
Ahmed Tamrawi

COMP 4384 Software Security
Module 9: Algorithmic Complexity and Side-

Channel Attacks

Acknowledgment Notice
Part of the slides are based on content from Wikipedia and publicly available articles.



Algorithmic Complexity Vulnerabilities



Algorithmic Complexity Attack (AC)

• An Algorithmic Complexity (AC) attack is a resource exhaustion attack 
that takes advantage of worst-case performance in server-side 
algorithms. This type of attack can be used to achieve a denial-of-
service.
• Developers select algorithms for performance, for ease of 

implementation, or because they’re the top answer on 
StackOverflow. 

• Most developers test their algorithms for average-case performance, 
checking against the kinds of inputs a typical user would provide. 



Algorithmic Complexity Attack (AC)

• Algorithmic complexity vulnerabilities arise when the worst-case 
performance for a back-end algorithm results in resource exhaustion 
of the server.

• AC vulnerabilities come in a few flavors. 
• An AC Time vulnerability causes denial of service by exhausting CPU.
• An AC Space vulnerabilities exhaust RAM or disk space.



Algorithmic Complexity Attack (AC)

Source: https://www.bigocheatsheet.com/ Attacker Goal: Find corner case input to trigger worst-cast performance!



How do AC Vulnerabilities Differ from Other 
DoS Attacks?

• In a typical distributed denial-of-service (DDOS) attack, the attacker 
must dedicate significant resources to the attack. 
• Attackers will most commonly use a botnet of thousands or millions of 

nodes, each of which initiates a conversation with the target server. 
• In this case, there is a symmetric effort on part of the attacker vs. the effect 

on the target. 
• In contrast, AC attacks can typically be conducted by a single user, 

with a relatively small payload, to cause a disproportionately 
powerful effect. 

• AC vulnerabilities are much cheaper than a traditional DDOS attack.



How do AC Vulnerabilities Differ from Other 
DoS Attacks?



How do AC Vulnerabilities Differ from Other 
DoS Attacks?

• Additionally, unlike most DDOS attacks, AC vulnerabilities can be 
“quieter” than traditional denial of service attacks. 
• Because AC vulnerabilities arise from intended functionality, normal 

indicators of compromise, such as thrown exceptions, unusually high traffic, 
and excessive logging, may not be present. 

• Many AC Time attacks cause temporary denial of service, with 
normal functionality resuming afterwards. This allows AC attacks to 
escape notice, flying under the standard cybersecurity radar.



AC Attack Example: Hashtable DoS Attacks 

• In 2011, researchers Alexander ‘alech’ Klink and Julian ‘zeri’ Wälde
found vulnerabilities in several hash table implementations, 
including the built-in hash tables in Java, PHP, and Python. 



AC Attack Example: Hashtable DoS Attacks 

Vulnerable hash tables 
implementations utilized 
a linked list for storing 
hash collisions*. 

* https://www.geeksforgeeks.org/hashing-set-2-separate-chaining/



AC Attack Example: Hashtable DoS Attacks 

By creating inputs that collide under the hash 
functions, an attacker can insert arbitrarily many 
hash table keys into the same linked list. 

Best/Average Case Worst Case



AC Attack Example: Hashtable DoS Attacks 
Best/Average Case Worst Case



Hashtable DoS Attacks Mitigation

• In response to these Hashtable Dos attacks, the developers of the 
affected languages made fundamental changes to their hash table 
implementations. Java, for instance, switched from linked lists to 
balanced red-black trees.



AC Attack Example: Hashtable DoS Attacks 

https://www.youtube.com/watch?v=R2Cq3CLI6H8



Generating Worst-Case Inputs

• ACsploit is an interactive command-line utility to 
generate worst-case inputs to commonly used 
algorithms. 

• These worst-case inputs are designed to result in the 
target program utilizing a large amount of resources 
(e.g., AC time or AC space).
• Acsploit is publicly available at: 

https://github.com/twosixlabs/acsploit



AC Attack Example: Decompression Bombs

• Decompression bombs (aka ”zip of death”) exploit the ability of 
efficient compression algorithms to compress a large amount of 
repeated data into a small package. It is often employed to 
disable antivirus software, in order to create an opening for more 
traditional viruses.
• Decompression bombs typically causes an AC Space effect on the 

memory use of the file parser: as the bomb is decompressed, it 
expands to consume all the system’s memory. 
• Modern parsers offer some protections against decompression 

bombs, e.g. (optional) safeguards and sandboxes to limit resource 
consumption during parsing.



Vulnerable Vectors

• Chat clients
• Image hosting
• Web browsers
• Web servers
• Everyday web-services software
• Everyday client software
• Embedded devices (especially vulnerable due to weak hardware)
• Embedded documents
• Gzip’d log uploads





AC Attack Example: Decompression Bombs

• One example of a zip bomb is 
the file 42.zip:
• A zip file consisting of 

42 kilobytes of compressed data.
• It has five layers of nested zip files 

in sets of 16.
• Each bottom-layer archive 

containing a 4.3-gigabyte file for a 
total of 4.5 petabytes of 
uncompressed data.



Mitigations

• Restrict resources — place limits on processes and their children
• Don’t rely on size alone — check image dimensions prior to rendering
• Restrict file size output — verify that the output file size won’t max 

out storage
• Limit number of extracted files — calculate the file total to ensure 

that storage/processing power won’t be overloaded
• Perform dynamic testing — always verify mitigations via manual 

testing to ensure that they are functioning properly
• Archive bombs are decompression bombs, but not all decompression 

bombs are archive bombs.



AC Attack Example: Decompression Bombs

https://www.youtube.com/watch?v=IXkX2ojrKZQ



More about Decompression Bombs

• One great resource for learning about decompression bombs is the 
website https://bomb.codes/. 
• You can also generate decompression bombs using ACsploit.



AC Attack Example: REDoS

• REDoS, or Regular Expression Denial of Service, refers to a class of 
vulnerabilities in regular expression parsing engines that causes a 
denial-of-service attack.

• The REDoS attack exploits the fact that most Regular Expression 
implementations may reach extreme situations that cause them to 
work very slowly (exponentially related to input size). 
• An attacker can then cause a program using a Regular Expression to 

enter these extreme situations and then hang for a very long time.



AC Attack Example: REDoS

• The Regular Expression naïve algorithm builds a Nondeterministic 
Finite Automaton (NFA), which is a finite state machine where for 
each pair of state and input symbol there may be several possible 
next states. Then the engine starts to make transition until the end of 
the input. 
• Since there may be several possible next states, a deterministic 

algorithm is used. This algorithm tries one by one all the possible 
paths (if needed) until a match is found (or all paths are tried and 
fail).



AC Attack Example: REDoS

• For example, the Regex ^(a+)+$ is represented by the following NFA:

• For the input aaaaX there are 16 possible paths. 
• For the input aaaaaaaaaaaaaaaaX there are 65536 possible paths, and 

the number is double for each additional a. 
• This is an extreme case where the naïve algorithm is problematic, because it must 

pass on many many paths, and then fail.



AC Attack Example: REDoS

https://regex101.com/



Evil Regex

• They are the regular expressions that make an application vulnerable 
to ReDoS attacks, they occur whenever these factors occur:
• The regular expression applies repetition (“+”, “*”) to a complex 

subexpression
• for the repeated subexpression, there exists a match which is also a suffix of 

another valid match.
• Examples of malicious regexes include the following:
• (a+)+
• ([a-zA-Z]+)*
• (a|aa)+
• (a|a?)+
• (.*a){x} for x > 10



More about REDoS

https://www.youtube.com/watch?v=Hbih2lG2v0s

https://levelup.gitconnected.com/the-regular-expression-
denial-of-service-redos-cheat-sheet-a78d0ed7d865



More about REDoS

• REDoS has been a well-known issue for many years at this point, so it 
may surprise you to hear that some high-profile applications still fall 
victim to this class of vulnerability.
• In 2016, StackExchange experienced a half hour outage due to a bad regex. 

Remarkably, the StackExchange team was able to resolve the issue without 
consulting StackOverflow. You can read their post-mortem
• Article: https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

• More recently, on July 2, 2019, Cloudflare experienced a blackout due to a 
poorly implemented regex. You can read their post-mortem
• Article: https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/



Eliminating ReDoS Vulnerabilities

• Avoid using regex
• The most foolproof way of avoiding ReDoS attacks is to avoid using regex. Instead, 

find alternative methods that can achieve the same results. 

• Use safe regex engines
• Instead of using built-in, unsafe regex engines (like the Node.js regex engine), you 

can opt to use safe alternatives instead.
• For example, re2 (https://www.npmjs.com/package/re2) is a safe alternative that 

you can use without fear of ReDoS.

• Detect and sanitize evil regexes
• You can also prevent ReDoS by detecting evil regex in your code or in user input, then 

sanitizing them. 
• For this, you can utilize evil regex detection libraries like safe-regex: 

https://www.npmjs.com/package/safe-regex



OpenJDK’s Collection.sort() is broken!

https://news.ycombinator.com/item?id=17883461



OpenJDK’s Collection.sort() is broken!



An Example from DARPA STAC Program

Private Repository: https://github.com/EnSoftCorp/STAC-E6-Engagement-
Apps/tree/master/engagement6/decompiled_source/STAC6-railyard_src_cfr
Vulnerability Report: https://docs.google.com/document/d/1-
vAyjZbzKBqjVOohrFHFAJ6amXfSWraUZVPPWI33PXQ/



What Can Be Done About AC Vulnerabilities?

• AC vulnerabilities arise because of design decisions, so solutions must 
address these issues in design. But you can’t know what safeguards to 
put in place if you don’t know how you’re vulnerable.

• Mitigation techniques include:
• Select a new algorithm. As a result of the hash table collision attacks in 2011, 

most programming languages changed the data structure, used as bins, for 
their hash table implementation.
• Use input sanitization. Sometimes the AC vulnerability present in a given 

algorithm only happens for a specific class of inputs. 
• You can restrict the input space a user can submit by placing explicit limits in your 

application (e.g., limit the length of input, the use of certain options or characters, etc.).



What Can Be Done About AC Vulnerabilities?

• Implement hard resource limits. Occasionally, you need the strength 
and flexibility of an algorithm that is vulnerable to attack, and the 
input space is too difficult to restrict with input sanitization. 
• In this case, you can implement hard resource limitations for your application. 
• Many applications will abort decompression when they encounter a 

decompression bomb by refusing to extract data beyond a certain size.



Side Channel Vulnerabilities



https://news.mit.edu/2014/algorithm-recovers-speech-from-vibrations-0804

The Visual Microphone: Passive Recovery of Sound from Video
https://www.youtube.com/watch?v=FKXOucXB4a8

Can You Recover Sound From Images?
https://www.youtube.com/watch?v=eUzB0L0mSCI



Side Channel Vulnerability

• Side channel vulnerabilities allow attackers to infer potentially 
sensitive information just by observing normal behavior of software 
system.

• Attacker can be active or passive observer.
• Like mind reading? Which thought do you currently think?

Read more about Representational systems (NLP): https://en.wikipedia.org/wiki/Representational_systems_(NLP)

Last pizza you ate Why you are here?

A melody of your 
favorite song

A pink elephant 
with wings

Your eyes may leak 
this information



Side Channel Vulnerabilities

Learn what a user types by observing reflections 
of monitor picture 

Learn what a user types by observing inter-
packet timing in encrypted SSH session

Learn about the user actions performed on Web 
by observing packet sizes in encrypted Web traffic



Side Channel Vulnerabilities

Learn existence of username from
response time of Web application Learn the amount of hidden images in Gallery Learn private key of SSL server



In fact, we pinpoint Facebook users within 5 
meters of their exact location, and 90% of 
Foursquare users within 15 meters. Our attacks 
are extremely efficient and complete within 3-7 
seconds.



Side Channel Vulnerability

• A side-channel attack is any attack based on information gained from an 
unintended behavior of a computer system, rather than weaknesses in the 
implemented algorithm itself (e.g., cryptanalysis and software bugs).
• Timing information, power consumption, electromagnetic leaks or even sound can 

provide an extra source of information, which can be exploited.

• Side-channel attacks on the web can occur, even when transmissions 
between a web browser and server are encrypted.
• According to researchers from Microsoft Research and Indiana 

University[1] Many powerful side-channel attacks are based on statistical 
methods pioneered by Paul Kocher[2].

[1] Side-Channel Leaks in Web Applications - https://www.microsoft.com/research/publication/side-channel-leaks-in-web-applications-a-reality-today-a-challenge-tomorrow/

[2] Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems - https://link.springer.com/chapter/10.1007%2F3-540-68697-5_9



General Classes of Side Channel Attacks

Cache Attack 
is based on attacker's ability to monitor cache accesses 

made by the victim in a shared physical system.

Timing Attack 
is based on measuring how much time various 

computations take to perform

Power Monitoring Attack 
make use of varying power consumption by the 

hardware during computation

Electromagnetic Attack 
is based on leaked electromagnetic radiation, which can 

directly provide plaintexts and other information

Acoustic Cryptanalysis Attack 
exploit sound produced during a computation

Differential Fault Analysis Attack 
secrets are discovered by analyzing software faults

Data Remanence Attack 
sensitive data are read after supposedly having been 

deleted

Optical Attack 
secrets and sensitive data can be read by visual 

recording using a high-resolution camera or other tools



Timing Side Channel Attacks

• Every logical operation in a computer takes time to execute, and the 
time can differ based on the input; with precise measurements of the 
time for each operation, an attacker can work backwards to the input.

• A timing attack is a side-channel attack in which the attacker attempts 
to leak sensitive information by analyzing the time taken to execute or 
run some systems’ components.



Timing Side Channel Attacks



Timing Side Channel Attacks



Timing Side Channel Attacks

Username 
Exists?

User 
Locked?

User 
Expired?

Password 
correct?

true false false true

fa
ls
efalse

tru
e

tru
e

Can an attacker leak sensitive information about the existence of a 
username by measuring the time difference in the control flow?



true

Timing Side Channel Attacks

Username Exists
AND

User not Locked
AND

User not Expired
AND

Password Correct

fa
lse

Can an attacker leak sensitive information about the existence of a 
username by measuring the time difference in the control flow?

Joining Control Paths (Pack 

all DB queries in one SQL 

statement)



Timing Side Channel Attacks

Username 
Exists?

User 
Locked?

User 
Expired?

Password 
correct?

true false false true

fa
ls
efalse

tru
e

tru
e

Can an attacker leak sensitive information about the existence of a 
username by measuring the time difference in the control flow?

Changing Control Flow paths to have 

same execution time (fix response 

time to worst case execution time)

Serious performance impact!



Login Side Channel Attack Example

• The login mechanism has some short circuit logic 
that does not compute the hash of the given 
password if the user does not exist in the database. 

• By examining the response times of various users 
(regardless of the provided password) an attacker 
can enumerate and discover the web applications 
users.

• Demo code is available at: 
https://github.com/benjholla/LoginSideChannels



Login Side Channel Attack Example

• Vulnerability: The existence of 
users can be inferred through 
timing differentials. 
• Because of the additional time to 

check password, more time is 
required when it is a valid 
username compared to an invalid 
username. 

• Attacker does not need to know 
valid passwords, only needs to 
guess the valid usernames.



Timing Side Channel Attacks Examples

• The execution time for the square-and-multiply algorithm used 
in modular exponentiation depends linearly on the number of '1' bits 
in the key. 
• While the number of '1' bits alone is not nearly enough information to make 

finding the key easy, repeated executions with the same key and different 
inputs can be used to perform statistical correlation analysis of timing 
information to recover the key completely, even by a passive attacker. 



Timing Side Channel Attacks Examples

• The execution time for the square-and-multiply algorithm used 
in modular exponentiation depends linearly on the number of '1' bits 
in the key. 
• While the number of '1' bits alone is not nearly enough information to make 

finding the key easy, repeated executions with the same key and different 
inputs can be used to perform statistical correlation analysis of timing 
information to recover the key completely, even by a passive attacker. 



Examples

• Some versions of Unix use a relatively expensive implementation of the crypt library 
function for hashing an 8-character password into an 11-character string. 

• On older hardware, this computation took a deliberately and measurably long time: as 
much as two or three seconds in some cases. 

• The login program in early versions of Unix executed the crypt function only when the 
login name was recognized by the system. This leaked information through timing about 
the validity of the login name, even when the password was incorrect. An attacker could 
exploit such leaks by first applying brute-force to produce a list of login names known to 
be valid, then attempt to gain access by combining only these names with a large set of 
passwords known to be frequently used. 

• Without any information on the validity of login names the time needed to execute such 
an approach would increase by orders of magnitude, effectively rendering it useless. 
Later versions of Unix have fixed this leak by always executing the crypt function, 
regardless of login name validity.



Timing Side Channel Attacks Examples

• Two otherwise securely isolated processes running on a single 
system with either cache memory or virtual memory can 
communicate by deliberately causing page faults and/or cache 
misses in one process, then monitoring the resulting changes in 
access times from the other. 
• Likewise, if an application is trusted, but its paging/caching is affected 

by branching logic, it may be possible for a second application to 
determine the values of the data compared to the branch condition 
by monitoring access time changes; in extreme examples, this can 
allow recovery of cryptographic key bits.



Timing Side Channel Attacks Examples



Timing Side Channel Attacks Examples



Timing Side Channel Attacks Examples



An Example from DARPA STAC Program

Private Repository: https://github.com/EnSoftCorp/STAC-Engagement-Apps/tree/master/white-team-examples/jimple/ex3



Timing Attack Avoidance

• Many algorithms can be implemented (or masked by a proxy) in a way 
that reduces or eliminates data dependent timing information, 
a constant-time algorithm. 

• Consider an implementation in which every call to a subroutine 
always returns in exactly x seconds, where x is the maximum time it 
ever takes to execute that routine on every possible authorized input. 
• In such an implementation, the timing of the algorithm leaks no information 

about the data supplied to that invocation. 
• The downside of this approach is that the time used for all executions 

becomes that of the worst-case performance of the function.



Timing Attack Avoidance

• The data-dependency of timing may stem from one of the following:
• Non-local memory access: Software run on a CPU with a data cache will 

exhibit data-dependent timing variations as a result of cache lookups.
• Conditional jumps.
• “Complicated” Mathematical Operations depending on the actual CPU 

hardware:
• Integer division is almost always non-constant time. The CPU uses a microcode loop that 

uses a different code path when either the divisor or the dividend is small.
• CPUs without a barrel shifter runs shifts and rotations in a loop, one position at a time. 

As a result, the amount to shift must not be secret.
• Older CPUs run multiplications in a way similar to division.



Side Channel Attacks Countermeasures

• Because side-channel attacks rely on the relationship between 
information emitted (leaked) through a side channel and the secret 
data, countermeasures fall into two main categories:
• Eliminate or reduce the release of such information.
• Eliminate the relationship between the leaked information and the secret 

data.
• Make the leaked information unrelated, or rather uncorrelated, to the 

secret data, typically through some form of randomization.


