
Ahmed Tamrawi

COMP 4384 Software Security
Module 7: Other Application Program Attacks

Acknowledgment Notice
Part of the slides are based on content from CMSC414 course by Dave Levin

Why are these code snippets vulnerable?

Format String Vulnerabilities

Format Strings

• The printf family of C library functions are used for I/O. These
functions are designed to be passed an argument containing the
message to be printed, along with a format string that denotes how
message should be displayed.
• A format string is an ASCIIZ string that contains text and format

parameters.

Format String

There is a large set of conversion specifiers (see man 3 printf)! or find
more on: http://www.cplusplus.com/reference/cstdio/printf/

Calling print_record(15, “Ahmed”) will output:
Name: Ahmed Age: 15

refers to an ASCII string terminated by the \0 (ASCII code 0) NULL character

printf Example 1
#include <stdio.h>

int main() {
printf ("Characters: %c %c \n", 'a', 65);
printf ("Decimals: %d %ld\n", 1977, 650000L);
printf ("Preceding with blanks: %10d \n", 1977);
printf ("Preceding with zeros: %010d \n", 1977);
printf ("Some different radices: %d %x %o %#x %#o \n", 100, 100, 100, 100, 100);
printf ("floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);
printf ("Width trick: %*d \n", 5, 10);
printf ("%s \n", "A string");
return 0;

}

printf Example 2

#include <stdio.h>

int main() {
int val;
printf("blah %n blah\n", &val);
printf("val = %d\n", val);
return 0;

}

In C language, %n is a special format specifier. It cause printf to load the variable pointed by
corresponding argument. The loading is done with a value which is equal to the number of
characters printed by printf before the occurrence of %n.

More examples are available at: https://www.tutorialspoint.com/what-is-the-use-of-n-in-printf

printf Example 3

#include <stdio.h>

int main() {
printf ("The magic number is: ""\x25""d\n", 23);
return 0;

}

The ‘\’ character is used to escape special characters. It is replaced by the C compiler at compile-
time, replacing the escape sequence by the appropriate character in the binary.
NOTE: The format functions do not recognize those special sequences.

Format Strings Family

• Several format functions are defined in the ANSI C definition.
• There are some basic format string functions on which more complex

functions are based on, some of which are not part of the standard
but are widely available.

How printf works internally?

#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10_

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10_

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10_0x00ffb345

0x00ffb345

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10_0x00ffb345↵

0x00ffb345

How printf works internally?
#include <stdio.h>

void main() {
int i = 10;
printf ("%d %p\n", i, &i);

}

Format String
Pointer

0x
00

00
00

00

0x
FF

FF
FF

FF

&ii &fmt%eip%ebp
printf stack frame caller stack frame

%d %p \n10 \0

Next Arguments
Pointer

Program Output:
10_0x00ffb345↵

0x00ffb345

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

How printf works internally?

Format String
Pointer

Next Arguments
Pointer

Program Output: NOTE: In C language, \x10 in a string tells the compiler to
put a hexadecimal value 0x10 in the current position. The
value will take up just one byte. Without using \x, the ASCII
values of the characters ’1’ and ’0’ will be stored. Their ASCII
values are 49 and 48, respectively.

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
???

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
???-

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
???-

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
???-???

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
???-???-

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
�-�-����

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
�-�-����↵

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

How printf works internally?

Program Output:
�-�-����↵

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%d - %x \x25\x80\x90\x40 \0- \n

Format String
Pointer

Next Arguments
Pointer

“%d-%x-\x25\x80\x90\x40\n”

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%s %s %s %s \0%s %s

Crashing the Program?

Format String
Pointer

Next Arguments
Pointer

For each %s, printf will fetch a number from the stack, treat this number as an address, and print
out the memory contents pointed by this address as a string, until a NULL character is encountered.

“%s%s%s%s%s%s”

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

%s %s %s %s \0%s %s

Crashing the Program?

Format String
Pointer

Next Arguments
Pointer

Segmentation
Fault

The number fetched maybe a good address but protected or belong to another process’s memory or
belong to nonexistence memory address that has never been assigned causing the program to crash

“%s%s%s%s%s%s”

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output: NOTE: In C language, \x10 in a string tells the compiler to
put a hexadecimal value 0x10 in the current position. The
value will take up just one byte. Without using \x, the ASCII
values of the characters ’1’ and ’0’ will be stored. Their ASCII
values are 49 and 48, respectively.

“\x10\x48\xFF\xFF%x%s%s”

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
����

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
����

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
�����

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
�����

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
������

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
������

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
������No Way!

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Reading Memory at any Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf (buf);

}

%x %s

0xFFFF4810

No Way!

Program Output:
������No Way!

The key challenge in this attack is to figure out the distance
between buf and the address passed to the printf
function. This distance decides how many %x you need to
insert into the format string, before giving %s.

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

%n: The number of characters written so
far is stored in the pointed location

“\x10\x48\xFF\xFF%x%x%n”

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

0x
00

00
00

00

0x
FF

FF
FF

FF

&buf%eip%ebp
printf stack frame caller stack frame

\x10\x48\xFF\xFF \0%x

Writing to any Memory Location?

Format String
Pointer

Next Arguments
Pointer

#include <stdio.h>

void main() {
char buf[100];
// Other variable definitions and statements.
scanf("%s", buf);
printf(buf);

}

%x %n

0xFFFF4810

12

Can you reveal the secret flag?

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
char buf[10];
char secret[] = "FLAG[COMP4384]";
char secretPtr = secret;
printf(argv[1]);
return 0;

}

Can you reveal the secret flag?
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
char buf[10];
char secret[] = "FLAG[COMP4384]";
char *secretPtr = secret;
printf(argv[1]);
return 0;

}

NOTE: Arrays are stored in the stack without a variable referencing the allocated memory space for the array. However and in many situations (especially when an array appears as an argument
to a function call), the compiler may introduce a pointer to its first element also compilers may perform array decay operation for some kinds of arrays.

Countermeasures

• Safe programming practices: Use static string format, and check
length of the passed string.
• Address randomization: just like the countermeasures used to

protect against buffer-overflow attacks, address randomization makes
it difficult for the attackers to find out what address they want to
read/write.

Concurrency and Race Conditions
Vulnerabilities

Concurrency

• Concurrency means multiple computations are
happening at the same time. Concurrency is
everywhere in modern programming, whether
we like it or not:
• Multiple computers in a network.
• Multiple applications running on one computer.
• Multiple processors in a computer (today, multiple

processor cores on a single chip)
• Multiple processes, threads, tasks, etc.

• If concurrency is not controlled, it can lead to
nondeterministic behavior.

Race Conditions

• A race condition is an undesirable situation that occurs when a device
or system attempts to perform two or more operations at the same
time on a shared resource, where the operations must be done in the
proper sequence to be done correctly.
• A race condition defect/vulnerability occurs in any situation where the

behavior of the program is unintentionally dependent on the timing of
certain events. In other words, unanticipated execution ordering of
concurrent flows.
• For example, two people simultaneously

try to modify the same account (withdrawing money).

How to get free money?

withdraw(1000JD) withdraw(1000JD)
balance = 10000JD

balance = 9000JD

balance = 10000JD

balance = 9000JD

Bank Software

Why did this trick work?
We allowed both processes or threads to manipulate the balance counter concurrently

withdraw(1000JD) withdraw(1000JD)

To guard against the race condition above, we need to
ensure that only one process at a time can be

manipulating the balance

Each process must ask permission to
enter critical section

When one process in critical section,
no other may be in its critical section

Race Condition

• Necessary properties for a race condition:
• Concurrency property

• At least two control flows executing concurrently.
• Shared object property

• The concurrent flows must access a common shared race object.
• Change state property

• At least one control flow must alter the state of the race object.

Race Window

• A code segment that accesses the race object in a way that
opens a window of opportunity for race condition.
• Sometimes referred to as critical section.

• Traditional approach:
• Ensure race windows do not overlap

• Make them mutually exclusive
• Language facilities – synchronization primitives.

• Deadlock is a risk related to synchronization primitives.
• Denial of service

• Source of race conditions
• Trusted (tightly coupled threads of execution) or untrusted

control flows (separate application or process)

Linux Access Control: Background

• Each process has its own process attributes which includes attributes like:
• Process ID (PID)
• Parent Process ID (PPID)
• Session ID (SID) - A session is a collection of process groups, which are either attached

to a single terminal device (known as the controlling terminal) or not attached to any
terminal.

• Process Group ID (PGID) - A process group is a collection of related processes which
can all be signaled at once.

• Real User ID (UID) and Real Group ID (GID) - The UID and GID identify the real owner
of the process.

• Effective User ID (EUID) - The EUID of a process is used for most access checks.
• Effective Group ID (EGID) - The EGID of a process affects access control and may also

affect file creation, depending on the semantics of the specific kernel implementation
in use and possibly the mount options used.

Real User ID and Real Group ID

UID

UID

Every process has an owner and belongs to a group
In our shell, every process that we'll now run will inherit the privileges of my

user account and will run with the same UID and GID.

Effective User ID and Effective Group ID

• You can see that owner and group of the file are root. This is
because the ping command needs to open a socket and the Linux
kernel demands root privilege for that.
• But how can I use ping if I don't have root privilege?
• Notice the 's' letter instead of 'x' in the owner part of the file permission.

This is a special permission bit for specific binary executable files
(like ping and sudo) which is known as setuid bit.
• This is where EUID and EGID comes into play.

Note: On latest Linux kernel releases the permissions assigned to the ping command will look different because they adopted the Linux
Capabilities approach instead of this setuid approach. Read more info on: http://unixetc.co.uk/2016/05/30/linux-capabilities-and-ping/

Effective User ID and Effective Group ID*

• What will happen is when a setuid binary like ping executes, the
process changes its Effective User ID (EUID) from the default RUID to
the owner of this special binary executable file which in this case is
root. This is all done by the simple fact that this file has
the setuid bit.
• The kernel makes the decision whether this process has the privilege

by looking on the EUID of the process. Because now the EUID points
to root, the operation won't be rejected by the kernel.

*Read more on the difference between RUID and EUID:
https://stackoverflow.com/questions/32455684/unix-linux-difference-between-real-user-id-effective-user-id-and-saved-user

The open function used to open a file for reading or writing
by using the effective user ID (euid) rather than the real user

ID (uid) of the calling process to check permissions.

If a setuid program owned by the root user is run by an ordinary user, that program can successfully
call open on files that only the root user has permission to access

The access function checks whether the real user ID (uid)
which is the user running the program has permission to

access the specified file

There is a tiny, almost unnoticeable time delay between the calls to access and open.

The Time of Check/Time of Use Problem

• There is a tiny, almost unnoticeable time delay between the calls to
access and open.
• An attacker could exploit this small delay by changing the file in question

between the two calls.
• For example, suppose the attacker provided ~attacker/mystuff.txt as

an argument, an innocent text file that the attacker can access.
• After the call to access returns 0, indicating the user has permission to

access the file, the attacker can quickly replace ~attacker/mystuff.txt
with a symbolic link to a file that he does not have permission to read, such
as /etc/passwd.

The Time of Check/Time of Use Problem

• Next, the program will call open on the symbolic link, which will be
successful because the program is setuid root and has permission to
open any files accessible to the root user.
• Finally, the program will dutifully read and print the contents of the

file.

The Time of Check/Time of Use Problem

• Note that this type of attack could not be done manually; the time
difference between two function calls is small enough that no human
would be able to change the files fast enough.
• However, it would be possible to have a program running in the

background that repeatedly switches between the two files—one
legitimate and one just a symbolic link—and runs the vulnerable
program repeatedly until the switch occurred in exactly the right
place.

The Time of Check/Time of Use Problem

• Any time a program checks the validity and authorizations for an
object, whether it be a file or some other property, before
performing an action on that object, care should be taken that these
two operations are performed atomically, that is, they should be
performed as a single uninterruptible operation.
• Otherwise, the object may be changed in between the time it is

checked and the time it is used. In most cases, such a modification
simply results in erratic behavior, but in some, such as this example,
the time window can be exploited to cause a security breach.

#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

int is_symlink(char* file){
struct stat file_info;
if(lstat(file, &file_info) != 0){

perror("lstat() error");
} else {

return S_ISLNK(file_info.st_mode);
}

}
void read_config(char* file){

char str[100];
FILE *pFile = fopen(file, "r");
if(pFile!=NULL){

fscanf(pFile, "%100s",str); /* Yes, I'm limiting my input to 100 */
printf("%s\n\n",str);
fclose(pFile);

}
}

int main(){
char* file="config";
puts("\tIs it a symlink?");
if(is_symlink(file)){

printf("...oops! This is a symlink, quitting...");
return 0;

}
puts("---CONCURRENT PROCESS STARTS---");
system("./evil-link-maker.sh");
puts("---CONCURRENT PROCESS ENDS---\n");

puts("Ok, I'm back! Let's use this file now...");
read_config(file);
return 0;

}

rm config;
ln -s evilconfig config;

config File Content:
exectuable=./safe_executable

evilconfig File Content:
exectuable=./evil_executable

https://github.com/votd/vulnerability-of-the-day/tree/master/toctou

To safely code the example above, the call to access
should be completely avoided.

The program should drop its privileges using seteuid
before calling open.

This way, if the user running the program does not
have permission to open the specified file, the call
to open will fail.

Improper Locking Vulnerability

• Locking is a type of synchronization behavior that
ensures that multiple independently-operating processes
or threads do not interfere with each other when
accessing the same resource.
• All processes/threads are expected to follow the same

steps for locking/unlocking.
• If these steps are not followed precisely - or if no locking

is done at all - then another process/thread could modify
the shared resource in a way that is not visible or
predictable to the original process.
• This can lead to data corruption, memory corruption,

denial of service, etc.

What is wrong with this code?
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

int counter;

void *IncreaseCounter(void *args) {
counter += 1;
usleep(1);
printf("Thread %d has counter value %d\n", (unsigned int)pthread_self(), counter);
return NULL;

}

int main() {
pthread_t p[10];
for (int i = 0; i < 10; ++i) {

pthread_create(&p[i], NULL, IncreaseCounter, NULL);
}
for (int i = 0; i < 10; ++i) {

pthread_join(p[i], NULL);
}
return 0;

} https://ctf-wiki.github.io/ctf-wiki/pwn/linux/race-condition/introduction/#deadlock

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

int counter;

void *IncreaseCounter(void *args) {
counter += 1;
usleep(1);
printf("Thread %d has counter value %d\n", (unsigned int)pthread_self(), counter);
return NULL;

}

int main() {
pthread_t p[10];
for (int i = 0; i < 10; ++i) {

pthread_create(&p[i], NULL, IncreaseCounter, NULL);
}
for (int i = 0; i < 10; ++i) {

pthread_join(p[i], NULL);
}
return 0;

}

What is wrong with this code?

Improper Locking Vulnerability: Example 1

• Methods are defined to get and set a long field in an instance of a class
that is shared across multiple threads.
• However, operations on double and long are non-atomic in Java,

therefore, concurrent access may cause unexpected behavior.
• Thus, all operations on long and double fields should be synchronized.

private long someLongValue;
public long getLongValue() {

return someLongValue;
}

public void setLongValue(long l) {
someLongValue = l;

}

Improper Locking Vulnerability: Example 2

• PHP by default will wait indefinitely until a file lock is released. If an
attacker can obtain the file lock, this code will pause execution,
possibly leading to denial of service for other users.

function writeToLog($message){
$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {

fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);

} else {
print "Could not obtain lock on logFile.log, message not recorded\n";

}
}
fclose($logFile);

Improper Locking Vulnerability: Example 3

• The following function attempts to acquire a lock in order to perform
operations on a shared resource.
• However, the code does not check the value returned by
pthread_mutex_lock for errors. If pthread_mutex_lock cannot
acquire the mutex for any reason the function may introduce a race
condition into the program and result in undefined behavior.

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);

/* access shared resource */

pthread_mutex_unlock(mutex);
}

int f(pthread_mutex_t *mutex) {
int result = pthread_mutex_lock(mutex);
if (0 != result)

return result;

/* access shared resource */

return pthread_mutex_unlock(mutex);
}

Improper Locking Vulnerability: Example 4

• The programmer wants to guarantee that only one Helper object is
ever allocated but does not want to pay the cost of synchronization
every time this code is called.
if (helper == null) {

synchronized (this) {
if (helper == null) {

helper = new Helper();
}

}
}
return helper;

class Helper {
public Helper() {

/*A lot of initialization code */
}

}

Improper Locking Vulnerability: Example 4

• Suppose that helper is not initialized. Then, thread A sees that
helper==null and enters the synchronized block and begins to
execute new Helper().
• If a second thread, thread B, takes over in the middle of this call and

helper has not finished running the constructor, then thread B may
make calls on helper while its fields hold incorrect values.
if (helper == null) {

synchronized (this) {
if (helper == null) {

helper = new Helper();
}

}
}
return helper;

class Helper {
public Helper() {

/*A lot of initialization code */
}

}

Deadlock Vulnerability

• A deadlink vulnerability occurs when the
software contains multiple threads or
executable segments that are waiting for
each other to release a necessary lock,
resulting in deadlock.
• Each thread of execution will "hang" and

prevent tasks from completing. In some
cases, CPU consumption may occur if a
lock check occurs in a tight loop leading to
denial of service.

Deadlock Vulnerability

wait(co_printer);

wait(bw_printer);

wait(bw_printer);

wait(co_printer);

A B

co_printer = 1, bw_printer = 1

Two or more processes/threads/tasks
are waiting indefinitely for an event
that can be caused by only one of the

waiting processes/threads/tasks

Deadlock Necessary Conditions

• Deadlock can arise if four conditions hold simultaneously:
• Mutual exclusion: only one process at a time can use a resource
• Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes
• No preemption: a resource can be released only voluntarily by the process

holding it, after that process has completed its task
• Circular wait: there exists a set {P", P#, …, P$} of waiting processes such that
P" is waiting for a resource that is held by P#, P# is waiting for a resource that
is held by P%, …, P$&# is waiting for a resource that is held by P$, and P$ is
waiting for a resource that is held by P".

Deadlock Vulnerability: Example 1

Thread t1 = new Thread() {
public void run() {

// Lock resource 1
synchronized(resource1) {

System.out.println("Thread 1: locked resource 1");
try {

// Simulate some file I/O or something.
Thread.sleep(50);

} catch (InterruptedException e) {}

synchronized(resource2) {
System.out.println("Thread 1: locked resource 2");

}
}

}
};

Thread t2 = new Thread() {
public void run() {

// Lock resource 2
synchronized(resource2) {

System.out.println("Thread 2: locked resource 2");
try {

// Simulate some file I/O or something.
Thread.sleep(50);

} catch (InterruptedException e) {}

synchronized(resource1) {
System.out.println("Thread 2: locked resource 1");

}
}

}
};

Deadlock Vulnerability: Example 2

/* function that the second thread will execute in */
void *do_work_two(void *param){

/* Get the second mutex lock*/
pthread_mutex_lock(&second_mutex);
/* Get the first mutex lock */
pthread_mutex_lock(&first_mutex);

/* Critical section starts */
printf("Inside thread 2\n");
/* Critical section ends */

/* Release the locks */
pthread_mutex_unlock(&second_mutex);
pthread_mutex_unlock(&first_mutex);

/* Exit the thread */
pthread_exit(0);

}

/* function that the first thread will execute in */
void *do_work_one(void *param){

/* Get the first mutex lock if it's available */
pthread_mutex_lock(&first_mutex);
sleep(1);
/* Get the second mutex lock if it's available */
pthread_mutex_lock(&second_mutex);

/* Critical section start */
printf("Inside Thread 1\n");
/* Critical section ends */

/* Release the locks */
pthread_mutex_unlock(&first_mutex);
pthread_mutex_unlock(&second_mutex);

/* Exit the thread */
pthread_exit(0);

}

Prevention

• If you want to eliminate conditional competition, the primary goal is
to find the race windows.
• The so-called competition window is the code segment that accesses

the competing object, which gives the attacker a corresponding
opportunity to modify the corresponding competing object.
• In general, if we can make the conflicting competition windows

mutually exclusive, then we can eliminate the competition
conditions.

Other Memory Corruption
Vulnerabilities

Dynamic Memory Allocation

• In C language, dynamic memory is allocated by
calls and wrappers of malloc, calloc and
realloc function and it is freed by calls and
wrappers of free function.
• Java language uses managed memory, so the

only way you can allocate memory is by using
the new operator, and the only way you can
deallocate memory is by relying on the garbage
collector.

https://youtu.be/SuBch2MZpZM

Memory Leak Vulnerability

• When a resource is not released after use, it can allow
attackers to cause a denial of service by causing the
allocation of resources without triggering their
release.
• Frequently-affected resources include memory, CPU,

disk space, power or battery, etc.
• An attacker that can influence the allocation of

resources that are not properly released could deplete
the available resource pool and prevent all other
processes from accessing the same type of resource.

https://youtu.be/LNoeAU25uy4

Memory Leak Vulnerability: Example 1

• Run the two programs and see the memory consumption by the two
processes using the top command.

#include <stdlib.h>
#include <stdio.h>

int main() {
while (1) {

void* mem = malloc(sizeof(char));
}
return 0;

}

#include <stdlib.h>
#include <stdio.h>

int main() {
while (1) {

void* mem = malloc(sizeof(char));
free(mem);

}
return 0;

}

Memory Leak Vulnerability

• Each allocated memory must be deallocated.
• In C, the pointers pointing to a memory location that has been freed,

called dangling pointers. We must set those dangling pointers
to NULL, after de-allocating memory; assigning NULL value means
pointer is not pointing to any memory location.

Memory Leak Vulnerability

• Java uses managed memory, so the only way you can allocate
memory is by using the new operator, and the only way you can
deallocate memory is by relying on the garbage collector.
• You can optionally call System.gc() to ask for permission to run the

garbage collector. However, the Java Runtime makes the final decision about
when to run the garbage collection process.

• If two objects are referencing to same memory and one of the object
is dereferenced, garbage collector will not free the memory because
another object is still referencing that memory so if you want that
memory to be freed, you must dereference all the objects which are
referencing the memory.

Memory Leak Vulnerability: Example 2
#include <stdio.h>
#include <stdlib.h>

int main(void) {
int *p1,*p2;
p1 = (int *)malloc(2);
p2 = (int *)malloc(2);
p1=p2;
p2[0]=1;
p2[1]=2;
free(p2);
if(p1 != NULL){

printf(”p1[0]= %d\n",p1[0]);
}
if(p2 != NULL){

printf(”p2[0]= %d\n",p2[0]);
}
p2=NULL;
if(p1 != NULL){

printf(”p1[0]= %d\n",p1[0]);
}

}

Memory Leak Vulnerability: Example 3
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

int main(void) {
int *p1,*p2;
bool c1=false;
p1 = (int *)malloc(2);
p2 = (int *)malloc(2);
p1=p2;
p2[0]=1;
p2[1]=2;
if(c1){

free(p2);
}
if(p1 != NULL){

printf(”p1[0]= %d\n",p1[0]);
}
if(p2 != NULL){

printf(”p2[0]= %d\n",p2[0]);
}
p2=NULL;
if(p1 != NULL){

printf(”p1[0]= %d\n",p1[0]);
}

}

Memory Leak Vulnerability: Example 4

• The following C function does not close the file handle it opens if an
error occurs. If the process is long-lived, the process can run out of
file handles.

int decodeFile(char *fName) {
char buf[BUF_SZ];
FILE *f = fopen(fName, "r");
if (!f) {

printf("cannot open %s\n", fName);
return DECODE_FAIL;

} else {
while (fgets(buf, BUF_SZ, f)) {

if (!checkChecksum(buf)) {
return DECODE_FAIL;

} else {
decodeBlock(buf);

}
}

}
fclose(f);

return DECODE_SUCCESS;
}

Allocates some resources

Frees allocated resources

Resources leak

Memory Leak Vulnerability in Linux Kernel
static int node_probe(...) {

struct firedtv *fdtv;

fdtv = kzalloc(sizeof(*fdtv), GFP_KERNEL);
if (!fdtv)

return -ENOMEM;

/* Some initializations and other interesting code */

name_len = fw_csr_string(unit->directory, CSR_MODEL, name, sizeof(name));
if (name_len < 0) {

return name_len;
}

/* Some other interesting code */

fail_free:
kfree(fdtv);

return err;
} https://github.com/torvalds/linux/commit/b28e32798c78a346788d412f1958f36bb760ec03

drivers/media/firewire/firedtv-fw.c

Memory Allocation (fdtv)

Memory leak – does not free allocated memory (fdtv)

Memory Deallocation (fdtv)

Memory Leak in Java?

• Run the following Java class and note the memory consumption using
the top command:
• https://gist.github.com/atamrawi/eef1a586319660f1d38cecb466d3869b

• You can read more about how to craft a Java program that has a
memory leak vulnerability:
• https://stackoverflow.com/questions/6470651/how-to-create-a-memory-

leak-in-java

https://stackoverflow.com/questions/6470651/how-to-create-a-memory-leak-in-java

Use-After-Free Vulnerability*

• Use-After-Free (UAF) is a vulnerability related to incorrect use of
dynamic memory during program operation. If after freeing a
memory location, a program does not clear the pointer to that
memory, an attacker can use the error to hack the program.
• UAF vulnerabilities stem from the mechanism of dynamic memory

allocation. Unlike the stack, dynamic memory (also known as the
heap) is designed to store large amounts of data.
• Programmers can allocate blocks of arbitrary size in it, which tasks

within a program can then either modify or free and return to the
heap for subsequent use by other tasks in the same program.

*https://encyclopedia.kaspersky.com/glossary/use-after-free/

How UAF occurs?

• Because dynamic memory is reallocated repeatedly, programs need to
check constantly which sections of the heap are free and which are
occupied. UAF bugs arise when programs do not manage these headers
properly.
• Here’s how it happens:

• Pointers in a program refer to data sets in dynamic memory.
• If a data set is deleted or moved to another block but the pointer, instead of being

cleared (set to null), continues to refer to the now-freed memory, the result is a
dangling pointer.

• If the program then allocates this same chunk of memory to another object (for
example, data entered by an attacker), the dangling pointer will now reference this
new data set.

• In other words, UAF vulnerabilities allow for code substitution.

How UAF occurs?

• Potential consequences of UAF exploitation include:
• Data corruption,
• Program crashes,
• Arbitrary code execution.

• Exploiting UAFs:
• An attacker can use UAFs to pass arbitrary code — or a reference to it — to a

program and navigate to the beginning of the code by using a dangling
pointer. In this way, execution of the malicious code can allow
the cybercriminal to gain control over a victim’s system.

What is wrong with this code?
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv) {
char *pointer = NULL;
int abort = 0;
pointer = (char *) malloc(sizeof(char) * 100);
printf("Please enter a sentence (up to 100 characters): ");
fgets(pointer, 100, stdin);
if(pointer != NULL) {

abort = 1;
free(pointer);
printf("Memory at [%p] has been freed!\n", &pointer);

}
if(abort) {

printf("&pointer= %p\n", &pointer);
printf("*pointer= %s\n", pointer);

}
}

Can we log-in without
a password?

https://exploit.education/protostar/heap-two/

https://exploit.education/protostar/heap-two/

32 bytes

Reads at most 128
characters from stdin

auth command

reset command

service command

login command

Allocates memory into heap for authO

Frees memory from heap pointed by auth

Allocated null-terminated memory block
duplicate to passed string into heap

Check the auth value

Fills memory with NULLs to avoid
accidental login

4 bytes

https://exploit.education/protostar/heap-two/

https://youtu.be/ZHgh
wsTRyzQ

auth

Free Blocks

service

After auth Command

auth

HEAP

Free Blocks

service

32 bytes 4 bytes

HEAP

After reset Command

auth

HEAP

Free Blocks

service

32 bytes 4 bytes

After service Command

auth

HEAP

Free Blocks

service

32 bytes 4 bytesAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

https://exploit.education/protostar/heap-two/

https://youtu.be/ZHgh
wsTRyzQ

Double Free Vulnerability

• Like UAF vulnerabilities, when a program calls free twice with the
same argument, the program's memory management data structures
become corrupted.
• This corruption can cause the program to crash or, in some

circumstances, cause later second calls to malloc to return the same
pointer.
• If malloc returns the same value twice and the program later gives

the attacker control over the data that is written into this doubly-
allocated memory, the program becomes vulnerable to a buffer
overflow attack.

Null Pointer Dereference

• A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is NULL,
typically causing a crash or exit.
• NULL pointer dereferences usually result in the failure of the process

unless exception handling is available and implemented. Even when
exception handling is being used, it can still be very difficult to return
the software to a safe state of operation.
• In rare circumstances, when NULL is equivalent to the 0x0 memory

address and privileged code can access it, then writing or reading
memory is possible, which may lead to code execution.

What is wrong with this code?
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char** argv) {
char *pointer = NULL;
int abort = 0;
pointer = (char *) malloc(sizeof(char) * 100);
printf("Please enter a sentence (up to 100 characters): ");
fgets(pointer, 100, stdin);
if(pointer != NULL) {

abort = 1;
free(pointer);
printf("Memory at [%p] has been freed!\n", &pointer);
pointer = NULL;

}
if(abort) {

printf("&pointer= %p\n", &pointer[0]);
printf("*pointer= %s\n", pointer);

}
}

Points to 0x0
memory address

