of our NOP 
sled to set the EIP pointer to.
• We can definitely select any location within 

the NOP sled region.
• To do so, we are going to see what happens 

to memory before and after the call to 
strcpy function call.



Building the Exploit: Guessing EIP’s Value

Run GDB on basic_vuln.o❶Set a breakpoint at the 

memory address before the 

call to function strcpy.

❷

Run the program with our 

exploit file

❸

Reached the breakpoint❹

Dump 64 bytes of the 

current stack in hex format 

starting at ESP (the current 

stack pointer location)

❺

❺

runs the next instruction 

(the strcpy call instruction)
❻

exploit file content
Address 0xBFFFF7C0 is 

the start of our NOP sled, 

but let’s use 0xBFFFF7C8
since it is safely in the 

middle of our NOPs.



Building the Exploit: Guessing EIP’s Value

Overwriting EIP value with 

0xBFFFF7C8
Remember that you need to store is in reverse byte order 

because it will be interpreted as little-endian format.

At this point we could overwrite the EBP register (currently 0xDEADBEEF), but our exploit 
doesn’t depend on the EBP register since we aren’t using any local variables or parameters 

and for our purposes its not hurting anything so we’ll leave it as 0xDEADBEEF.



Moment of Truth: Running the Exploit

Run GDB on basic_vuln.o❶

Run the program with our exploit file
❷



Running the Exploit outside GDB

This is because the offsets are slightly different as a result of the debugger adding 
instrumentation. So how do we calculate the new offsets? 
• Proprietary software is always compiled without debug options, so we might want to re-compile the 

basic_vuln.c code without the “-g” option.
• Note that for this lab we left debug options enabled because it makes debugging significantly easier.



Running the Exploit outside GDB

Brute force a targeted search space. Since we don’t care what 
registers we overwrite as long as we eventually overwrite the 
EIP return address, we could try writing a script to spam the 
target return address at the end of our payload.

Compile without debug options❶Copy exploit file into 

final-exploit file
❷

Iterate 20 times by appending the 

final-exploit file with 0xBFFFF7D8

❸



The following slides are adopted from CMSC414 course by Dave Levin
(https://www.cs.umd.edu/class/spring2019/cmsc414/)





Writing Secure Code

• The root cause of buffer overflows is not the operating system itself, 
but rather insecure programming practices. 
• Programmers must be educated about the risks of insecurely copying 

not bounded user-supplied data into allocated memory.
• Many popular programming languages, including C and C++, are 

susceptible to this attack, but other languages do not allow the 
behavior that makes buffer overflow attacks possible.
• Safer C Dialects: Various safe dialects of C have been designed and 

implemented in academic circles but are not widely used in industry



Safe C Dialects



Writing Secure Code



Writing Secure Code





Detecting Buffer Overflow with Canaries

StackGuardDemo.jar



Detecting Buffer Overflow with Canaries

• One prevention technique is to reorganize the stack data allotted to 
programs and incorporates a canary, a value that is placed between a 
buffer and control data (which plays a similar role to a canary in a coal 
mine). 
• The system regularly checks the integrity of this canary value, and if 

it has been changed, it knows that the buffer has been overflowed 
and it should prevent malicious code execution.



Detecting Buffer Overflow with Canaries























https://www.youtube.com
/watch?v=2F8pdMmeuew







Non-executable Memory Segments

• Prevent running code on the stack by enforcing a no-execution 
permission on the stack segment of memory. 
• If the attacker’s shellcode were not able to run, then exploiting an application 

would be difficult. 

• Finally, many operating systems now feature address space layout 
randomization (ASLR), which rearranges the data of a process’s 
address space at random, making it extremely difficult to predict 
where to jump in order to execute code.



Non-executable Memory Segments

• Despite these protection mechanisms, researchers and hackers alike 
have developed newer, more complicated ways of exploiting buffer 
overflows.
• For example, popular ASLR implementations on 32-bit Windows and 

Linux systems have been shown to use an insufficient amount of 
randomness to fully prevent brute-force attacks, which has required 
additional techniques to provide stack-smashing protection. 



Other Attack Techniques: Trampolining

• NOP sledding makes stack-based buffer overflows much more likely to 
succeed, however, they still require a good deal of guesswork and are not 
extremely reliable.
• jump-to-register or trampolining, is considered more precise.
• On initialization, most processes load the contents of external libraries into 

their address space. 
• These external libraries contain instructions that are commonly used by 

many processes, system calls, and other low-level operating system code. 
Because they are loaded into the process’s address space in a reserved 
section of memory, they are in predictable memory locations. 
• Attackers can use knowledge of these external libraries to perform a trampolining 

attack.



Other Attack Techniques: Trampolining

• For example, an attacker might be aware of a particular assembly code 
instruction in a Windows core system DLL and suppose this instruction tells 
the processor to jump to the address stored in one of the processor’s 
registers, such as ESP.
• If the attacker can manage to place his malicious code at the address pointed to by 

ESP and then overwrite the return address of the current function with the address 
of this known instruction, then on returning, the application will jump and execute 
the jmp esp instruction, resulting in execution of the attacker’s malicious code.

• Once again, specific examples will vary depending on the application and 
the chosen library instruction, but in general this technique provides a 
reliable way to exploit vulnerable applications that is not likely to change 
on subsequent attempts on different machines, provided all of the 
machines involved are running the same version of the operating system.



Other Attack Techniques: Return-to-libc

• A return-to-libc attack, also uses the external libraries loaded at 
runtime—in this case, the functions of the C library, libc. 
• If the attacker can determine the address of a C library function within a 

vulnerable process’s address space, such as system() or execv, this 
information can be used to force the program to call this function.

• The attacker can overflow the buffer as before, overwriting the return 
address with the address of the desired library function. 
• Following this address, the attacker must provide a new address that the libc

function will return to when it is finished execution (this may be a dummy 
address if it is not necessary for the chosen function to return), followed by 
addresses pointing to any arguments to that function.



Other Attack Techniques: Return-to-libc

• When the vulnerable stack frame returns, it will call the chosen 
function with the arguments provided, potentially giving full control 
to the attacker. 
• This technique has the added advantage of not executing any code on the 

stack itself.
• The stack only contains arguments to existing functions, not actual shellcode. 

Therefore, this attack can be used even when the stack is marked as 
nonexecutable.

















































































Virtual Execution Environments

• Adds a layer between the program and its execution environment by 
running it inside a specially designed virtual machine (VM). 
• The VM identifies anomalous behavior in the sequence of instructions 

executed at runtime.

• The potential benefits of the approach are obvious: no modification 
to the existing development process, compilation, or binary itself is 
required, and security checks are enforced in a flexible fashion. 
• On the downside, because the protected program must run in a 

virtual environment with many of its instructions incurring a 
monitoring overhead, performance costs are hard to predict.



Heap-Based Buffer Overflow Attacks



Heap-Based Buffer Overflow Attacks

• Recall that memory on the stack is either allocated 
statically, which is determined when the program 
is compiled, or it is allocated and removed 
automatically when functions are called and 
returned. 
• However, it is often desirable to give programmers 

the power to allocate memory dynamically and 
have it persisted across multiple function calls. 
• This memory is allocated in a large portion of unused 

memory known as the heap.



Heap-Based Buffer Overflow Attacks

• Dynamic memory allocation presents potential problems for 
programmers: 
• If programmers allocate memory on the heap and do not explicitly deallocate 

(free) that block, it remains used and can cause memory leak problems.
• From a security standpoint, the heap is subject to similar problems as the 

stack; A program that copies user-supplied data into a block of memory 
allocated on the heap in an unsafe way can result in overflow conditions, 
allowing an attacker to execute arbitrary code on the machine.



Heap-Based Buffer Overflow Attacks



Heap-Based Buffer Overflow Attacks

• Heap-based overflows are generally more complex than the more 
prevalent stack-based buffer overflows and require a more in-depth 
understanding of how garbage collection and the heap are 
implemented. 
• Unlike the stack, which contains control data that if altered changes the 

execution of a program, the heap is essentially a large empty space for data. 
• Rather than directly altering control, heap overflows aim to either alter data 

on the heap or abuse the functions and macros that manage the memory on 
the heap in order to execute arbitrary code. 



An Example Heap-Based Overflow Attack

• Let us consider an older version of the GNU compiler (GCC) 
implementation of malloc, the function that allocates a block of 
memory on the heap.
• In this implementation, free blocks of memory on the heap are 

maintained as into circular double-linked lists (bins).
• Each chunk on a free list contains forward and back pointers to the 

next and previous free chunks in the list.



An Example Heap-Based Overflow Attack

When a block is marked as free, the 
unlink macro is used to set the 
pointers of the adjacent blocks to 
point to each other, effectively 
removing the block from the list and 
allowing the space to be reused



An Example Heap-Based Overflow Attack

unlink routine
Freed Memory

Links After 
Freeing Memory

Links Before 
Freeing Memory



An Example Heap-Based Overflow Attack*

• A program’s heap is usually managed by the C library 
functions malloc and free. 
• The heap is divided into groups of free blocks of similar 

size, and blocks in each group are organized using a 
doubly linked list. 
• For efficiency reasons, the forward pointer, fd, and 

backward pointer, bd, that maintain the doubly linked 
lists are stored at the beginning of each free block. 
• An attacker can exploit unchecked heap buffer 

vulnerabilities to change these pointers and thereby seize 
control of the program.

*Xu, Jun, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. "Transparent runtime randomization for security." In 22nd 
International Symposium on Reliable Distributed Systems, 2003. Proceedings., pp. 260-269. IEEE, 2003.



An Example Heap-Based Overflow Attack

not part of any free list When block U is freed, it is consolidated with 
the neighboring free block B, and B is taken 

out of its current free block list
1. (B->fd)->bk=B->bk (equivalent to A->bk=C)
2. (B->bk)->fd=B->fd (equivalent to C->fd=A)

Referenced by another 
larger free block



An Example Heap-Based Overflow Attack

not part of any free list

The attacker can send malicious messages to 
overflow buffer U: 
1. Overwriting B->fd to point to p (the address 

of a function pointer).
2. Overwriting B->bk to point to m (the location 

where the malicious code will be placed)



An Example Heap-Based Overflow Attack

When U is freed, B is taken out of the doubly linked 

lists through two pointer operations:

1. (B->fd)->bk=B->bk (equivalent to p->bk=m)

2. (B->bk)->fd=B->fd

The next time the function pointer at p->bk is 
used, the malicious code will be executed.

The attacker needs to determine the address values 
m and p and in order to seize control of the program.



An Example Heap-Based Overflow Attack

• One such location that may be written to in order to compromise a 
program is known as .dtors. 
• Programs compiled with GCC may feature functions marked as constructor or 

destructor functions. 
• Constructors are executed before main, and destructors are called after 
main has returned.

• Therefore, if an attacker adds the address of his shellcode to the 
.dtors section, which contains a list of destructor functions, his 
code will be executed before the program terminates.



An Example Heap-Based Overflow Attack

• Another potential location that is vulnerable to attacks is known as 
the global offset table (GOT). This table maps certain functions to 
their absolute addresses. 
• If an attacker overwrites the address of a function in the GOT with the 

address of his shellcode and this function is called, the program will 
jump to and execute the shellcode, once again giving full control to 
the attacker.


