
Ahmed Tamrawi

COMP 4384 Software Security
Module 8: Web Security

Acknowledgment Notice
Part of the slides are based on content from CMSC414 course by Dave Levin, LiveOverFlow Youtube Channel, PortSwigget.net, and many other online resources

The World Wide Web

• The World Wide Web (WWW) has
completely changed the way people use
computers.
• We use the web for banking, shopping,

education, communicating, news,
entertainment, collaborating, and social
networking.
• But as the web has evolved to provide a

more sophisticated, dynamic user
experience, entire new classes of security
and privacy concerns have emerged.

April 30, 1993: CERN scientist Tim Berners-Lee declares
the World Wide Web public domain

How browsers work: behind the scenes of modern web browsers: http://www.html5rocks.com/en/tutorials/internals/howbrowserswork

Web Resources
HTML documents, PDF
files, images, or some
other type of content

URI
Uniform Resource

Identifier specifies the
location of a web resource

Browser Components

Rendering Engine Basic Flow

The DOM provides a structured representation of the
document (a tree) and it denes a way that the structure can
be accessed from programs so that they can change the
document structure, style and content.

Hypertext Markup Language (HTML) is the standard markup
language for documents designed to be displayed in a web

browser. It can be assisted by technologies such as Cascading
Style Sheets (CSS) and scripting languages such as JavaScript.

Web browsers receive HTML documents from a web server or
from local storage and render the documents into web pages.

HTML describes the structure of a web page semantically and
originally included cues for the appearance of the document.

HTML elements are delineated by tags, written using angle
brackets. Tags such as and <input/> directly

introduce content into the page.

HTML can embed programs written in a scripting language such
as JavaScript, which affects the behavior and content of web pages.

Inclusion of CSS defines the look and layout of content.

Cascading Style Sheets (CSS) is a style sheet language used for
describing the presentation of a document written in a markup

language such as HTML. CSS is a cornerstone technology of
the World Wide Web, alongside HTML and JavaScript.

Static Content

• If a web page provides only fixed images, text, and even fields of a
form, it is missing functionality that many users and web site owners
want. Such pages are static.
• Pages do not change after being delivered to the user—so there are no

animations, no changes due to mouse-over events, and no videos.

Dynamic Content

• In contrast, pages featuring dynamic content can change in response
to user interaction or other conditions, such as the passage of time.
To provide these features, additional web languages called scripting
languages were introduced.
• A scripting language is a programming language that provides instructions to

be executed inside an application (like a web browser), rather than being
executed directly by a computer.

• JavaScript is a scripting or programming language that
allows you to implement complex features on web pages

• Every time a web page does more than just sit there and
display static information for you to look at — displaying
timely content updates, interactive maps, animated 2D/3D
graphics, scrolling video jukeboxes, etc.

Client-Side Scripting Languages

Server-Side Scripting

• In contrast to scripting languages, such as Javascript, that are
executed on the client side in a user’s web browser, it is useful to
utilize code on the server side that is executed before HTML is
delivered to the user.
• These server-side scripting languages allow servers to perform actions

such as accessing databases and modifying the content of a site based
on user input or personal browser settings.
• They can also provide a common look and feel to a web site by using

scripts that generate a common banner and toolbar on all the pages
of a web site.

Server-Side Scripting

Server-Side Scripting

• Server-side code, as its name suggests, is executed on the server, and
because of this only the result of this code’s execution, not the source,
is visible to the client.
• Typical server-side code performs operations and eventually

generates standard HTML code that will be sent as a response to the
client’s request.
• Server-side code also has direct access to GET and POST variables

specified by the user.

Server-Side Scripting: PHP

• There are several server-side scripting languages, which are used
primarily to create dynamic web content. One of the more widely
used general-purpose server-side scripting languages is PHP.
• PHP is a hypertext preprocessing language that allows web servers to

use scripts to dynamically create HTML files on-the-fly for users,
based on any number of factors, such as time of day, user-provided
inputs, or database queries.
• PHP code is embedded in a PHP or HTML file stored at a web server,

which then runs it through a PHP processing module in the web
server software to create an output HTML file that is sent to a user.

What is the HTML DOM?

Find more on: https://www.w3schools.com/whatis/whatis_htmldom.asp

The DOM provides a structured representation of the
document (a tree) and it defines a way that the structure

can be accessed from programs so that they can change the
document structure, style and content.

Accessing the DOM

• Example 1: displays an alert message by using the alert function
from the window object:

<body onload="window.alert('welcome to my page!');">
• Example 2: displays all the cookies associated with the current

document in an alert message:
<body onload="window.alert(document.cookie);">

• Example 3: sends all the cookies associated with the current
document to the evil.com server if x points to a non-existant image

Data Formats: eXtensible Markup Language
(XML)

• A hierarchy of tags
• Has a single root
• Tags have attributes
• Human readable file format
• Structured and can be traversed

programmatically
• Common format for web end points

that are APIs for mobile or other web
services

Data Formats: JavaScript Object Notation
(JSON)
• Becoming more popular over XML
• Smaller file sizes
• Concept of maps and arrays
• Corresponds more directly to

programming language primitives

Third Party Browser Plugins

• Java Applets, Flash, Silverlight, ActiveX, etc.
• Requires browser to install a plugin to run
• Typically fully featured languages
• May be able to escape browser sandbox
• Usually have permissions associated with applications
• Historically a rich target for hackers

Accessing Websites

IP: 123.456.66.789IP: 22.55.64.666

Domain Name: example.com

The process begins with the browser determining the
IP address of the web server that is hosting the
website of interest.

An IP address is the unique identifier assigned to
every device on the Internet, including the client
computer for our web browser.

Domain names were developed to make
identification of web sites easier.

Rather than ask for a web site at the server identified by something like 128.34.66.120, we can ask for a web
site at www.example.com and let the domain name system (DNS) resolve it.

http://www.example.com/

A web browser identifies a web site with a Uniform Resource Locator (URL). The naming scheme, invented by Tim
Berners-Lee, allows us to refer to content on distant computers in a simple and consistent manner, which in turn

makes easy navigation of the web possible.

Accessing Websites

Start a PHP Server

Our Server Content

Our page “test.html”

The image

This is what the server returned to us
when we requested access to test.html

But how did we ask the server to get
us the contents of test.html?

We will use nc to draft a request to our server

HTTP Request

HTTP
Response

HTTP
Response
Headers

HTTP Response Content

HTTP Protocol

GET /test.html

HTTP Request

HTTP/0.9 200 OK
Date: Thu, 29 Oct 2020 10:40:12 GMT
Connection: close
Content-Type: text/html; charset=UTF-8
Content-Length: 826
<html><head><script>...

HTTP Response

Web Server
Web Browser

HTTP Response Header

HTTP Request Header

Connecting to a Web Server

Connecting to a Web Server

• Given such a URL, the web browser first
checks the local DNS cache on its system
for an entry corresponding to the domain
of the website being requested.
• If no entry is found locally, the browser queries

a DNS server to resolve the IP address of the
domain name.

• After the IP address of the web server is
resolved, the client makes a TCP
connection to a specified port on the web
server.

HTTP Request

• After establishing a TCP connection to the
web server, the browser sends requests,
known as HTTP requests, to that web server,
encapsulated in the data portion of a TCP
packet.

• An HTTP request specifies the file the
browser wishes to receive from the web
server.

• HTTP requests typically begin with a request
line, usually consisting of a command such as
GET or POST. Next is the headers section that
identifies additional information.

HTTP Protocol

• Text Based Protocol
• Comprised of Headers and Body
• One Response per Request
• Terminated by “\r\n\r\n”

• Stateless by Design
• A request or response does not have

knowledge of previous requests or
responses

• Web Client Interprets Response
• Typical Client: Web Browser
• Typical Content: HTML, CSS, JavaScript

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*
Accept-Language: en-US,en;q=0.5
Connection: close

HTTP Request

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: SESSION=gWnMNkb2LaL4BXidtMRIpHgnJA4g;
Connection: close
Content-Length: 49

<!doctype html><html><h1>Hello World!</h1></html>

HTTP Response

HTTP Headers

Reference: https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Standard HTTP Headers are an evolving set of set of key-value
entries in an HTTP request and response and their effect
depends on support by client and server.

HTTP Headers

• Convention is to prefix uncommon or
experimental headers with “X-”
• X-Requested-With: XMLHttpRequest

• X-Do-Not-Track: 1 (or) DNT: 1

• Sometimes “X-” prefixed headers can
be used to disable security features
for compatibility reasons
• X-XSS-Protection: 0

• hints to disable XSS protection

Reference: https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

HTML Forms

• HTML includes a mechanism called forms to allow users to provide
input to a web site in the form of variables represented by name-
value pairs.
• The server can then process form variables using server-side code
• Forms can use two methods to submit data: GET and POST variables.
• When users submit a form using GET variables, the name-value pairs for the

variables are encoded directly into the URL, separated by &.
• On submitting a POST form, however, the submitted variables are included in

the HTTP request’s body.

HTTP Methods: GET Requests

• Most common HTTP request type:
• Clicking a link or typing a URL in your browser is almost always a GET request.

• Parameters are within the URL and no HTTP request body is defined.
• Multiple parameters delimited by “&”
• Example: /page?p1=a&p2=b

GET variables are recommended for operations such as
querying a database, that do not have any permanent results.

Bad for several reasons:
• SEO optimization: URL not canonical
• cache behavior (although not relevant for login)
• URL above is visible in browser navigation bar!

HTTP Methods: POST Requests

• 2nd most common HTTP request type
• Parameters are stored in request body
• Can also send GET parameters in URL

• Is POST more secure than GET?
• GET parameters are stored visibly in URL

which may also get logged
• GET is also the default request type by

most clients, which may may some
phishing style attacks easier

On submitting a POST form, however, the submitted
variables are included in the HTTP request’s body.

GET versus POST

• GET is a request for information
• can be (transparently) resent by browsers
• also may be cached, bookmarked, kept in history

• POST is an update providing information
• gives impression that input is hidden
• browsers may treat differently

• neither provide confidentiality without HTTPS!
• plain text, can be sniffed

• in practice, GET often changes state somewhere
• user searches for something, gets recorded
• user has navigated somewhere, gets recorded
• so shouldn’t think GET implies functional

When to use POST instead of GET?

• For sensitive data, always use POST
• helps with confidentiality but not enough alone

• For large data, use POST
• URLs should be short (e.g., <=2000 chars)
• longer URLs cause problems in some software

• For actions with (major) side effects use POST
• mainly correctness; many early web apps wrong

• These are general guidelines. There are sometimes more complex
technical reasons to prefer GET.

HTTP Methods: Other

• OPTIONS
• Lists the HTTP methods supported

• HEAD
• Identical to GET, but requests only HTTP headers in response

• PUT / PATCH / DELETE
• Typically use for file operations (upload / modify / delete file)

• TRACE
• Reflects the HTTP request back as a response
• Could potentially be used to reveal cookies

• CONNECT
• Request two-way communications with the requested resource. Could be used to

establish an HTTP proxy

These methods may or may not be supported by the client and server.

or TLS (Transport
Layer Security)

Maintaining Session Information

How is state managed in HTTP sessions

• HTTP is stateless: when a client sends a request, the server sends back
a response, but the server does not hold any information on previous
requests.
• Problem: in most web applications a client has to access various

pages before completing a specific task and the client state should be
kept along all those pages.
• How does the server know if two requests come from the same

browser?
• Example: the server doesn't require a user to login at each HTTP request!

Sessions and Cookies

• It is often useful for web sites to keep track of the behavior and
properties of its users.
• The HTTP protocol is stateless, however, so web sites do not

automatically retain any information about previous activity from a
web client.
• When a web client requests a new page to be loaded, it is viewed by

default as a fresh encounter by the web server.

Cookie to keep track of user’s actions

Clearing browsing data and
associated cookies

Sessions and Cookies

• A session encapsulates information about a visitor that persists
beyond the loading of a single page.
• For example, a web site that has user accounts and a shopping cart feature

would ideally keep track of its visitors, so they are not forced to
reauthenticate with each new page or keep track of item numbers to enter
later an order form.

• There are several approaches for web servers to maintain session
information for their users, including passing session information via
GET or POST variables, using a mechanism known as cookies, and
implementing server-side session variables.

Sessions and Cookies

• Session information should be considered extremely sensitive, since
it is used today to allow users to maintain a consistent identity on
sites that allow accessing bank accounts, credit card numbers, health
records, and other confidential information.
• Accompanying the concept of a session is a class of attacks known as

session hijacking—any scenario that allows an attacker to
impersonate a victim’s identity by gaining access to the user’s session
information and authenticating to a web site.

Sessions Using GET or POST via Hidden Fields

• One technique to establish user sessions is to pass session
information to the web server each time the user navigates to a new
page using GET or POST requests.
• In effect, the server generates a small segment of invisible code

capturing the user’s session information and inserts it into the page
being delivered to the client using the mechanism of hidden fields.

Backend code

Client code

Backend code

Client code

name=“price” value=“0.15”

Backend code

Client code

However, we don’t want to pass
hidden fields around all the time!

Each time the user navigates to a new page, this code
passes the user’s session information to the server
allowing it to “remember” the user’s state.

The web server then performs any necessary operations
using this information and generates the next page with
the same hidden code to continue passing the session

information.

Sessions Using GET or POST via Hidden Fields

• It is particularly susceptible to man-in-the-middle attacks,
unfortunately, since HTTP requests are unencrypted.
• An attacker gaining access to the GET or POST variables being submitted by a

user could hijack their session and assume their identity.
• In order to safely employ this method, HTTPS must be used in conjunction

with sessions implemented with GET or POST variables to protect the user
from these attacks.

• It requires careful and tedious programming effort, as all the pages
have to be dynamically generated to include this hidden field

• Using this method, session ends as soon as the browser is closed

Cookies

• Another common method of creating
user sessions uses small packets of
data, called cookies, which are sent to
the client by the web server and stored
on the client’s machine.

• When the user revisits the web site,
these cookies are returned, unchanged,
to the server, which can then
“remember” that user and access their
session information.

Read more about HTTP State Management Mechanism on: https://tools.ietf.org/html/rfc2965

Main limitation: Users may disable cookies in their browser

Cookies Provide State

• Cookies are set on a client’s system when a
server uses the Set-Cookie field in the
header of an HTTP response.

• Cookies include a key-value pair
representing the contents of the cookie
• Multiple cookies can be defined for one

site.
• If no expiration date is specified, the

cookie defaults to being deleted when the
user exits the browser.

HTTP Cookies

• Domain
• The scope of the cookie
• Default: hostname
• If a domain is specified, subdomains are always included

• Path
• Only send cookie if path begins with the given value
• Default: all paths

• Expires
• When the cookie should be deleted
• Default: on browser close

• Secure
• If set, only send cookies over SSL (HTTPS)

• HttpOnly
• If set, do not allow scripts (ex: JavaScript) to access cookie

Set-Cookie: <name>=<value>
[; <Max-Age>=<age>]
[; expires=<date>]
[; domain=<domain_name>]
[; path=<some_path>]
[; secure]
[; HttpOnly]

Response

Cookie: <name>=<value>[;

Request

How Cookies Support Sessions?

• To let the server access previously set cookies, the client
automatically includes any cookies set for a particular domain and
path in the Cookie field of any HTTP request header being sent to that
server.

• Because this information is returned to the server with every HTTP
request, there is no need for web servers to handle cookies locally—
cookie information can be interpreted and manipulated on a per-
request basis, as with GET and POST variables.

How Cookies Support Sessions?

• Notably, a user’s cookies are accessible via the DOM, and therefore can be
accessed by many scripting languages.
• The cookie specification is built directly into the HTTP protocol, which is

interpreted by the browser.
• As a result, the mechanism for setting and accessing cookies is different for

each scripting language.
• All these properties of cookies are managed by the browser, rather than

the operating system.
• Each browser sets aside space for storing this information and allows the

possibility of a user having separate sets of cookie information for each of
multiple browsers.

Cookie to keep track of user’s actions

Clearing browsing data and
associated cookies

Cookies

• More precisely, if an HTTP client issues a request to a domain, and
the response contains a valid cookie, the client should apply the
cookie to subsequent requests to the same domain (subject to other
constraints). We say the request domain is the origin domain of the
cookie. A cookie is always applicable to its origin domain.

Note: The port number doesn't matter here; the scheme(http/https) doesn't matter either (unless cookie's Secure attribute is set).
See (http://bayou.io/draft/cookie.domain.html) for more info.

http://bayou.io/draft/cookie.domain.html

Cookie Domain

• A cookie can have the "Domain" attribute set to a valid domain name,
which we call the cover domain of the cookie. If the "Domain"
attribute is not set, we say the cover domain is null.
• If cover domain is null, a cookie is only applicable to its origin

domain. For example, a cookie from www.cats.com is not applicable
to cats.com, and vice versa, if cover domain is null.
• If cover domain is set, a cookie is applicable to the cover domain and

all its subdomains.

Cookie Domain

• The cover domain is cats.com, therefore the cookie is applicable
to cats.com, x.cats.com, x.y.cats.com, etc.

• The cover domain must cover the origin domain, that is, the cover
domain must be the same as, or a parent of, the origin domain. In the
example above, the origin domain is foo.www.cats.com, therefore
the cover domain could only be set
to foo.www.cats.com, www.cats.com, or cats.com.

Security Concerns for Cookies

• By default, cookies are transmitted unencrypted
using HTTP, and as such are subject to the same
man-in-the-middle attacks as all HTTP requests.

• To remedy this weakness, a secure flag, which
requires that a given cookie be transmitted
using HTTPS, can be set.

• Recently, situations have been disclosed where
web sites using HTTPS to encrypt regular data
transfer failed to properly set the secure cookie
flag, however, resulting in the possibility of
session hijacking.

Security Concerns for Cookies

• A sensitive cookie can be further protected by encrypting its value
and by using an opaque name. Thus, only the web server can decrypt
the cookie and malware that accesses the cookie cannot extract
useful information from it.

• The expiration date built into cookies is a good preventive measure,
but it is still recommended that users erase their cookies on a regular
basis to prevent such attacks.

Security Concerns for Cookies

• Finally, cookies can set an HTTP-Only flag. If enabled, scripting
languages are prevented from accessing or manipulating cookies
stored on the client’s machine.
• This does not stop the use of cookies themselves, however, because the

browser will still automatically include any cookies stored locally for a given
domain in HTTP requests to that domain.

• However, the user still can modify cookies through browser plugins.

• Nonetheless, preventing scripting languages from accessing cookies
significantly mitigates the risk of cross-site scripting (XSS) attacks.

Server-Side Sessions

• A final method of maintaining session information is to devote space on
the web server for keeping user information. This model reduces several
risks for the user, because compromise of the user’s system no longer
necessarily results in compromise of their web sessions.
• In order to associate a given session with a particular client, servers

typically use a session ID or session token — a unique identifier that
corresponds to a user’s session.
• The server then employs one of the two previous methods (GET/POST

variables or cookies) to store this token on the client side.
• When the client navigates to a new page, it transfers this token back to the

server, which can then retrieve that client’s session information

Same-Origin Policy (SOP)

• The problem: Assume you are logged into Facebook and visit a
malicious website in another browser tab. JavaScript on that website
could do anything to your Facebook account that you can do through
accessing the DOM associated with the Facebook page.

• Part of the solution:
• SOP restricts how a document or script loaded from one origin (e.g.

www.evil.com) can interact with a resource from another origin (e.g.
www.bank.com).
• Each origin is kept isolated (sandboxed) from the rest of the web.
• SOP is very important when it comes to protecting HTTP cookies (used to

maintain authenticated user sessions)

blog.net

XHR

XHR

document, cookies

TAG

TAG

JS

Tags

<iframe src=“https://bank.com/fn?param=1”>
<script src=“https://bank.com/fn?param=1”>

Auto-posting Forms
<body onload="document.forms[0].submit()">
<form method="POST" action=“https://bank.com/fn”>

<input type="hidden" name="sp" value="8109"/>
</form>

Same-Origin Policy (SOP)

• An origin is defined by the scheme (aka protocol), the host, and the
port of a URL

• The SOP restricts the access to the DOM of a web resource to only
scripts loaded from the same origin.

• Cross-origin access can be allowed using CORS (Cross Origin Resource
Sharing).
• Mechanism that allows many resources (e.g., fonts, JavaScript, etc.) on a web

page to be requested from another domain outside the domain from which
the resource originated

• Cross-site HTTP requests initiated from within scripts are subject to
SOP restriction for security reasons.

Same-Origin Policy (SOP)

What Could go Wrong?

• Browsers need to confine Javascript’s power.

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page.
• Read keystroked typed by the user whole on a bank.com web page.
• Read cookies belonging to bank.com.

Attacks on Clients:

Session Hijacking

• Session hijacking (aka cookie hijacking) is
the exploitation of a valid computer session
to gain unauthorized access to information
or services in a computer system.

• Such an attack can be especially damaging if
strong authentication is used at the
beginning of an HTTP session but
communication between the client and
server is unencrypted after that.

Session Hijacking

• Sessions could be compromised in
different ways; the most common are:
• Cookie theft vulnerabilities:

• Packet sniffing of unencrypted traffic.
• Predictable session tokens.

• DNS cache poisoning.

• Site has mixed HTTPS/HTTP pages, and
session tokens are sent over HTTP.

• Cross-site scripting (XSS) vulnerabilities.
• Side channels and/or memory leakage.

• Cross-site request forgery (CSRF)
vulnerabilities

Packet Sniffing XSS Attack

Session Hijacking

• Performing an HTTP session hijacking
attack not only requires that the
attacker intercept communication
between a web client and web server,
but also requires that the attacker
impersonate whatever measures are
being used to maintain that HTTP
session.

Defenses Against HTTP Session Hijacking

• If the attacker uses a packet sniffer, then he might be able to discover
any session IDs used used by a victim. Likewise, he might also be able
to mimic session tokens encoded in cookies or GET/POST variables.

• Given this information, an attacker can hijack an HTTP session. To
protect against packet sniffers and TCP session hijacking:
• Use HTTPS for the entire life of the session.
• Use HTTP-ONLY and Secure cookies.

Defenses Against HTTP Session Hijacking

• If an attacker can reconstruct a valid server-side session token, or
mimic a client-side token, then he can assume the identity of the
legitimate user with that token.
• To prevent session hijacking when sessions are established using client-side

tokens, it is important for servers to encrypt such session tokens.
• Likewise, server-side session IDs should be created in ways that are difficult to

predict, for instance, by using pseudo-random numbers.

https://github.com/vanilla/vanilla/issues/1163

Defenses Against HTTP Session Hijacking

• In addition, it is also important for servers to defend against possible
replay attacks, which are attacks based on reusing old credentials to
perform false authentications or authorizations.

• In this case, a replay attack would involve an attacker using an old,
previously valid token to perform an attempted HTTP session
hijacking attack.
• Incorporating random numbers into client-side tokens, as well as server-side

tokens, and by changing session tokens frequently, so that tokens expire at a
reasonable rate.
• Associate a session token with the IP addresses of the client so that a session

token is considered valid only when connecting from the same IP address.

Trade-Offs

• Note that with server-side session tokens, since the client only stores
the session ID, there is little long-term risk of compromise at the
client end. Moreover, server-side sessions are terminated when the
client closes the browser.

• Thus, server-side session techniques that use random session tokens
that are frequently changed can result in a reduced risk for HTTP
session hijacking on the user’s end.

• Nevertheless, the space and processing required of the server to track
all its users’ sessions may make this method impractical in some
cases, Thus, there may be a trade-off in this case between security
and efficiency.

Attacks on Clients: Phishing

Phishing

• In a phishing attack, an attacker creates a dummy web site that appears to
be identical to a legitimate website in order to trick users into divulging
private information.
• When a user visits the fake site, they are presented with a page that

appears to be an authentication page for the legitimate site.
• On submitting their username and password, however, the malicious site

simply records the user’s now-stolen credentials, and hides its activity from
the user, either by redirecting them to the real site or presenting a notice
that the site is “down for maintenance.”
• Most phishing attacks target the financial services industry, most likely due

to the high value of phished information related to financial transactions.

Phishing

Phishing

• Phishing typically relies on the fact that the user will not examine the
fraudulent page carefully, since it is often difficult to recreate pages
exactly.

• Unless the URL is falsified as a result of DNS cache poisoning, a simple
glance at the address bar could provide clues that the site is a fake.

• These attacks are often facilitated by spammers who send out mass
emails that claim to be from legitimate financial institutions, but
which really contain links to phishing pages.

Phishing

• In addition, viewing the source code of a web site carefully could give
additional evidence of fraud.

• One of the most popular phishing prevention techniques used by
browsers is regularly updated blacklists of known phishing sites.
• If a user navigates to a site on the list, the browser alerts the user of the

danger.

URL Obfuscation

• A popular technique used by phishers is to somehow disguise the URL
of the fake site, so as not to alert a victim of any wrongdoing.

• For instance, a simple misspelling of a URL might not be noticed by a
casual user.

• Likewise, spam emails that are written in HTML are often displayed in
formatted fashion by most email clients.

• Another trick phishers use is to include a hyperlink in the email that
appears real but links to a phishing site.

URL Obfuscation

• One variation of this URL obfuscation method is known as the
Unicode attack, more formally known as a homograph attack.
• Unicode characters from international alphabets may be used in URLs in order

to support sites with domain names in multiple languages, so it is possible for
phishers to register domain names that are very similar to existing legitimate
sites by using these international characters.

• Even more dangerous, however, is the fact that there are many
characters that have different Unicode values but are rendered
identically by the browser.

URL Obfuscation

• A famous example involved a phishing site that registered the domain
www.paypal.com using the Cyrillic letter p (Unicode Value #0440),
instead of the ASCII letter p (Unicode Value #0070).

• When visitors were directed to this page through spam emails, no
examination of the URL would reveal any malicious activity, because
the browser rendered the characters identically.

URL Obfuscation

• This attack could be prevented by disabling international characters in
the address bar, but this would prevent navigation to sites with
international characters in their domain names.

• Alternately, the browser could provide a visual cue when non-ASCII
characters are being used (different color), to prevent confusion
between visually similar characters.

See real example on: https://www.tenforums.com/tutorials/104760-enable-disable-idn-punycode-firefox-address-bar-windows.html

Attacks on Clients: Click-Jacking

Click-Jacking

• Click-jacking is a form of web site exploitation where a user’s mouse
click on a page is used in a way that was not intended by the user.

Click-Jacking Defenses

• These risks collectively demonstrate the additional safety provided by
changing browser settings to prevent scripts from running without the
user granting explicit permission.

• For example, the NoScript plugin for Firefox allows users to maintain a
whitelist of trusted host names for which scripts are allowed
execution.

Click-Jacking Defenses

• In-context defenses are a set of techniques to ensure context
integrity for user actions.
• Let the website indicate their sensitive UIs and let browsers enforce

restrictions when users act on other UIs.

Click-Jacking Defenses

• Ensure visual integrity of pointer:
• Remove cursor customization reduces attack success: 43% to 16%.
• Lightbox effect around target on pointer entry.

Click-Jacking Defenses

• Enforcing temporal integrity:
• UI delay after visual changes on target or pointer that

invalidate clicks for a few milliseconds.
• Pointer re-entry: after visual changes on target

invalidate clicks until pointer re-enters target.

Attacks on Clients: Privacy Attacks

Privacy Attacks

• As the Internet has evolved to be a universal source of information,
user privacy has become a key consideration.

• Millions of people store personal information on web sites, such as
social networking sites, and this information often becomes publicly
available without the user’s knowledge or consent.
• It is important for users to be aware of how a web site will use their

information before giving it, and to generally be wary of giving private
information to an untrusted web site.

• Often, illegitimate web sites attempt to gather private information
from users, which is then sold to advertisers, spammers and identity
thieves.

Privacy or Information Leakage

• Information can be learned in a variety of ways:
• Direct exposure

• Information displayed on a public web page or may be an inadvertent on part of user.

• Indirect and/or inferred exposure
• Programming mistakes showing wrong info.

• Display of consequences of info

• Leakage through side-channel attacks (timing attacks)
• Offline mechanisms

• Physical theft.

• Social engineering.

The Privacy Crisis

• We can’t stop people intentionally
sharing personal information, but it is
our job to ensure:
• Good Policy

• advise users about it and its impacts
• Good Programming

• don’t leak data accidentally
• Good Design

• don’t force users to leak data
• Good UX/UI

• so users understand what they’re doing

• But it is better that data handling
practices are defined and explained
clearly in privacy policies for end users.

Privacy Attacks: Search Data

• Google saves your web search history forever
• It gives users the option to turn this off; then searches are partially

“anonymized” after 18 months.
• https://myactivity.google.com/myactivity/

• Anonymization of data is very difficult or impossible in general: many
examples of linkage attacks have recovered identities.

Privacy Attacks: Voice Control

Privacy Attacks: An Amazing Mind Reader

https://www.youtube.com/watch?v=F7pYHN9iC9I

Privacy Attacks: Adware vs Spyware

Privacy Attacks: Third-Party Cookies

• Cookies create several privacy concerns.

• For instance, since web servers set cookies
through HTTP responses, if a website has an
embedded image hosted on another site,
the site hosting the image can set a cookie
on the user’s machine.

• Cookies that are set this way are known as
third-party cookies.

• These cookies are used by advertisers to
track users across multiple web sites and
gather usage statistics.

Privacy Attacks: Third-Party Cookies

• Some consider this monitoring of a user’s
habits to be an invasion of privacy, since
it is done without the user’s knowledge or
consent.

• Blocking third-party cookies does not
automatically defend against tracking
across different websites.
• Indeed, an advertising network may have

image servers hosting multiple domain
names from participating websites

Protecting Privacy

• Modern browsers include several features designed to protect user
privacy.
• Browsers now include the ability to specify policies regulating how long

cookies are stored and whether third-party cookies are allowed.
• Private data (user’s history and temporarily cached files) can be set to be

deleted automatically.
• Proxy servers can be used (VPN)
• Use of “private browsing” mode preventing the storage of any cookies and

the recording of any browsing history while in this mode.

Privacy by Design

• Privacy by design (PbD) is a methodology
introduced by the Information and
Privacy Commissioner of Ontario in the
1990s. It has 7 foundational principles.

• This process is encouraged in the EU
General Data Protection Regulation
(GDPR), which came into law in 2018.

Basic Strategy for Sensitive Data Handling

• Define your policy and devise requirements.

• Label the data parts at least informally.

• Sanitize to remove sensitive parts and/or meta-data.

• Follow the data through the app and check questions for data flow:
• is the data stored as plain text long term (backups)?
• is the data transmitted as plain text?
• are encryption algorithms strong enough?
• are browser security directives/headers set appropriately?

OWASP Advice for Sensitive Data*

• Identify what data collected are sensitive and classify them. This can
depend on the type of application, privacy laws, regulatory requirements
or business needs.
• Apply access controls on these data as per the classification.
• Don’t store sensitive data unnecessarily. Discard it as soon as possible.
• Make sure to encrypt all sensitive data at rest and ensure that all

encryption algorithms are latest, and strong, and that the corresponding
protocols and keys are in place. Keys should be stored safely.
• Disable caching for any response that contains sensitive data.
• Store passwords using strong, adaptive and salted hashing functions.
• Encrypt all data in transit with secure protocols and enforce encryption

using directives like HTTP Strict Transport Security (HSTS).

* https://deepsource.io/blog/owasp-top-ten-sensitive-data-exposure/

Regulations

• If you manipulate or store user data, you have legal responsibilities for
managing it properly.
• DPA UK Data Protection Act

• Organizations must register and data must be kept “safe and secure”.
• GDPR came into EU state laws 2018.

• Breaches notified, rights of erasure, data portability.

• Finance: Payment Card Industry Data Security Standard (PCI-DSS)
• Requirements for anyone who processes card data.
• Larger merchants are audited.

• Health: HIPPA (in the US)
• Given the scale and frequency of data loss, regulation/enforcement

increasing. (Expect security companies to push for and profit from this)

Attacks on Clients: Cross-Site Scripting

Cross-Site Scripting (XSS)

• One of the most common web security vulnerabilities today is from
cross-site scripting (XSS) attacks.

• These are attacks where improper input validation on a web site
allows malicious users to inject code into the web site, which later is
executed in a visitor’s browser.

• To further understand this vulnerability, we study three basic types of
XSS attacks:
• Stored/persistent XSS
• Reflected/non-persistent XSS
• DOM-based XSS

Stored/Persistent XSS

• A Persistent XSS attack is possible when a website or web application
stores user input and later serves it to other users.

• An application is vulnerable if it does not validate user input before
storing content and embedding it into HTML response pages.

• Attackers use vulnerable web pages to inject malicious code and have
it stored on the web server for later use. The payload is automatically
served to users who browse web pages and executed in their context.

• Thus, the victims even do not have to to click on a malicious link to
run the payload. All they have to do is visit a vulnerable web page.

Stored/Persistent XSS

• As in the case of most web-based attacks, exploiting Persistent XSS
vulnerabilities requires some research.
• Certain types of websites are more prone to such vulnerabilities because

they allow users to share content. Such sites are starting points for such
research.
• Forums or message boards
• Blogging websites
• Social networks
• Web-based collaboration tools
• Web-based CRM/ERP systems
• Web-based email server consoles and web-based email clients
• Any sites with visitor comment fields

Stored/Persistent XSS

• After an attacker identifies a website as potentially vulnerable, they
try to inject script code into data stored on the server.

• Then, they access the web pages that serve back the payload and
check if the script executes.

• Attackers usually deliver malicious code manually but there are cases
when they build tools that inject scripts automatically.

• Persistent XSS does not require a social engineering phase. Victims of
this attack do not need to be lured into clicking on a crafted link.
• However, when exploiting Persistent XSS vulnerabilities, attackers often try to

get more victims to visit the vulnerable web page, so they send spam
messages or promote the page on social networks.

1. The attacker uses one of the website's forms to insert a malicious string into the website's database.
2. The victim requests a page from the website.
3. The website includes the malicious string from the database in the response and sends it to the victim.
4. The victim's browser executes the malicious script inside the response, sending the victim's cookies to the attacker's server.

https://dsb.victorzhou.com/

XSS Live Demo from Google*

* https://www.google.com/about/appsecurity/learning/xss/index.html

Google XSS Game*

* https://xss-game.appspot.com/

Reflected/Non-persistent XSS

• Most real-life examples of cross-site scripting do not allow the
injected code to persist past the attacker’s session.

• The reflected/non-persistent XSS condition is met when a website or
web application employs user input in HTML pages returned to the
user’s browser, without validating the input first.

• Malicious code is executed by the victim’s browser, and the payload is
not stored anywhere; instead, it is returned as part of the response
HTML that the server sends.

• Therefore, the victim is being tricked into sending malicious code to
the vulnerable web application, which is then reflected to the victim’s
browser where the XSS payload executes.

1. The attacker crafts a URL containing a malicious string and sends it to the victim.
2. The victim is tricked by the attacker into requesting the URL from the website.
3. The website includes the malicious string from the URL in the response.
4. The victim's browser executes the malicious script inside the response, sending the victim's cookies to the attacker's server.

XSS Live Demo from Google*

* https://www.google.com/about/appsecurity/learning/xss/index.html

DOM XSS

• DOM XSS stands for Document Object Model-based Cross-site
Scripting.

• A DOM-based XSS attack is possible if the web application writes data
to the Document Object Model without proper sanitization.

• The attacker can manipulate this data to include XSS content on the
web page, for example, malicious JavaScript code.

• The Document Object Model is a convention used to represent and
work with objects in an HTML document. All HTML documents have
an associated DOM that consists of objects, which represent
document properties from the point of view of the browser.

DOM XSS

• When a client-side script is executed, it can use the DOM of the HTML
page where the script runs. The script can access various properties
of the page and change their values.

• An attacker may use several DOM objects to create a Cross-site
Scripting attack. The most popular objects from this perspective are
document.url, document.location, and document.referrer.

• Potential consequences of DOM-based XSS vulnerabilities are
classified in the OWASP Top 10 2017 document as moderate.

1.The attacker crafts a URL containing a malicious string and sends it to the victim.
2.The victim is tricked by the attacker into requesting the URL from the website.
3.The website receives the request but does not include the malicious string in the response.
4.The victim's browser executes the legitimate script inside the response, causing the malicious script to be inserted into the page.
5.The victim's browser executes the malicious script inserted into the page, sending the victim's cookies to the attacker's server.

XSS Live Demo from Google*

* https://www.google.com/about/appsecurity/learning/xss/index.html

Preventing XSS

• Recall that an XSS attack is a type of code injection: user input is
mistakenly interpreted as malicious program code.

• In order to prevent this type of code injection, secure input handling
is needed.

• For a web developer, there are two fundamentally different ways of
performing secure input handling:
• Encoding, which escapes the user input so that the browser interprets it only

as data, not as code.
• Validation, which filters the user input so that the browser interprets it as

code without malicious commands.

Preventing XSS

• While these are fundamentally different methods of preventing XSS,
they share several common features that are important to understand
when using either of them:
• Context: Secure input handling needs to be performed differently depending

on where in a page the user input is inserted.
• Inbound/outbound: Secure input handling can be performed either when

your website receives the input (inbound) or right before your website inserts
the input into a page (outbound).
• Client/server: Secure input handling can be performed either on the client-

side or on the server-side, both of which are needed under different
circumstances.

Input Handling Contexts

• There are many contexts in a web page where user input might be
inserted. For each of these, specific rules must be followed so that
the user input cannot break out of its context and be interpreted as
malicious code.

Secure input handling always needs to be tailored to the
context where the user input will be inserted.

Inbound/Outbound Input Handling

• User input can be inserted into several contexts in a page. There is no easy
way of determining when user input arrives which context it will eventually
be inserted into, and the same user input often needs to be inserted into
different contexts.
• Relying on inbound input handling to prevent XSS is thus a very brittle

solution that will be prone to errors.
• Thus, outbound input handling should be your primary line of defense

against XSS.
• In most modern web applications, user input is handled by both server-side

code and client-side code. In order to protect against all types of XSS,
secure input handling must be performed in both the server-side code and
the client-side code.

Encoding

• Encoding is the act of escaping user input so that the browser
interprets it only as data, not as code. The most recognizable type of
encoding in web development is HTML escaping, which converts
characters like < and > into < and >, respectively.

• When performing encoding in your client-side code, JavaScript has
built-in functions that encode data for different contexts.

• When performing encoding in your server-side code, you rely on the
functions available in your server-side language or framework.

<script>...</script>

Limitations of Encoding

• Even with encoding, it will be possible to input malicious strings into
some contexts. A notable example of this is when user input is used
to provide URLs, such as in the example below:

• Although assigning a value to the href property of an anchor
element automatically encodes it so that it becomes nothing more
than an attribute value, this does not prevent the attacker from
inserting a URL beginning with "javascript:". When the link is
clicked, whatever JavaScript is embedded will be executed.

Validation

• Validation is the act of filtering user input so that all malicious parts of
it are removed, without necessarily removing all code in it.

• One of the most recognizable types of validation in web development
is allowing some HTML elements (such as and) but
disallowing others (such as <script>).

• There are two main characteristics of validation that differ between
implementations:
• Classification strategy: User input can be classified using either blacklisting or

whitelisting.
• Validation outcome: User input identified as malicious can either be rejected

or sanitized.

Classification Strategy: Blacklisting

• Instinctively, it seems reasonable to perform validation by defining a
forbidden pattern that should not appear in user input.

• If a string matches this pattern, it is then marked as invalid.

• An example would be to allow users to submit custom URLs with any
protocol except javascript:. This classification strategy is
called blacklisting.

Classification Strategy: Blacklisting

• Complexity:
• Accurately describing the set of all possible malicious strings is usually a very

complex task.
• The example policy described above could not be successfully implemented

by simply searching for the substring "javascript", because this would miss
strings of the form "Javascript:" and "javascript:"

• Staleness:
• Even if a perfect blacklist were developed, it would fail if a new feature

allowing malicious use were added to the browser.
• For example, an HTML validation blacklist developed before the introduction

of the HTML5 onmousewheel attribute would fail to stop an attacker from
using that attribute to perform an XSS attack.

Classification Strategy: Whitelisting

• Because of the previous drawbacks, blacklisting as a classification
strategy is strongly discouraged. Whitelisting is usually a much safer
approach.

• A whitelist approach defines an allowed pattern and marks input as
invalid if it does not match this pattern.

• In contrast with the blacklisting example before, an example of
whitelisting would be to allow users to submit custom URLs
containing only the protocols http: and https:, nothing else.

• This approach would automatically mark a URL as invalid if it had the
protocol javascript:, even if it appeared as "Javascript:" or
"javascript:".

Classification Strategy: Whitelisting

• Simplicity:
• Accurately describing a set of safe strings is generally much easier than

identifying the set of all malicious strings.
• This is especially true in common situations where user input only needs to

include a very limited subset of the functionality available in a browser.

• Longevity:
• Unlike a blacklist, a whitelist will generally not become obsolete when a new

feature is added to the browser.
• For example, an HTML validation whitelist allowing only the title attribute on

HTML elements would remain safe even if it was developed before the
introduction of HTML5 onmousewheel attribute.

Validation outcome

• When input has been marked as invalid, one of two actions can be taken:
• Rejection: preventing it from being used elsewhere in the website.
• Sanitization: All invalid parts of the input are removed, and the remaining input is

used normally by the website.
• Rejection is the simplest approach to implement. Sanitization can be more

useful since it allows a broader range of input from the user.
• For example, if a user submits a credit card number, a sanitization routine that

removes all non-digit characters would prevent code injection as well as allowing the
user to enter the number either with or without hyphens.

• If you decide to implement sanitization, you must make sure that you use
well-tested libraries and frameworks should be used for sanitization
whenever possible.

Defenses against XSS

• NoScript mitigates XSS attacks by ensuring that all GET and POST
variables are properly sanitized for characters that could result in
client-side code execution.

Content Security Policy (CSP)*

• The disadvantage of protecting against XSS by using only secure input handling is
that even a single lapse of security can compromise your website.
• A recent web standard called Content Security Policy (CSP) can mitigate this risk.

• CSP is used to constrain the browser viewing your page so that it can only use
resources downloaded from trusted sources. A resource is a script, a stylesheet,
an image, or some other type of file referred to by the page. This means that
even if an attacker succeeds in injecting malicious content into your website, CSP
can prevent it from ever being executed.

• CSP can be used to enforce the following rules:
• No untrusted sources: External resources can only be loaded from a set of clearly defined

trusted sources.
• No inline resources: Inline JavaScript and CSS will not be evaluated.
• No eval: The JavaScript eval function cannot be used.

* Read more about CSP on: https://excess-xss.com/#xss-prevention

Evading Preventive Measures

• Browsers support a technique known as URL encoding to interpret
special characters safely. Each possible character has a corresponding
URL encoding, and the browser understands both the interpreted
version and encoded characters.

• A simple technique for filter evasion is using URL encoding to
obfuscate malicious GET requests.

• For example, the script “<script>alert(`hello');</script>” encodes to
\%3C\%73\%63\%72\%69\%70\%74\%3E\%61\%6C\%65\%72\%74\%28\%27\%68\%65\%
6C\%6C\%6F\%27\%29\%3B\%3C\%2F\%73\%63\%72\%69\%70\%74\%3E

Defenses against XSS

• There are several other techniques for evading detection that rely on
scanning the actual code for malicious activity.

• For example, an XSS scanner might prevent execution of any script
lines that attempt to append a cookie directly to the end of a URL,
because this code might indicate an XSS attack.

• By breaking the intended URL into shorter strings that are
concatenated later, an attacker might avoid detection by
scanners that only check for valid URLs.

• This is a simple example of code obfuscation: the idea of
hiding the intention of a section of code from observers.

Attacks on Clients: Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF)

• CSRF is essentially the opposite of cross-site scripting. While XSS
exploits a user’s trust of a specific website, CSRF exploits a website’s
trust of a specific user.

• In a CSRF attack, a malicious website causes a user to unknowingly
execute commands on a third-party site that trusts that user.

https://dsb.victorzhou.com/

Cross-Site Request Forgery (CSRF)

• CSRF attacks are particularly hard to prevent—to the exploited site,
they appear to be legitimate requests from a trusted user.

• One technique is to monitor the Referrer header of HTTP requests,
which indicates the site visited immediately prior to the request.
However, this can create problems for browsers that do not specify a
referrer field for privacy reasons and may be rendered useless by an
attacker who spoofs the referrer field.

Cross-Site Request Forgery (CSRF)

• A more successful prevention strategy is to
supplement persistent authentication mechanisms,
such as cookies, with another session token that is
passed in every HTTP request.
• In this strategy, a web site confirms that a user’s session

token is not only stored in their cookies but is also
passed in the URL.

• Since an attacker is in theory unable to predict this
session token, it would be impossible to craft a forged
request that would authenticate as the victim.

• This new session token must be different from a token
stored in a cookie to prevent login attacks.

Cross-Site Request Forgery (CSRF)

• A more successful prevention strategy is to provide more private
referrer headers and use POST requests only.

• Finally, users can prevent many of these attacks by always logging out
of web sites at the conclusion of their session.

Cross Site Request Forgery (CSRF) Caveat

• If attacker can do XSS then he can almost always bypass the CSRF
mitigations!

• XSS can read the CSRF tokens and send them as the user would, so
XSS implies attacker can also perform CSRF.

Attacks on Clients: Leveraging XML Entities

What is XML?

• XML stands for "extensible markup language" which is a language
designed for storing and transporting data.

• Like HTML, XML uses a tree-like structure of tags and data. But XML
does not use predefined tags, and so tags can be given names that
describe the data.

• Earlier in the web's history, XML was in vogue as a data transport
format, but its popularity has now declined in favor of the JSON
format.

Document Type Definition (DTD)

• The XML DTD contains declarations that
can define the structure of an XML
document, the types of data values it can
contain, and other items.
• The DTD is declared within the

optional DOCTYPE element at the start of
the XML document.
• The DTD can be fully self-contained within

the document itself (internal DTD) or can
be loaded from elsewhere (external DTD)
or can be hybrid of the two.

• !DOCTYPE person defines that this is a document of the type person.
• !ELEMENT person defines the person element is having three elements:

• !ELEMENT age defines the age element to be of type "#CDATA".
• !ELEMENT gender defines the gender element to be of type "#PCDATA".
• !ELEMENT name defines the name element to be of type "#PCDATA".

http://www.e-cartouche.ch/content_reg/cartouche/datastruc/en/html/dtd_schema_learningObject1.html

What are XML Custom Entities?

• XML allows custom entities to be defined within the DTD.

What are XML External Entities?

• XML external entities are a type of custom entity whose definition is
located outside of the DTD where they are declared.
• The declaration of an external entity uses the SYSTEM keyword and must

specify a URL from which the value of the entity should be loaded.
• For example:

<!DOCTYPE foo [<!ENTITY ext SYSTEM "http://normal-website.com" >]>

• The URL can use the file:// protocol, and so external entities can be loaded
from file.
• For example:

<!DOCTYPE foo [<!ENTITY ext SYSTEM "file:///path/to/file" >]>

XML External Entity Injection (XXE)*

• XXE is a web security vulnerability that allows an attacker to interfere
with an application's processing of XML data.

• It often allows an attacker to view files on the application server
filesystem, and to interact with any back-end or external systems that
the application itself can access.

• In some situations, an attacker can escalate an XXE attack to
compromise the underlying server or other back-end infrastructure, by
leveraging the XXE vulnerability to perform server-side request
forgery (SSRF) attacks.

*https://portswigger.net/web-security/xxe

XML External Entity Injection (XXE)

XXE Example Attack to reveal Secret File*

*https://github.com/votd/vulnerability-of-the-day/tree/master/xml-dtd

What are the types of XXE attacks?*

• There are various types of XXE attacks:
• Exploiting XXE to retrieve files, where an external entity is defined containing

the contents of a file and returned in the application's response.
• Exploiting XXE to perform SSRF attacks, where an external entity is defined

based on a URL to a back-end system.
• Exploiting blind XXE exfiltrate data out-of-band, where sensitive data is

transmitted from the application server to a system that the attacker controls.
• Exploiting blind XXE to retrieve data via error messages, where the attacker

can trigger a parsing error message containing sensitive data.

*https://portswigger.net/web-security/xxe

Billion Laughs Attack
The problem was first reported as early as 2002 but began to be widely addressed in 2008.

Billion Laughs Attack
The problem was first reported as early as 2002 but began to be widely addressed in 2008.

When an XML parser loads this document, it sees that it includes one root element, "lolz", that contains the text "&lol9;". However, "&lol9;" is a defined entity that
expands to a string containing ten "&lol8;" strings. Each "&lol8;" string is a defined entity that expands to ten "&lol7;" strings, and so on. After all the entity
expansions have been processed, this small (< 1 KB) block of XML will contain 109 "lol"s, taking up almost 3 gigabytes of memory.

XML Bomb Example Attack*

*https://github.com/votd/vulnerability-of-the-day/tree/master/xml-dtd

XML Attacks Prevention

• Virtually all XXE vulnerabilities arise because the application's XML parsing
library supports potentially dangerous XML features that the application
does not need or intend to use. The easiest and most effective way to
prevent XXE attacks is to disable those features.
• Generally, it is sufficient to disable resolution of external entities and

disable support for XInclude. This can usually be done via configuration
options or by programmatically overriding default behavior.
• Consult the documentation for your XML parsing library or API for details about how

to disable unnecessary capabilities.
• Capping the memory allocated in an individual parser if loss of the

document is acceptable or treating entities symbolically and expanding
them lazily only when (and to the extent) their content is to be used.

Defenses Against Client-Side Attacks

Defenses Against Client-Side Attacks

• Mitigation of these attacks by the user can be facilitated with two
primary methods:
• Safe-browsing practices
• Built-in browser security measures

Safe-Browsing Practices

• Links to unknown sites, either contained in email or in the body of an
untrusted web site, should not be clicked on.

• In addition, whenever entering personal information to a web site, a
user should always confirm that HTTPS is being used by looking for an
indication in the browser, such as a padlock in the status bar or color
coding in the address bar.

• Most financial sites will use HTTPS for login pages, but if not, the user
should manually add the “s” or find a version of the login page that
does use HTTPS.

Built-in Browser Security Measures

• Each browser has its own built-in methods of implementing security
policies. Most browsers also feature automatic notifications if a user
visits a web site that is on a public blacklist of known phishing or
malware-distributing sites.

• Browser plugins, such as NoScript, use similar white list and blacklist
mechanisms, and can attempt to detect XSS attacks and prevent
cookie theft by sanitizing HTTP requests and scanning the source
code of a web site before execution.

• Thus, users should take advantage of the built-in browser security
measures and make sure they are running the most up-to-date
version of their browser, so that it has all the latest security updates.

Attacks on Servers: Server-Side Script Inclusion
Vulnerabilities

Server-Side Script Inclusion Vulnerabilities

• In a server-side script inclusion attack, a web security vulnerability at
a web server is exploited to allow an attacker to inject arbitrary
scripting code into the server, which then executes this code to
perform an action desired by the attacker.

Remote-File Inclusion (RFI)

• Sometimes, it is desirable for server-side code to execute code
contained in files other than the one that is currently being run.
• For example, one may want to include a common header and footer to all

pages of a website. In addition, it may be useful to load different files based
on user input.

• PHP provides the include function, which incorporates the file
specified by the argument into the current PHP page, executing any
PHP script contained in it.

• Fortunately, remote-file inclusion attacks are becoming less common,
because most PHP installations now default to disallowing the server
to execute code hosted on a separate server.

file

Local-File Inclusion (LFI)

• As in an RFI attack, an LFI attack causes a server to code is contained
on the victim server itself. This locality may allow an attacker access to
private information by means of bypassing authentication
mechanisms.

Local-File Inclusion (LFI)

• For example, an attacker might navigate to the following URL:
http://victim.com/index.php?page=admin/secretpage

• The URL above might cause the index page to execute the previously protected
secretpage.php.

• Sometimes, LFI attacks can allow an attacker to access files on the web
server’s system, outside of the root web directory. For example, many
Linux systems keep a file at /etc/passwd that stores local authentication
information.

http://victim.com/index.php?page=/etc/passwd
• Because the code concatenates .php to any input before trying to include the code,

the web server will try to execute /etc/passwd.php, which does not exist, so you may
want to try:

http://victim.com/index.php?page=/etc/passwd%00

For live demos for LFI and RFI vulnerabilities, read more one:
1. https://secf00tprint.github.io/blog/payload-tester/lfirfi/en
2. https://github.com/secf00tprint/payloadtester_lfi_rfi

Attacks on Servers: Databases and SQL Injection
Attacks

Databases and SQL Injection Attacks

• A database is a system that stores information in an organized way
and produces reports about that information based on queries
presented by users.

• Many web sites use databases that enable the efficient storage and
accessing of large amounts of information.

• A database can either be hosted on the same machine as the web
server, or on a separate, dedicated server.

Databases and SQL Injection Attacks

• Since databases often contain confidential information, they are
frequently the target of attacks.

• Attackers could, for example, be interested in accessing private
information or modifying information in a database for financial gain.

• Because of the sensitivity of information stored in a database, it is
generally unwise to allow unknown users to interact directly with a
database.

• Thus, most web-based database interaction is carried out on the
server side, invisible to the user, so that the interactions between
users and the database can be carefully controlled

Databases and SQL Injection Attacks

Structured Query Language (SQL)

• Web servers interact with most databases using SQL.

• SQL supports several operations to facilitate the access and
modification of database information, including the following:
• SELECT: to express queries
• INSERT: to create new records
• UPDATE: to alter existing data
• DELETE: to delete existing records
• Conditional statements using WHERE, and basic boolean operations such as

AND and OR: to identify records based on certain conditions
• UNION: to combine the results of multiple queries into a single result

SQL

• SQL databases store information in tables, where each row stores a
record, and the columns corresponds to attributes of the records.

• The structure of a database is known as its schema. The schema
specifies the tables contained in the database and, for each table, the
type of each attribute (e.g., integer, string, etc.).

SQL

• To retrieve information from the database, the web server might issue
the following SQL query:

SELECT * FROM news WHERE id = 3;

• In SQL, the asterisk (*) is shorthand denoting all the attributes of a
record. In this case, the query is asking the database to return all the
attributes of the records from the table named news such that the id
attribute is equal to 3.

(news) Table

SQL

• To contrast, the web server might query:

SELECT body FROM news WHERE author = "Joe";

• This query would return just attribute body of the second row in the
table above.

(news) Table

SQL Injection

• An SQL injection allows an attacker to access, or even modify,
arbitrary information from a database by inserting its own SQL
commands in a data stream that is passed to the database by a web
server.

• The vulnerability is typically due to a lack of input validation on the
server’s part.

SQL Injection Types

• Regular SQL Injection
• The query immediately displays data to the screen.
• Example: A table is generated of users and their emails.

• Blind SQL Injection
• The application behaves differently based on query results.
• Example: Login success or failure
• Example: An error or no error
• Example: The application takes more or less time to return a result

Bypassing Authentication using SQL Injection

Bypassing Authentication using SQL Injection

SQL Injection Example*

*https://github.com/votd/vulnerability-of-the-day/blob/master/sql-injection/SQLInjection.java

Other SQL Injection Attacks

• Other potential attacks could be even more serious, involving actual
manipulation of the information stored in a database.

• Some SQL injection attacks allow for inserting new records, modifying
existing records, deleting records, or even deleting entire tables.

• In addition, some databases have built-in features that allow
execution of operating system commands via the SQL

Deleting Table using SQL Injection

Other SQL Injection Attacks

• It may also be possible for an attacker to access information from a
database even when the results of a vulnerable database query are
not printed to the screen.

• By using multiple injected queries and examining how they affect
error messages and the contents of a page, it may be possible to
deduce the contents of the database without seeing any query
results.

• This is known as a blind SQL injection attack.

Other SQL Injection Attacks

• Attackers continue to come up with new, creative ways to take
advantage of SQL injection vulnerabilities.

• One such technique is to insert malicious code into the database that
could at some point be sent to users’ browsers and executed. This is
another potential vector for cross-site scripting.
• For example, an attacker might inject Javascript cookie-stealing code into the

database, and when a user visits a page that retrieves the now malicious data,
the malicious code will be executed on the user’s browser.

Preventing SQL Injection

• SQL injection vulnerabilities are the result of programmers failing to
sanitize user input before using that input to construct database queries.
• Blacklisting: delete the characters you don’t want (‘, --, ;)

• Downside:
• You want these characters sometimes!
• How do you know if/when the characters are bad?

• Whitelisting: check the user-provided input is in some set of values known
to be safe
• For example, integer within right range.
• Given an invalid input, better to reject than to fix as fixes may introduce

vulnerabilities.

Preventing SQL Injection

• Escape Characters: Most languages have built-in functions that strip
input of dangerous characters.
• For example, PHP provides function mysql_real_escape_string to

escape special characters (including single and double quotes) so that the
resulting string is safe to be used in a MySQL query.
• Downside: you want to see these escaped characters into your SQL.

• Limit Privileges by following the principal of least privilege.

• Encrypt Sensitive Data.

Preventing SQL Injection via Prepared
Statements Example*

*https://github.com/votd/vulnerability-of-the-day/blob/master/sql-injection/SQLInjection.java

Attacks on Servers: Denial-of-Service Attacks

Denial-of-Service (DOS) Attacks

• When a major website uses a single web server to host the site, that
server becomes a single point of failure. If this server ever goes down,
even for routine maintenance, then the website is no longer available
to users.

• Having such a single point of failure for a web site also sets up a
possible vulnerability for that website to DOS attacks.

• In addition, exposing a web server to the world puts it at risk for
attacks on a scale much greater than non-web programs, since web
servers must be open to connections from any host on the Internet.

Denial-of-Service Attacks

• It is not surprising that a web server may be vulnerable to attack.
After all, a web server is nothing more than an application, and as
such it is susceptible to the same kind of programming flaws as other
applications.

• For example, an attacker may craft a malformed HTTP request
designed to overflow a buffer in the web server’s code, allowing
denial-of-service conditions or even arbitrary code execution. For
this reason, it is critical that web servers are put through rigorous
testing for vulnerabilities before being run in a live environment

Denial-of-Service Attacks

• Likewise, a distributed denial-of-service (DDOS) attack can try to overload
a web server with so many HTTP requests that the server is unable to
answer legitimate requests. Thus, all the protections against DOS attacks
should be employed for web servers.
• Using multiple web servers for an important web site can also serve as

protection.
• DNS supports the ability to have multiple IP addresses for the same domain

name, so this replication of web servers can be transparent to users.
• In this case, redundancy can make a web site more resilient against DDOS attacks by

making it more difficult for an attack to disable all the different web servers that are
hosting that web site.

Denial-of-Service Attacks

Attacks on Servers: Web Server Privileges

Web Server Privileges

• Modern computers operate with varying levels of permissions.
• For example, a guest user would most likely have fewer user privileges than

an administrator.

• It is important to keep in mind that a website is hosted by a server (an
actual machine) running a web server application (a program) that
handles requests for information.

• Following the general principle of least privilege, the web server
application should be run under an account with the lowest privileges
possible.

Web Server Privileges

• For example, a web server might only have read access to files within
certain directories and have no ability to write to files or even
navigate outside of the web site’s root directory.

• Thus, if an attacker compromised a web site with a server-side
vulnerability, they typically would only be able to operate with the
permissions of the web server, which would be rather limited.

Web Server Privileges

• The ultimate goal of many attackers is to have full access to the entire
system, however, with full permissions.

• In order to accomplish this, an attacker may first compromise the web
server, and then exploit weaknesses in the operating system of the
server or other programs on the machine to elevate his privileges to
eventually attain root access.

• The process of exploiting vulnerabilities in the operating system to
increase user privileges is known as local-privilege escalation.

Web Server Privileges

• A typical attack scenario might play out as follows:
• An attacker discovers an LFI vulnerability on a web server for victim.com.
• The attacker finds a photo upload form on the same site that allows uploading of

PHP scripts.
• The attacker uploads a PHP web shell and executes it on the web server by using the

LFI.
• Now that the attacker has control of the site with permissions of the web server, he

uploads and compiles a program designed to elevate his privileges to the root
account, tailored to the specific version of the victim server’s operating system.

• The attacker executes this program, escalating his privileges to root access, at which
point he may use the completely compromised server as a control station for future
attacks or to continue to penetrate the victim server’s network.

Web Server Privileges

• Thus, web servers should be designed to minimize local privilege
escalation risks, by being assigned the least privilege needed to do
the job and by being configured to have little other accessible content
than their web sites.

Defenses Against Server-Side Attacks

Defenses Against Server-Side Attacks

• The vast variety of potential vulnerabilities posed by the Web may
appear to be a security nightmare, but most can be mitigated by
following several important guidelines.

• These web vulnerabilities must be prevented at three levels:
• The development of web applications;
• The administration of web servers and networks; and
• The use of web applications by end users.

Developers

• The key concept to be taken away in terms of important development
practices is the principle of input validation.
• A vast majority of the security vulnerabilities discussed could be prevented

if developers always made sure that anytime a user has an opportunity to
enter input, this input is checked for malicious behavior.
• Problems ranging from cross-site scripting, SQL injection, and file inclusion

vulnerabilities to application-level errors in web servers would all be
prevented if user input were properly processed and sanitized.
• Many languages feature built-in sanitization functions that more easily

facilitate this process, and it is the responsibility of the developer to utilize
these constructs.

Administrators

• For web site and network administrators, it is not always possible to
prevent the existence of vulnerabilities, especially those at the
application level, but there are several best practices to reduce the
likelihood of a damaging attack.

Administrators

• The first of these principles is a general concept that applies not only
to web security but also to computing in general, that is, the idea of
least privilege.

• Whenever potentially untrusted users are added to the equation, it
becomes necessary to restrict privileges as tightly as possible so as
not to allow malicious users to exploit overly generous user rights.

• In the realm of web security, this typically means that administrators
should ensure that their web servers are operating with the most
restrictive permissions as possible.

Administrators

• Typically, web servers should be granted read privileges only to the
directories in the web site’s root directory, write privileges only to
files and directories that absolutely need to be written to (for
example, for logging purposes), and executing privileges only if
necessary.

• By following this practice, the web site administrator is controlling the
damage that could possibly be done if the web server was
compromised by a web application vulnerability, since the attacker
would only be able to operate under these restrictive permissions.

Administrators

• Second, it is often the responsibility of the administrator to enforce
good security practices for the network’s users.

• This introduces the notion of group policy, which is a set of rules that
applies to groups of users.

• This concept is relevant to browser security in that a network
administrator can enforce browser access policies that protect users
on the network from being exploited due to a lack of knowledge or
unsafe browsing practices.

Administrators

• Finally, it is crucial that administrators apply security updates and
patches as soon as they are released.

• Application vulnerabilities are disclosed on a daily basis, and because
of the ease of acquiring this information on the Internet, working
exploits are in the hands of hackers almost immediately after these
vulnerabilities are publicized.

• The longer an administrator waits to patch vulnerable software, the
greater the chance an attacker discovers the vulnerability and
compromises the entire system.

