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Algorithmic Complexity Vulnerabilities



Algorithmic Complexity Attack (AC)

* An Algorithmic Complexity (AC) attack is a resource exhaustion attack
that takes advantage of worst-case performance in server-side

algorithms. This type of attack can be used to achieve a denial-of-
service.

* Developers select algorithms for performance, for ease of
implementation, or because they’re the top answer on
StackOverflow.

* Most developers test their algorithms for average-case performance,
checking against the kinds of inputs a typical user would provide.



Algorithmic Complexity Attack (AC)

* Algorithmic complexity vulnerabilities arise when the worst-case
performance for a back-end algorithm results in resource exhaustion
of the server.

 AC vulnerabilities come in a few flavors.

* An AC Time vulnerability causes denial of service by exhausting CPU.
* An AC Space vulnerabilities exhaust RAM or disk space.
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Algorithmic Complexity Attack (AC)

Algorithm

Quicksort
Mergesort
Timsort
Heapsort
Bubble Sort

Source: https://www.bigocheatsheet.com/
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Attacker Goal: Find corner case input to trigger worst-cast performance!




How do AC Vulnerabilities Differ from Other
DoS Attacks?

* In a typical distributed denial-of-service (DDOS) attack, the attacker
must dedicate significant resources to the attack.

» Attackers will most commonly use a botnet of thousands or millions of
nodes, each of which initiates a conversation with the target server.

* In this case, there is a symmetric effort on part of the attacker vs. the effect
on the target.

* In contrast, AC attacks can typically be conducted by a single user,
with a relatively small payload, to cause a disproportionately
powerful effect.

* AC vulnerabilities are much cheaper than a traditional DDOS attack.



How do AC Vulnerabilities Differ from Other
DoS Attacks?
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How do AC Vulnerabilities Differ from Other
DoS Attacks?

* Additionally, unlike most DDOS attacks, AC vulnerabilities can be
“quieter” than traditional denial of service attacks.
* Because AC vulnerabilities arise from intended functionality, normal

indicators of compromise, such as thrown exceptions, unusually high traffic,
and excessive logging, may not be present.

 Many AC Time attacks cause temporary denial of service, with
normal functionality resuming afterwards. This allows AC attacks to
escape notice, flying under the standard cybersecurity radar.



AC Attack Example: Hashtable DoS Attacks

* In 2011, researchers Alexander ‘alech’ Klink and Julian ‘zeri’ Walde
found vulnerabilities in several hash table implementations,
including the built-in hash tables in Java, PHP, and Python.

Efficient Denial of Service The worst case in real life
Attacks on Web Application R B P B
Platforms roughly 2 MB
nder “alech” Klink Julian “zeri” Wald 40.000.000.000 string comparisons

On a 1GHz machine, this is at least 40s



AC Attack Example: Hashtable DoS Attacks

Vulnerable hash tables
implementations utilized ys
a linked list for storing
hash collisions*.

entries

hash

05

keys function hashes
00
John Smith
02
 LisaSmith 03
samboe -
 Sandra Dee -

15

* https://www.geeksforgeeks.org/hashing-set-2-separate-chaining/



AC Attack Example: Hashtable DoS Attacks

Bucket
(1) oL By creating inputs that collide under the hash
NN functions, an attacker can insert arbitrarily many
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AC Attack Example: Hashtable DoS Attacks

Bucket

Best/Average Case Worst Case
01 "L nelements: n elements:
1 : :
L insert = 0O()| linsert - O(n?
s[> lookup = O(n)| [lookup - O(n?)
‘5’ > (delete) = O(n)| |(delete) = O(n?)
200.000 multi-collisions a 10 bytes
Bucker roughly 2 MB
ol B
! 40.000.000.000 string comparisons
21 ™ On a 1GHz machine, this is at least 40s
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Hashtable DoS Attacks Mitigation

* In response to these Hashtable Dos attacks, the developers of the
affected languages made fundamental changes to their hash table
implementations. Java, for instance, switched from linked lists to
balanced red-black trees.
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AC Attack Example: Hashtable DoS Attacks

Effective Denial of Service attacks

against web application platforms

https://www.youtube.com/watch?v=R2Cq3CLI6H8



Generating Worst-Case Inputs

* ACsploit is an interactive command-line utility to
generate worst-case inputs to commonly used
algorithms.

* These worst-case inputs are designed to result in the
target program utilizing a large amount of resources
(e.g., AC time or AC space).

* Acsploit is publicly available at:
https://github.com/twosixlabs/acsploit




AC Attack Example: Decompression Bombs

* Decompression bombs (aka ”“zip of death”) exploit the ability of
efficient compression algorithms to compress a large amount of
repeated data into a small package. It is often employed to
disable antivirus software, in order to create an opening for more
traditional viruses.

* Decompression bombs typically causes an AC Space effect on the
memory use of the file parser: as the bomb is decompressed, it
expands to consume all the system’s memory.

* Modern parsers offer some protections against decompression
bombs, e.g. (optional) safeguards and sandboxes to limit resource
consumption during parsing.



Vulnerable Vectors

* Chat clients

* Image hosting

* Web browsers

* Web servers

* Everyday web-services software

e Everyday client software

* Embedded devices (especially vulnerable due to weak hardware)
* Embedded documents

* Gzip'd log uploads
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AC Attack Example: Decompression Bombs

* One example of a zip bomb is
the file 42.zip:

* A zip file consisting of
42 kilobytes of compressed data.

* It has five layers of nested zip files
in sets of 16.

* Each bottom-layer archive
containing a 4.3-gigabyte file for a
total of 4.5 petabytes of
uncompressed data.

g 42.zip - WinRAR (evaluation copy)

File Commands Tools Favorites

s J=Ng RECR N TR JET

Options  Help

O X

M 4%

Add Extract To Test View Delete Find Wizard Info VirusScan Comment SFX

m |§ 42.zip - ZIP archive, unpacked size 558,432 bytes v
Name Size Packed Type Modified CRC32
|
@ lib f.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib ezip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib d.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib c.zip * 34,902 2,524 WinRAR ZIP archive ~ 29-03-2000 02:10 AM
@ lib b.zip* 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib a.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
@ lib 9.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib 8.zip * 34,902 2,524 WinRAR ZIP archive ~ 29-03-2000 02:10 AM
@ lib 7.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib 6.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
@ lib 5.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
E lib 4.zip * 34,902 2,524 WinRAR ZIP archive ~ 29-03-2000 02:10 AM
@ lib 3.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib 2.zip * 34,902 2,524 WinRAR ZIP archive ~ 29-03-2000 02:10 AM
@ lib 1.zip * 34,902 2,524 WinRAR ZIP archive  29-03-2000 02:10 AM
g lib 0.zip * 34,902 2,524 WinRAR ZIP archive ~ 29-03-2000 02:10 AM
=L Total 558,432 bytes in 16 files




Mitigations

* Restrict resources — place limits on processes and their children
* Don’t rely on size alone — check image dimensions prior to rendering

* Restrict file size output — verify that the output file size won’t max
out storage

* Limit number of extracted files — calculate the file total to ensure
that storage/processing power won’t be overloaded

* Perform dynamic testing — always verify mitigations via manual
testing to ensure that they are functioning properly

* Archive bombs are decompression bombs, but not all decompression
bombs are archive bombs.



AC Attack Example: Decompression Bombs

https://www.youtube.com/watch?v=1XkX20jrkZQ



More about Decompression Bombs

* One great resource for learning about decompression bombs is the
website https://bomb.codes/.

* You can also generate decompression bombs using ACsploit.

2# Menu The (Decompression) Bomb Site
eSS eSS CEEE NSRS 7z

Home ~ #% wWhat is a decompression bomb?

A decompression bomd is a file designed to crash or render useless the program or system
reading it, i.e. a denial of service. The following files can be used to test whether an
application 1s vulnerable to this type of attack.

wWhen testing, it's always better to start small and work your way up. Starting with the
largest file available can seriously harm an application or system — use these bombs
with caution.

> When you see something that is technically sweet, you go ahead and do it and you argue
> about what to do about it only after you have had your technical success. That is the

> way It was with the atomic bomb,




AC Attack Example: REDoS

* REDoS, or Regular Expression Denial of Service, refers to a class of
vulnerabilities in reqular expression parsing engines that causes a
denial-of-service attack.

 The REDoS attack exploits the fact that most Regular Expression
implementations may reach extreme situations that cause them to
work very slowly (exponentially related to input size).

* An attacker can then cause a program using a Regular Expression to
enter these extreme situations and then hang for a very long time.



AC Attack Example: REDoS

* The Regular Expression naive algorithm builds a Nondeterministic
Finite Automaton (NFA), which is a finite state machine where for
each pair of state and input symbol there may be several possible
next states. Then the engine starts to make transition until the end of
the input.

* Since there may be several possible next states, a deterministic
algorithm is used. This algorithm tries one by one all the possible
paths (if needed) until a match is found (or all paths are tried and
fail).



AC Attack Example: REDoS

* For example, the Regex ~(a+)+$ is represented by the following NFA:

Y : (2 )—2+(5)
== = e AT = 8N
(3)

N/ 3 a
a

* For the input aaaaX there are 16 possible paths.
* For the input aaaaaaaaaaaaaaaaX there are 65536 possible paths, and
the number is double for each additional a.

* This is an extreme case where the naive algorithm is problematic, because it must
pass on many many paths, and then fail.



AC Attack Example: REDoS

SAVE & SHARE REGULAR EXPRESSION

. Save Regex "es Bc¥)+8
-

FLAVOR TEST STRING

‘ s PORE (PHP) v |
CG00G0000006000aX
o ECVAScripe JavaSorigt)

(=2

< Pf,‘t)fl

’ o OM

- FUNCTION

* Match v
M Substnunon

IB Unk Teats

https://regex101.com/



Evil Regex

* They are the regular expressions that make an application vulnerable
to ReDoS attacks, they occur whenever these factors occur:

* The regular expression applies repetition (“+”, “*”) to a complex
subexpression

* for the repeated subexpression, there exists a match which is also a suffix of
another valid match.

* Examples of malicious regexes include the following:
e (a+)+
* ([a-zA-Z]+)*
e (alaa)+
e (ala?)+
e (.*a){x} for x > 10



More about REDOS

Hang tight, i
video starts in a few. \

RE:Exploring Regular
Expression Denial of
Service

https://www.youtube.com/watch?v=Hbih2|G2v0s

The Regular Expression Denial of
Service (ReDoS) cheat-sheet

ﬂ James Davis

Introduction
This post is intended as a “technical two-pager” to summarize a security

vulnerability called Regex-based Denial of Service (AKA Regex DoS,

ReDoS). There are a variety of write-ups about ReDoS, but I'm not aware of
a good one-stop-shop with a higher-level treatment of all aspects of the

subject. I have included links at the end to more detailed treatments.

[ have used headings liberally to help you navigate to your issue.

https://levelup.gitconnected.com/the-regular-expression-
denial-of-service-redos-cheat-sheet-a78d0ed7d865




More about REDOS

* REDOS has been a well-known issue for many years at this point, so it
may surprise you to hear that some high-profile applications still fall
victim to this class of vulnerability.

* In 2016, StackExchange experienced a half hour outage due to a bad regex.

Remarkably, the StackExchange team was able to resolve the issue without
consulting StackOverflow. You can read their post-mortem

 Article: https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
* More recently, on July 2, 2019, Cloudflare experienced a blackout due to a
poorly implemented regex. You can read their post-mortem
 Article: https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/



Eliminating ReDoS Vulnerabilities

e Avoid using regex

* The most foolproof way of avoiding ReDoS attacks is to avoid using regex. Instead,
find alternative methods that can achieve the same results.

* Use safe regex engines

 Instead of using built-in, unsafe regex engines (like the Node.js regex engine), you
can opt to use safe alternatives instead.

* For example, re2 (https://www.npmjs.com/package/re2) is a safe alternative that
you can use without fear of ReDoS.

* Detect and sanitize evil regexes

* You can also prevent ReDoS by detecting evil regex in your code or in user input, then
sanitizing them.

* For this, you can utilize evil regex detection libraries like safe-regex:
https://www.npmjs.com/package/safe-regex



OpenlDK’s Collection.sort

(OH/ Jok-s203864
Execution error in Java's Timsort

IS broken!

final static int[] runlengths = new int{) { 76405736, 74830360, 1181532, 787688, 1575376, 2363064, 3938440, 6301504,
1181532, 393844, 15753760, 1575376, TRVEHN, I93844, 1969220, 3150752, 1181532,787688, 5513816, 3938440,
1181532, 787688, 1575376, 18116824, 1181532, 787688, 1575376, 23163064, 3938440,787688, 26781392, 1181532,
787688, 1575376, 2363064, 393844, 4332284, 1181532, 787688, 1575376, 12209164,1181532, 787688, 1575376,
2363064, TRYGRE, I9IN4G, 4726128, 1575376, TATEAE, 1969220, T6405758, S3168940,1181532, TRYERA, 1575376,
2363064, 13918440, 1575376, TBT6B8, 153844, 10633788, 1181532, 787688, 1575376,2363064, 4332284, 1181532,
787688, 1575376, 12996852, 1181532, 787688, 1575376, 2363064, 393844, 17329136,1575376, TBI688, 393844,
1969220, 3150752, 1181532, 393844, 7483036, 1575376, 787688, 1969220, 2756908,1181532, 787600, 76405780,
38202802, 114608494, 66, 44, 88, 176, 352, 704, 1408, 2816, 3632, 11264, 22528,4505%6, 90112, 180224,
360448, 720896, 1441792, 2883584, 5767168, 11387222, 22495132, 319836, 213224,426448, 639672, 1066120,
1705792, 426448, 213224, 106612, 4584316, 426448, 213224, 106612, S33060,106612, 852896, 426448, 213224,

v Details 1599180, 1172732, 319836, 213224, 426448, 5223988, 319836, 213224, 426448,639672, 1066120, 319836, 213224,
7782676, 426448, 213224, 533060, 746284, 213224, 1705792, 319836, 213224,426448, 639672, 2238852, 426443,
Type: D Bug Status 213224, 106612, 2345464, 426448, 213224, 106612, 533060, 106612, 852896,426448, 213224, 106612, 22921602,
15245516, 319836, 213224, 426448, 639672, 1172732, 319836, 213224, 426448,3304972, 319036, 213224, 426448,
Priority BP3 Resclution Ficed 639672, 213224, 1279344, 426448, 213224, 533060, 3838032, 319836, 213224,426448, 639672, 213224, 106612,
L ) L ) 5330600, 319836, 213224, 426448, 639672, 1066120, 213224, 2345464, 426448,213224, 106612, 533060, 106612,
Aflects Version's None Fox Version/s n B52096, 426448, 213224, 106524, 22921624, 11460724, 34382260, 66, 44, 88, 176,352, 704, 1408, 2816, 3632,
. . 11264, 22528, 45056, 90112, 180224, 360448, 720896, 1001792, 1783584, 2649020,6739370, 102630, 68420,
Component/s core-libs 136840, 205260, 342100, 547360, 102630, 68420, 1436820, 102630, 68420, 136840,205260, 342100, S47360,
) 102630, 68420, 136840, 205260, 68420, 34210, 1607870, 102630, 68420, 136840,205260, 342100, 68420, 34210,
Labels None 2428910, 102630, 68420, 136840, 205260, 34210, 410520, 102630, 68420, 136840,1094720, 102630, 68420,
: . 136840, 205260, 63420, 34210, 444730, 136840, 68420, 34210, 171050, 34210,6876232, 4618350, 102630, €8420,
Subcomponent java.uticollections 136840, 205260, 34210, 342100, 136840, 68420, 34210, 992090, 102630, 68420,136840, 205260, 68420, 342100,
203260, 102630, 68420, 1163140, 102630, 68420, 136840, 203260, 68420, 1607870,102630, 68420, 136840,
Introduced In Version: 6 - < - . 3 - 432028, 10314194, 66,
Resolved In Build b20 Exception in thread "main” java.lang.ArraylndexOutOfBoundsException: 40 [oess, ssesss,
X K X X K 10912, 425568, 43648,
at java.util. TimSort.pushRun(TimSort.java:386) 1040, 32736, 21824,
. . . . , 43648, 63472, ’
v Backports at java.util. TimSort.sort(TimSort.java:213) ia6ds, 360096, 32736,
" . . 32736, 10912, 76384,
Issue  Fix Version Assignee Priority Status Resolution Resolved In Bulld at Java_ut]].Arrays_sort(Arrays.Java;ﬁsg) 1264, 22520, 45036,
JOK-8206770 12 Doug Lea P3 Resolved Fixed team . : . : . 2 . 9768,
at TestTimSort.main(TestTimSort.java:18) 3024, 100936, 976,
JOK-8206547 11.0.1 Doug Lea P3 Resolved Fixed bO1 13024, 19536, 32560,
768, €512, 13024,
19536, 3256, 143264, 13024, 6512, 3256, 16280, 26048, 9768, 3256, 61864, 13024,6512, 16280, 22792, 9768,
3168, 618684, 109254, 927850, €6, 44, 88, 176, 332, 704, 1408, 2816, 3632,11264, 22440, 23036, 45056,
v Description 72314, 121632, 2838, 1892, 3784, 5676, 9460, 15136, 2838, 946, 37840, 3734,1892, 946, 4730, 7568, 2818,
1892, 13244, 9460, 2838, 1892, 3784, 43516, 2838, 1892, 3784, 5676, 9460, 1892,65274, 2838, 1892, 3784,
Carine Pivoleau wrote: 5676, 946, 10406, 2008, 1892, 3784, 0272, 2038, 1892, 3784, 5676, 1892, 946,12298, 1784, 1892, 946, 4730,

While working on a proper complexity analysis of the algorithm, we realised that there was an error in the kast paper reporting such a bug
(httplenvisage-project. euwp-contentuploads/2015/02/'sorting. pdf). This implies that the correction implemented in the Java source code
(changing Timson stack size) is wrong and that it is still possdle to make & break. This is explained in full details in our analysis:

hitps JHfarxdv.org/pdt/1 805.08612 pdl.

We understand that coming upon data that actually causes this error is very uniikely, but we thought you'd sail like to know and do
something about it. As the authors of the previous article advocated for, we strongly believe that you shoukl consider modifying the
algorithm as explained in their article (and as was done in Python) rather than Irying % fix the stack size.

https://news.ycombinator.com/item?id=17883461

185438, 127710, 2838, 1892, 3784, 5676, 9460, 3784, 1892, 946, 26438, 2838,1892, 31784, 5676, 946, 10406,
2838, 1892, 3784, 31218, 2838, 1892, 3784, 5676, 946, 42570, 2838, 1892, 3784,5676, 9460, 17974, 3784,
1892, 4730, 6622, 2008, 1004, 105460, 92642, 270014, 66, 44, B8, 176, 352, 704,1408, 2016, 5632, 9064,
11528, 23606, 54340, 858, 572, 1144, 1716, 2860, 4576, B53, 286, 11440, 1144,572, 286, 1430, 2288, 858,
572, 4004, 2860, 858, 572, 1144, 13156, B58, 572, 1144, 1716, 2860, 572, 19448,858, 572, 1144, 1716, 286,
3146, 858, ST2, 1344, BR66, 858, 572, 1144, 1716, 572, 206, 3432, 1144, 572,1430, 55506, 38610, 8Se, 572,
1144, 1716, 2860, 1144, 572, 286, 7722, 858, 572, 1144, 1716, 3146, B58, 572,1144, 94138, B58, 572, 1144,
1716, 286, 12584, 1144, 572, 286, 1430, 2288, BS%, 286, 5434, 1144, 572, 1430,2002, 858, 484, 55528, 27676,
83116, 66, 44, BB, 176, 352, 704, 1408, 1716, 3872, BL18, 16192, 264, 176, 352,528, 176, 88, 1144, 352,
176, 8B, 440, 88, 3432, 352, 176, 440, 616, 176, BB, 1408, 264, 176, 152, 528,176, B8, 1960, 264, 176, 252,
528, 880, 88, 5808, 264, 176, 352, 528, 968, 264, 176, 352, 2640, 264, 176,352, 528, 176, 1056, 352, 176,
440, 16566, 11264, 264, 176, 352, 528, 8BO, 352, 176, 2376, 264, 176, 352, 528,968, 264, 176, 1352, 2816,
264, 176, 332, 528, 88, 3872, 264, 176, 352, 328, 880, 1584, 528, 264, B8, 616,176, 16388, 8206, 24706, 66,
44, 88, 176, 352, 704, 1408, 2090, 4708, 66, 44, B8, 132, 220, 352, 66, 44, BB,990, 66, 44, B8, 132, 220,
418, 88, 44, 110, 154, 66, 44, 1122, 66, 44, 8B, 132, 220, 88, 44, 22, 1716,88, 44, 110, 154, 44, 352, 66,




OpenlDK’s Collection.sort

On the Worst-Case Complexity of TimSort

Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau
Universitéd Pasise Est, LIGM (UMR 8049), UPEM, F77454 Mameo-la-Vallde, France

Al

TIMSOKRT s an Intrigeing sorting slgorithas designed in 2002 for Pythom, whose worst-case complexity was
anpounced, but not peoved umil our recest peeprint. In fact, there are two slightly different versicas of
TivSonr that are cerrently mplemested in Python sad i Jow respectively. We propose o podagogical and
insight ful geoof that the Pythos versica rums in time O{nlogm). The approach we use in the analysis abo
applies 1o the Java version, althbough not without very imvolved tochaical detaile. As a byproduct of our study,
wo uscover a bug in the Java implessentation that can cwvewe the sorting method to fail during the exocetics.
Wlbﬂwnpudlhl?ﬁhnlmmnlqumhnO(n#nN) where W is the estropy of the
dtritestion of runs (1o = ), which is quite a natural parameter bevo and past of
thu;hmzhnhukpudhdnmdmonmuy-m«l-wu Fizally, wo evaluate precisely
the wont-case remning time of Python’s TiMSOKT, and prove that #t & equal to 1 SN + O\n),

2012 ACM Sebject Classification Theory of competation —+ Sceting and soarching

Keywords and ph Sorting algorithms, Merge sorting algorithms, TimSort, Analysis of algoeithams
1 Introduction
huSombamluththinmbymﬁ(mIﬁ].fofuehnthel‘ylbnww
1 llm‘ ‘lnotbevvdl-banpmunmmluwm-knm
Jgorithen includ ' & few Bourimtics and some refined tuning, but
n-llgb-k\dphclpkhmhadmpk ThenquwbemdhﬂmdammpmedMﬂymo
je rums (ie. & ing oc q of S as depictad on Figure 1), which

m&mmﬂmm&uwmw«s&m&
S = (12,10,7,5 7,10,14,25,36, 3,5,11,14,15,21,22 20,15,10,8,5,1 )
S — ——————

frvt v secvend ran Whird rem rarth ren
=} 'wlhwﬂmmwmww'ﬁm hdtru.!hlﬂ!-om
determine If 1t s Increasing o o g, them it number of

1hat preserves the monotosicity.

The dea of ing with a & P o runs is not wew, and already appears in Knuth's
hA‘lLMl.\lmcISon [6]. where lnﬂnﬂl‘ rums are sorted using the same mechanism as in MERGESORT,
Onher tézed with & P into ress appear in the literature, such as the
MINIMALSORY of [10] (soe also [2] for other considerations om the sme topic). All of them have nice
propertios: they run in Ofn log n) and even O(n +n log p), where p ks the number of runs, which is optimal
in the model of sorting by comgarisans |T), using the chusical counting amgument foe lower bounds. And
yet, among all these merge-basod al } Ty s d in several very popular peogramming
lasguages, which suggests that it perfoems quite well in peacticn.

TevSonr running time was implicitly assumed to be Onlogn), but our unpublished peegpeien [1]
comtalns, to our knowledge, the first proof of it. This was more than ten years after TINSORT started
being wsed instend of QuickSonT in several major programening languages. The growiag popadarity of
this algorithm fovites for a careful theoretical In\mwm In the presest paper, we make a thorough

lysis which provides a better wsd, ding of the i qualities of the merging strategy of T
SorT. Indoed, nmv-hthu.m-uhamiunhd T ! this is an efective socting algorithm,

computing asd merging runs on the fly, wsing oaly local propertios 1o make its decisions.

IS broken!

OpenJDK’s java.utils.Collection.sort() is broken:
The good, the bad and the worst case*

Stijn de Gouw' 2, Jurriaan Rot®!, Frank S. de Boer'*, Richard Bubel®, and
Reiner Hahnle*

] cwl' Amatend, The Netherland:
? SDL, Amsterdam, The Netherlands
¥ Leiden University, The Netherlands
* Tochnische Universitit Darmstadt, Germany

Abstract, We investigate the correctness of TimSort, which is the main
sorting algorithm peovided by the Java standard libeary. The goal is
fusctional veriication with mechanical proofs. During our verification
attempt we discovered a bug which causes the implementation to crash.
Wech ize the conditions under which the bug occurs, and from this
we derive a bug-free version that does not promise the perfor

We formally specify the new version and mechanically verify the absence
of this bug with KeY, a state-of-the-art verification tool for Java,

1 Introduction

Some of the arguments often invoked against the usage of formal software veri-
fication include the following: it is expensive, it i not worthwhile (compared to
its cost), it is bess effective than bug finding (e.g., by testing, static analysis, or
model checking), it does not work for “real” software. In this article we evaluate
these arguments in terms of a case study in formal verification.

The goal of this paper is functional verification of sorting algorithms written
in Java with hanical proofs. Be of the complexity of the code under
verification, it is essential to break down the problem into subtasks of manage-
able size. This ks achieved with contrmct-based deductive verification (3], where
the functionality and the side effects of each method are precisely specified with
expressive first-order contracts. In addition, each class is equipped with an in-
variant that has to be re-established by each method upon termination. These
formal specifications are expressed in the Java Modeling Language (JML) [9].

We use the state-of-art Java verification tool KeY [4], a semi-automatic, in-
teractive theorem prover, which covers nearly full sequential Java. KeY typically
finds more than 99% of the proof steps automatically (see Sect, 6), while the re-
maining ones are internctively done by a human expert. This is facilitated by the
use in KeY of symbolic execution plus invariant reasoning as its proof paradigm.
That results in & close correspondence between proof nodes and symbaolic pro-
gram states which brings the experience of program verification somewhat close
to that of debugging.

* Partly funded by the EU geoject FPT.610582 Exvisace and the NWO peoject 612 063,920 CoRE.




An Example from DARPA STAC Program

Challenge Program:
railyard-manager.jar

Challenge Question:
Is there an algorithmic complexity vulnerability in space that would
cause the challenge program to store a file with a logical size that
exceeds the resource usage limit given the input budget?

Additional Background for Question:

Attacker is privileged (has railyard manager credentials for server
under attack)

Input Budget:
Maximum sum of the PDU sizes of the application requests sent from the
attacker to the server: 5 MB (measured via sum of the length field in
tcpdump)

Resource Usage Limit:

Available Logical Size: 5 GB (logical size of output file measured
with 'stat')

Probability of Success: 99%

o T Lol
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Private Repository: https://github.com/EnSoftCorp/STAC-E6-Engagement-
Apps/tree/master/engagement6/decompiled_source/STAC6-railyard_src_cfr
Vulnerability Report: https://docs.google.com/document/d/1-
VAyjZbzKBqgjVOohrFHFAJ6amXfSWraUZVPPWI33PXQ/
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What Can Be Done About AC Vulnerabilities?

* AC vulnerabilities arise because of design decisions, so solutions must
address these issues in design. But you can’t know what safeguards to
put in place if you don’t know how you’re vulnerable.

* Mitigation techniques include:

* Select a new algorithm. As a result of the hash table collision attacks in 2011,
most programming languages changed the data structure, used as bins, for
their hash table implementation.

* Use input sanitization. Sometimes the AC vulnerability present in a given
algorithm only happens for a specific class of inputs.

* You can restrict the input space a user can submit by placing explicit limits in your
application (e.g., limit the length of input, the use of certain options or characters, etc.).



What Can Be Done About AC Vulnerabilities?

* Implement hard resource limits. Occasionally, you need the strength
and flexibility of an algorithm that is vulnerable to attack, and the
input space is too difficult to restrict with input sanitization.

* |In this case, you can implement hard resource limitations for your application.

* Many applications will abort decompression when they encounter a
decompression bomb by refusing to extract data beyond a certain size.



Side Channel Vulnerabilities



Extracting audio from visual information

Algorithm recovers speech from the vibrations of a potato-chip bag filmed
through soundproof glass.

Watch Video

Larry Hardesty | MIT News Office
August 4, 2014
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https://news.mit.edu/2014/algorithm-recovers-speech-from-vibrations-0804
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'j‘ Sound played through
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/ speaker in the room

High speed video

(actual video playing here)

D)

The Visual Microphone: Passive Recovery of Sound from Video
https://www.youtube.com/watch?v=FKXOucXB4a8

Vechudes pasd promonon

D)

Can You Recover Sound From images?

Can You Recover Sound From Images?
https://www.youtube.com/watch?v=eUzBOLOMSCI



Side Channel Vulnerability

* Side channel vulnerabilities allow attackers to infer potentially
sensitive information just by observing normal behavior of software
system.

* Attacker can be active or passive observer.
* Like mind reading? Which thought do you currently think?

Last pizza you ate Why you are here?

® ® A melody of your

favorite song

A pink elephant
with wings

Your eyes may leak
this information

Read more about Representational systems (NLP): https://en.wikipedia.org/wiki/Representational_systems_(NLP)



Side Channel Vulnerabilities

Compromising Reflections

or

How to Read LCD Monitors Around the Corner

Michael Backes
Saarland University and
Max Planck Institute for Software Systems
Saarbriscken, Germany
badoestics. uni-sh.de

Abstract

We present o novel eavesdropping technique for spy-
ing af a distance on dats that is displaped on an arb-
trary computer screem, including the currestly prevalent
LCD momitors. Owr technigue explosts reflections of
the screen's optical emanstions in vanous ebjects that
one commonly finds in close promimity to the soreen and
uses those reflections to recover the oniginsl screen con-
tent. Such objects nclude epeglosses, tea pols, spoons,
plastic bottles, and cven the eye of the weer. We
have demonstrated thot this alteck can be succrasfully
mownted to apy on even small fonts wxing inezpensive,
off-the-shelf equipmsent (Tess than 1500 dotlars) from a
distance of us to 10 meters. Relving on more exsen

(1=

e LT BAVERAS WIT W LY eI
proach for spying oa confidential data. As early as in
1985, electrical emanations of CRT screens were suc
coafully exploited 1o recomstruct the screem’s content
froem a ditance (120 This attack was farther refined in
diverse vasiations of different lovels of sophistication,
e cmanatioes from the cable connectisg an LCD

Learn what a user types by observmg reflections
of monitor picture

Markus Dilrmuth Dominique Unruh
Saarland University
Saarbricken, Germany
{duwermuth unrub } Gcs uni-sh.de

the computer sl (or its display) is explited, Those
attacks can often be sucomsdully provented by shinkd-
ing the hardware to avoid the occurromce of theso anex-

pected emanations, o5, by usisg LCD displays instead
of CRT scrovess, by using spocially insslated eables, by
using soundless keyboards, and so on

Our work introduces a sidechannel that is not an id
wosyncrasy of the computer’s bebavior, but it exploits
the visual emanation of the screen itself ~ and hemce
its proper functionality - in combination with everyday
objects that are Jocated in close proximity to the screen
woch as toa pots, eyoglasses, plastic botthes, spocas, or
the oyv of the user. Our apgeoach is predicated om the
sden that the image of the screen can be reconstrocted

fromn refloctivas cm thoas ohivets wo Fleure 1 Wa

. — —
from over J(I m away. l'.mnml.ul\ ‘u-)-! results were
obtained from refloctions in & wer's eyeglases o a tea
pot Jocated on the desk next to the scroon. Reflections
that stems from the eye of the wer alo peovide good re-
wults. Howewer, eyes are harder to spy on at a distasce
because they are fast-moving objects and roguire high

Timing Analysis of Keystrokes and Timing Attacks on SSH*

Dawn Xiaodong Song

David Wagner

Xuging Than

University of California, Berkeley

Abstract

SSH w designed 10 provide a secure channel betwoen
two hosts.  Despete the encryption and authentication
mechanisms it uses, SSH bas two weakness: First, the
transmitied packets are padded only o an cight-byse
Boundary (i & Block cipher is in usc), which reveals the
approximate swee of the original data. Second, in meer-
active mode, every individual keystroke that a user types
15 sent 10 the remote machine in a separate [P packet ins-
mediately aficr the key s pressed, which Jeaks the meer-
keystroke timing information of wsers’ typing. In this
paper, we show how these seemingly mincr weaknesses
result in senous socurity nsks.

First we show that even very simple statistical sech-
mgees saflice 10 reveal sensitive information such as the
Jength of users” | ds oF even root | ds. More
importantly, we farther show that by using more ad-
vanced statistical sechniques ca timing information col-
Jected from the network, the cavesdropper can learn sig-
saficant information about what uscrs fype in SSH ses-
sions. In particular, we porform a statstical study of
wsers' typing patierns and show that these patierns re-
veal mformation about the keys typed. By dneloynng a
Hidden Markov Model and our key seq

1 Introduction

Just a few years ago, poople commanly used astonish-
ingly insecure networkiag applications such as tol~
net, rlogin, or ftp, which simply pass all confi-
dential information, including wsers’ passwords, in the
clear over the nerwork.  This situation was aggravated
throsgh broadcast-based networks that were commonly
used (e.g., Ethemet) which allowed a malxious user to
cavesdrop on the network and to collect all communi-
cated information [CB9, GS96),

Fortunately, many users and system admanastrators have
become aware of this issue and bave takes counter-
To curd droppers, security research
desgned the Secure Shell (S5H), which offers an en-
crypted chanmel between the two hosts and strong au-
theatication of both the remote host and the user (Y96,
SSLOL, YKST00b). Today, SSH is quite popular, and it
has largely replaced telnet aad rlogin.

Many wsers believe that they are secure agunst caves-
droppers if they use S5H. Unfortemately, in thes paper
we show that dcs;mc state- of ‘hc-.m encryption lah-
niques and ad dy

[VKS*00s], $5H connections can still leak signiicast

algorithm, we can predict key sequences from the ister-
keystroke timings. We further develop an attacker sys-
tem, Herbivore , which tnes to leam users’ passwoeds by
moanoring SSH sesuons. By collecting timing informa-
tion om the network, Herbivore can speed wp exhaustive
search for passwords by a factor of 50. We also peopose
WE COUNCIMCasures

In general cur resulits apply not only to SSH, but also
%0 a general class of prosocols foe encrypling interactive
traflic. We show that timdng lcaks open 3 new sct of
security risks, and hence caution mest be taken when
designing this type of protoecol.

about sensitive data such as wusers’ pass-
woeds. This problem s particularly senows because it
means users may have a false confidence of secunty
when they use 55K

In particelar we identify that two secangly minor weak-
nesses of SSH lead W serious security risks. Fast, the
transmitted packets are padded caly 10 an cight-byte
boundary (if a block cipher is in use)  Therefore aa
cavesdropper cam cassly Jearn the sppeoximate length of
the original data. Secomd, in interactive mode, every
individual keystroke that a user types & soot to the re-
mote machine in & scparate [P packet immedisely af-
tex the key is pressed (except for some meta keys such
Shift or Ctrl). We show in the paper that this prop-

Learn what a user types by observing inter-

packet timing in encrypted SSH session

Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow

Shuo Chen
Microsoft Rescarch
Microsoft Coeporation
Redmond, WA, USA
sheocheni@microsofl com

Abstroct- With saltwareas-a-service becoming madnstream,
unﬂmtm&“lnwmﬂuhlﬁ-lw
the Web, Usnlike » desktop » web

Ruis Wang, XiaoFeng Wang, Kehuan Zhang
School of Informatics and Computing
Indiana University Bloomington
Bloceiagton, IN, USA
[wang63, xw?, kehshang )@ indiana. odu

data flows and coatrol flows) are inevitably exposed on the
network, which may reveal application states and stase-

'Itlm-w-‘-n-r-d&mnt.Auhﬂd

p S — flaws are inevitably
np—dulh-ﬂnﬂ.\\nh—ﬁuk-#nﬂ,pﬂhﬁ
2 side-channel isformation beak is a realistic and serfous threat
to wser privacy. Specifically, we found that serpeisisgly
Octailed sensitive mformation is Deing beaked out from »

To protect the information in  critical
spplications against network sniffing, 3 common practics
10 encrype ther network traffic. However, as discovered in
our research, serious information leaks are still a reality.

For example, consider a user who entors her health
profile imo Omlinetealti’' by choosing an illness condition
of a contain
illness causes the browser 10 communicate with the server-

wember of high-profile, topoftheline web applications i from a list p dod by the appl Seb
taxaton, md web searchs e
cavesdropper can lafer the Wi pevies of  gide comp of the appl

the user, her family lncome and Investment wcrets, dasplie
HYTPFS protection; a stranger on the sreet can glean
enterprive employees’ web search queries, despite WPAWPA2
Wi-Fi encryptisn. More importanily, the rost causes of the
problem are some fendamental characteristics of web

stateful low entropy input for
better interaction, sad significast traflic distisctions. As »
resalt, the scope of the problem seems Industry-wide. We
further present a comcrete analysls to demomtrate the
challenges of mitigating such a threat, which pelats to the
Ma.awmpumuw

In future web >
Kq-w‘r— vide-channel-leak; Softwere-ave-Service (Soal); web
app pied wraffic; wet; padding
L INTRODUCTION

Regerding the pyewdonyms used in the poper

This paper repoets information leaks in several real.
world web applications. We bave notified all the
affected parties of our findings. Some requested us to
anosymize their product names. Throughout the paper,
we use sepencript “A” 1o denote such pseadonyms, c.g,
OnlineHeaith", OnlineTax", sad Onlinelnvest'.

The drastic evoletion in web-based

which in turn wpdates s
state, and displays the illness on the browserside wser
imerface. Even though the communications pencrated
during these stale transitions are protectad by HTTPS, their
observable attributes, such as packet sizes and timings, can
still give away the information about the user's selection.

Side-channel information leaky. It & well known that
the aforementioned attributes of eacrypted traffic, often
referred %o as side-channel inlormanion, can be used %
obtain some insights about the communications. Such side-
chasnel information leaks have been cxtensively studied for
& decade, in the context of secure shell (SSH) [15), video-
streaming [13). voice-over-IP (VoIP) [23). web browsing
and others. P lacly, a line of h ducted by
various rescarch groups has stodied anosymsty sses in
encrypied wed traffic. It has been shown that because each
web page has a distinet size, and usaally loads some
resource obgects (0.g., images) of difforont sizes, the attacker
can fingerprint the page so that cven when a usor visits it
through HTTPS, the page can be re-ideatified [7)(16). Thas
Is & comcern for anceymity chansels such as Tor [17), which
are expected to hide users' pago-visits from cav:

Although such side-channel Jeaks of web traffic havr
been known for years, the whole issuc secms to be neglested
by the general web industry, peesumably becwsse latle

has
come o the stage where il are nghy

d exists 10 & the ser of their
other than the effect on the wsers of

delivered as services 10 web cllm Such a soft

service (SuS) paradigm excites the software mdustry.

h s Today, the Web has evolved beyond a

ptﬂnhq -y-n:m for tlw web pages, aad instead,
for delivermg full-fledged software

Comgared 10 deskiop soft web appls hwlbc
of net licnt-sid 1l app
wduu mdvmumemlodepkomd R\hy

! l'be side<chanae| vulnerlbllmei of encrypted
Kt coupled with the distinct features of web

Learn about the user actions performed on Web

by observing packet sizes in encrypted Web traffic
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Exposing Private Information

by Timing Web Applications
Andrew Bortz Dan Boneh Palash Nandy
aborz@es. stantoed edu dabo@cs stanford edy o

ABSTRACT
We show that the time wels sites take to respond to HTTP
requests can leak private ik using two different

to respond to HTTP requests. Wo experiment with two
Lypes of direct sttacks:

types of attacks. The first, derect timang, directly meswares
respotse times from o web site 10 expose private nforma
tion such as validity of an wsersame at a secered site or the
tremnber of privale photos i & publicly viewabde gallery. The
second, cross-site timing, enatidos & malicious web site to ot
tain mformation from the wer's perspective st ascther site.
Foe example, & malichous site can boarn if the user is curvestly
Jogged in at & victim site and, Ilwmthmmd
objects | the usr's shop cart. Our exp

goot that these Uiming vulseeabilitios are widespoead. \h
explain In detall how and why these attacks work, and dis-
cuwe methods for writing web application code that rexits
these attacks.

Categories and Subject Descriptors

K 44 [Computers and Society] Electronk Commerce
Secunty; KA1 [Computers and Sockty]: Public Pelicy
Isswes  Privacy

General Terms
Design, Secerity, Experitentation

Keywords

web application secerity, web browser design, privecy, web
spocfing, phisking

1. INTRODUCTION

Wb applications are vulnerable to a variety of well pobs-
liciood attacks, sech s cross-site scripting (XSS) (15, SQL
Injection [2], cromssine roquest forgery [14], and many oth
erx. In this pager we suody timing venerabilition in web
application implemestations. Owr results show that timing
data can exposo private information, suggeting that this -
sue b oflen igaoeed by web developers. We first discue Lhe
type of information revendod by o timing sttack and then
discuss ways 1o provest sach attacks.

W cotmider two classes of Liming attacks. The first, called
.maumm«metnmmmeuﬁu

. 5 badden data sise. Mazy wites holding user
data, sech as photo-sharisg sites, bogging sites, and
social metworking sites, allow users to mark certam
data as private. Photo sharing sites, Sor example, al-
low users 10 mark certain gallerios as caly viewable by
cortain users. We show that direct timing measwre
mests can expose the existence of private data, and
even reveal the size of peivate data such as the num.
ber of Mdden pictures in & gallery.

o Loaming bidden boolean valses. Web login pages of-
ben try 10 hide whether a given username s valid
the same error message bs retursed whether the mput
username is vald or sot. However, in many cases,
the site executes a diferent code path depending on
nwlydlbpvwm As & rosclt, timing

walidty depito the

<can
site’s Mtempt 10 concend .

The socond class of attacks, called crous-sife timing, s a
iwnol(n‘dkwbmuyll(: The sttack enalies &
wte to cbtaln about the user’s view of
ancther site - a violaticn of e same-crigin principle (11,
8. We describe this attack in Section 4. At » high level, the
attack bogins when the user visits a malicions page, which
proceeds Lo Lime & victim web site using ooe of several toch-
niques, all of which tisse the exact contest the user would
actually see. Wo show that this timing data can reveal poi-
vate information: for example, it can revonl whether the user
s curvently logged-in. In some casos, timing Information cas
even reveal the sise and contents of the usr's shopping cart
and other private data, as discussed is Sectica 4. This in-
formation enables a context-aware phishing attack [ where
tho wser i prosonted with a custom phisking page.

These altacks exphoit weakneses in serverside applica-
tion softwase, specifically whes execution time depends on
sensitive infoemation. Osr resudts sggest that these vulsee-
abilities are often ignoeed.

L1 Related work

Timing attacks were used to sttack arypio e
plementations oo smartcards (10, 12, 1) and web servers [4,
1. Felten and Schacider 6] wsed & onche based timing s
tark to track weh wesre Thels e b that ance a e vidte

Learn existence of username from
response time of Web application

Exposing Private Information

by Timing Web Applications
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ABSTRACT
We show that the time -buu-tdewu-pm"ollm

to respond to HTTP requests. Wo experiment with two
Lypes of direct sttacks:

requests can leak private using two different
types of attacks. The first, derect timang, directly mesvares
respotse times from a web site 10 expose peivate informa
tion such as validity of an wsersame at a secered site or the
trember of privale photos i & publicly viewabde gallery. The
second, cross-site timing, enabidos & malickous web site to ol
tain mformation from the wer's perspective st ascther site.
Foe cxample, & malicious site can boarn if the user is curvently
Jogged in at a victim site and, in some cases, the sumber of
objects | the usr's shop cart. Our exp g
goot that these Uming vulserabilitios are widespeead. We
expiain in detall how and why these attacks work, and dis-
cwe methods for writing web application code that resiis
Uhese attacks.

Categories and Subject Descriptors

K 4.4 [Computers and Society] Electroni Commerce
Secunty; KA1 [Computers and Sockety|: Public Policy
Isswes  Privacy

Denign, Secerity, Experitentation

Keywords
web application security, web beowser design. privecy, web
spocfing, phissing

1. INTRODUCTION

Web applications are vulnerable to a variety of well pobs-
liciood attacks, sech s croms-site scripting (XSS) (15, SQL
Injection [2], crosssite request forgery [14], and many oth
erx. In this pager we sody timing venerabiltion in web
application implemestations. Owr results show that timing
data can exposo private information,
s b oflen igaoeed by web developers. We first discue the
type of information revendod by o timing sttack and then
discuss ways 1o provest sach attacks

We cormider two classes of Liming attacks. The fint, called
& direct timing otfock, messures the time the web site takes
Copyright is held by e Iersational World Wide Web Conflesence Com-
e (TWIC2) Distrbesion of those papers s limind 1o clasasom s,

-d wie by others.
LI SO M £ 17 WD Baall A st

. 5 badden data sise. Mazy wites holding user
data, sech as photo-sharisg sites, blogging sites, and
sockal metworking sites, allow users to mark certam
data as private. Photo sharing sites, Sor example, al-
Jow users 10 mark certain gallerios as caly viewable by
cortain users. We show that direct timing measwre
ments can expose the exisence of private data, and
even reveal the size of peivate data such as the num.
ber of Mdden pictures in & gallery.

o Loaming bidden boolean valsos. Web login pages of-
ten try 10 hide whether a given username s valid
the sume ermor mesage s returmed whether the mput
username is valid or sot. However, in many cases,
the site executes a diferent code path depending on
nhhlydtbmm As a rosclt, timing

waliday dopito the

can expose
site’s Mtempt 10 concend .

The socond class of attacks, called crows-nte fiming, s a
muwummll( The sttack enalies &
wte to obtaln about the user’s view of
ancther site - a violaticn of the same-crigin principle (11,
8], We describe this attack in Section 4. A5 a Migh level, the
attack bogins when the user visits a malicions page, which
proceeds Lo Lime & victim wob site using ooe of several tech-
niques, all of which tise the exact contest the user would
actually see. Wo show that this timing data can reveal pai-
wate information: for example, 1t can revenl whether the user
s curvently logged-in. In some casos, timing Information cas
even reveal the sise and coatents of the user's shopping cart
and other private data, as discussed is Sectica 4. This in-
formation enables a context-aware phishing attack [% where
the wser s prosonted with a custom phisking page.

These altacks exphoil weakneses in serveraside applica-
thon softwase, specifically when execution time depends on
sensitive infoemation. Ouer results suggest that these vuloes-
abilities are often ignoeed.

L1 Related work

Timing attacks were previcusly used to sttack arypio -
plomsentations oo smartcards (10, 12, 15 and web servers [4,
1], Felten and Schaeider |6 wsed a cnchobased timing s
tack to track web users. Thele ion is that once & user visits
& static page, her local cache contaims a copy of the page

causing 1he page 10 Joad fater oo sebsoquent visits. By
renamrine the time tha hacmer $ 2k to load 2 shen nane

Learn the amount of hidden images in Gallery
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ABSTRACT

ﬂm-d—-d.ﬂ:he—wmmd
wiers’ Web Browsisg histories. The anacks sllow a malicious Wed
she w0 determine whether or 5ot the user has recently visited some
oher, unrelated Web page. The malcious page can determane this
information by mecasaring the time the wser’s browser roguires o
perfoem certain operations. Since browsers perform vanous forms
ol“hmm—dfamwau-ﬂl

damlnn-yclmm:»m most of them.
1. Introduction

Thes paper describes & class of sttacks that allow the privacy of
wsers” activines on e Web 10 be compromised. The anacks al-
low amy Web st %0 detormaing whethor or not cach visior o the
s has recondly visited some other site (or st of sites) on B Web.
The attacker can do this without e kaowledge or consent of -
ther the user or the ofher site. For example, an imurance-company
mmmuwumummww
relatieg W & far eocdical of m employer's Web
she could detormime whether an employee visiting & had recently
visited the sites of vanous political ceganizations.

mmmnmumuuwwn
the uscr's beowser %o perform certain op

o Stmdand Web * services do mot provent the
anachs, in masry cases they actually make the smacks worse.

o Disabling browser featarcs wech as Java, JavaScripe, and chere-
wide caching do not peevent the attacks.

© The only effective ways we know 10 peevest the amtacks re-
quise cither an usacceptable slowdown in Web access, or &
modification 1o Be design of the browses.

* Even modifying Se browser design allows caly a parsal rem-
ody; several attacks remain possidle,

1.1 Why Web Privacy Matters

There is now widespread concern about the privacy of usens” ac-
tivitios om the Works-Wide Web. The list of Web locations visiad
by a sser ofien conveys detailed information sbout e wer's fam-
ily, fisancial oc health sitaation. Comeguently, users ofien cossider
their Webbeowsing history 10 be private informanion thet Bey do
Dot want unknows parties 0 Jearn. OF course, visiting & Web sine
nocossarily beaks some information to that site; bt users wosld like
some assurance that information abost Seir vists 10 3 w20 s not
available 1o arbutrary Sird partics.

Thus far i e short hintory of the Web, two fypes of prob-
leres have led 10 compromise of wsers’ Web-browsing histories, and
remadies are available for both types.

Firgt, some Web sites gather information and then reveal it %
Mm“hmmolm (Alromatively,
some ites casae usery’ b to reveal i &roctly o3
thind-pacty site) Mp&h-hvbn“-dhyhm
of privacy policies and thisd paety sadits of Web sines. While these

mMWeb-uuuah-mMnkpu. Dyna-u
ing the time roquired by cerais operations, & Web sine can loarn
Informanon about the wser's past activithes. These attacks are par-
thoularly woerisome, for several reasons:

* The amacks ace possidle because of basic peoperties of Web
browsers, not because of fable “Degs™ In a browser.

® The anacks can be carried out without the victim's kaowl-
edge.

Permisscn to make dipial or hard copies of all of part of this work for
N-“uu'-ﬂ fow provided Dae copus ae
mot made o and hat coples

for profit or
Boar this notice wnd the full clation on the fiest page. To copy efhcrwine, o

Learn private key of SSL server

dies lewve mach o be desired, ey do pive users a chasce 1o
goess where information will go after it is evealed % a liw-abiding
she

Second, some imapls bogs in have pe
opporterstics for Mmbﬁm
without e wer's comsent. While Bhese bugs e part of an usfor.
tunaie patiern of security bugs i browscrs, cach bug by itself has
been fable.

The attacks we describe in this paper admit no such remedy. Bee
caune imformation about visits %0 a w20 is not controlied by that site,
peivacy policios, saditing, aad trust in sites are st ofoctive reme-
dics. Becawse the attacks are not causod by beowser bugs, ey
carmet casslly be fixod.

2. Exploiting Web Caching
first review how Web caching works, and then discuss Dhe amack.
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Abstract

L by have boes adopted by social
mum«nhwn-wdm
g wer provacy wilh wtility. Howewer, misconceptions about
he privacy offered by prosissty servioes have senderod asers
walserabie 10 trdatoration attacks that can expuome thelr ko
cathon. Such sttacks have seoived major publicity and, s a
rovult, poprales service providers have deplosnd coustermaen-
wures for provesting user discovery atiacks.

Bn this pageer . we sywtomatially assens tUhe effontivermss of
the defenarn that prosumity servions have depdoye] againet
dmumm“‘&y.-r'-hr.n W pro-
vide the th 1 fouanda e § Juing the probd
ander Afferent pronimty mhh‘l%lwﬂ.ﬂ ks
e onch onse, and peove Ut bounds on the pmber of
qeerios reguined Sor carrying oun the sttacks. To evaleate the
compietones of owr appronch, we condect extessive saxperi-
mends agaiast popraler services. While we idemtify & diverse
»et of deferme Vochmiques thal porvert trilsteralion sttacks,
e devncantrale Uhelr ine@i wacy agaitnt seare elalarate ot
Sarkon. In faet, we plapuing Faoebook users withis 5 metons
of thelr exact location, sad %% of Foursquare weers within
15 meters. Owur sttacks are extremely oficient and complete
within 3.7 soonds. The severity of our sttacks was achnowl.
exhged by Facebuood aned Fonrsguare, Lt of which have fol.
lowed osr recomemndations and adopted spatial closlcng to
’munlhul-u Parthermore, our fndiags have wide

- vaﬂhln-n-r

¢ Lol

g d bie 1o Ui stgad hrest.

1. INTRODUCTION
Location-based services (LES) have becomme sa btegral

part of everyday Me However, acoomilibty 5o fowe gramed

Bowathon infrmmation has raised signifcant jeavny comorim,

- wers ae exponed o vark A ranging from e
indorence of senmitive data 59 (e, medical o, polith-
oal inclimation and religious belieds) to plysieal th wach

porserviag ol docofven pronmaly: notifyng users
bt whe s sonrbey, and ot what dtasce. Howeser, when
e et distanoe 50 & umer bs reveadod by the service, trilat
attacks bs Seauiblo, wirh several exsnpion belng
possented i the media recemtly. Artiches Save also reported
hat the Egrptian grverament wsod (rilaleralion 1o keate
aend lempeinom users of gy dating apge |7, 9. While the wse of
trillatoration has not bees confrmed, wach seports highlighe
the p Al soverity of wach chon, aned the limportance of
mmwmd—- Naturally, those
reports have cwaght (the attention of popelar services, which
i tarn have degdopmd deferme mevbarioms 5o prevest buad
Ination attacks |2
In this paper, wo explore the peivacy guarsatos of 10
popadar social networks and LES. We sadit the serviom aad
Mentify the mechanmms depdoyedd S0 protiect Lhe calion
petvacy of their weers. To evaluate the defenses that have
v adopted By the indestry, we Semaloe the prodlom of
locating wsors s & seaarch probiess i the 44
plane. To our knowdedge, thin s the first formal toostesent of
wer discovery stiacks i prosimity services. We prove tight
Bamaads o Uhe amien off uerion sepuired 50 attark & service
under difevent pooximity models, and deviee optimal slgo
rithes that realise those attacks. The lower bounds on the

qury s of our technig m-—m-u-
Ube effectivemens of Higathons apninmt boe wilachs.
M-vwlmt&nﬂwdw—

We evaluate our drat four of the andtod sr-
vioes that oy sl We sbow

-

mlwmumwmnm"
comphex. our ollacks mclude grometrk
MI- that gradually reduce the candidate boumding
arvn where & user roskdon, the smploywent of colleding s
counts for obt. wide chy | b on the diat
betwoen wsers, and the stiluation of statistionl algoeit heas
for coping with the randomisation used by servioes s & de
fomse woevhasiom Ouvr resadts demmmatrate That, desgete the

o slalking |10, Parthermore, apart from the resvelatioes se-

mose tangeted, and uscorthodon, taction. Pake prolles aow
-dhhb-ﬁm-‘wnx_hy«ndm-
woll as track their wh te g \helr chock-
I bebanior 0 81 Therebure, the information socossdide by
mr—u&u-a“‘wdl&nvﬂ-ﬂy
Nevealing & weer's b d s

wacy beeach |40 “mmwulhmpﬂm

b wehandens s place, oo attacks aoe sl very of
fective and time-ofcent, and practioal for uwse st scale and
on & costisoous beasis (owal-timee tracking). In partioular,
using & single scovant, we plepoint Facebook users within
5 meters of thewr actund location in 3 seconds, and 0% of
Foursqeare's Swarm s within 15w s 7 woosds. We
Wn Ataves towt oo attacks and demcostrate the Seaniiity
of racking moving tangets in seald time. Due to the recest
events [V, Gridr bideos the datance information for ctens
of opgrossive reginms. Even withonst angy distasce informa
thon e bomed, we are alde Lo carvy ot suooesefel attacks by

In fact, we pinpoint Facebook users within 5
meters of their exact location, and 90% of
Foursquare users within 15 meters. Our attacks
are extremely efficient and complete within 3-7
seconds.
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Side Channel Vulnerability ittt

* A side-channel attack is any attack based on information gained from an
unintended behavior of a computer system, rather than weaknesses in the
implemented algorithm itself (e.g., cryptanalysis and software bugs).

* Timing information, power consumption, electromagnetic leaks or even sound can
provide an extra source of information, which can be exploited.

* Side-channel attacks on the web can occur, even when transmissions
between a web browser and server are encrypted.

* According to researchers from Microsoft Research and Indiana
University[1] Many powerful side-channel attacks are based on statistical
methods pioneered by Paul Kocher[2].

[1] Side-Channel Leaks in Web Applications - https://www.microsoft.com/research/publication/side-channel-leaks-in-web-applications-a-reality-today-a-challenge-tomorrow/
[2] Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems - https://link.springer.com/chapter/10.1007%2F3-540-68697-5_9



General Classes of Side Channel Attacks

Cache Attack

is based on attacker's ability to monitor cache accesses
made by the victim in a shared physical system.

Power Monitoring Attack
make use of varying power consumption by the
hardware during computation

Acoustic Cryptanalysis Attack

exploit sound produced during a computation

Data Remanence Attack

sensitive data are read after supposedly having been
deleted

Timing Attack
is based on measuring how much time various
computations take to perform

Electromagnetic Attack
is based on leaked electromagnetic radiation, which can
directly provide plaintexts and other information

Differential Fault Analysis Attack

secrets are discovered by analyzing software faults

Optical Attack

secrets and sensitive data can be read by visual
recording using a high-resolution camera or other tools



Timing Side Channel Attacks

* Every logical operation in a computer takes time to execute, and the
time can differ based on the input; with precise measurements of the
time for each operation, an attacker can work backwards to the input.

* A timing attack is a side-channel attack in which the attacker attempts
to leak sensitive information by analyzing the time taken to execute or

run some systems’ components.
RUNCH CONCUITENE MoQuesls
* CODELFD SO g

Attacker server Targeted website
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Timing Side Channel Attacks

bash-3.2%$ time if [ 1 == 1 ]; then sleep 5; fi

|real  @m5.008s
user UmY.UU1S
Sys on®.004s
bash-3.2% time if [ 1 == 2 ]; then sleep 5; fi

‘rcal 0m0.000s
user UnY . 0uus
Sys on0d.000s
bash-3.2%




Timing Side Channel Attacks

bash-3.2% whoami
ahmedtamrawi
bash-3.2$% time if [ $(whoami | cut -c 1) == r ]; then sleep 5; fi

real @m0.009s
user UmU.U0LS
sys omd.007s
bash-3.2% time if [ S(whoami | cut =c 1) == b ]; then sleep 5;

real 0m0.007s

user UWU.U0LD

Sys omnd.006s

bash-3.2% time if [ $(whoami | cut -c 1) == a ]; then sleep 5;
|

real Om5.014s

user Unv.0055

Sys 0m0.008s

bash-3.2%




Timing Side Channel Attacks

Login Form o o X )Y
Email or Phone E]
Username .Eg Password -m
Exists? Locked? ‘ correct? ‘ Login Successful
Password

/

Can an attacker leak sensitive information about the existence of a
username by measuring the time difference in the control flow?

Not a member?




Timing Side Channel Attacks

Login Form
Email or Phone Z

Password

Username Exists
AND

User not Locked
AND

User not Expired
AND

Password Correct

E]:—

Login Successful

Joining Control Paths (Pack
all DB queries in one sQL
statement)

-

Not a member?

Can an attacker leak sensitive information about the existence of a
username by measuring the time difference in the control flow?



Timing Side Channel Attacks

X

Login Form Y

Email or Phone
Password

correct?

Username
Exists?

I Login Successful

Password

¢

Changing Control Flow paths to have
same execution time (fix r'espgnse
time to worst case execution time)

' |
Serious performance impact:

Not a member?

Can an attacker leak sensitive information about the existence of a
username by measuring the time difference in the control flow?



Login Side Channel Attack Example

* The login mechanism has some short circuit logic
that does not compute the hash of the given
password if the user does not exist in the database.

* By examining the response times of various users
(regardless of the provided password) an attacker
can enumerate and discover the web applications
users.

* Demo code is available at:
https://github.com/benjholla/LoginSideChannels

Login Form

Email or Phone

Password




Login Side Channel Attack Example

* Vulnerability: The existence of il i o o

users can be inferred through Lices[pum [ [
timing differentials. =

i |
* Because of the additional time to
check password, more time is = = =
required when it is a valid S ————
username compared to an invalid ofr—
username. |
* Attacker does not need to know

valid passwords, only needs to
guess the valid usernames.



Timing Side Channel Attacks Examples

* The execution time for the square-and-multiply algorithm used
in modular exponentiation depends linearly on the number of '1' bits

in the key.
* While the number of '1' bits alone is not nearly enough information to make
finding the key easy, repeated executions with the same key and different

inputs can be used to perform statistical correlation analysis of timing
information to recover the key completely, even by a passive attacker.

Example: square-and-multiply RSA exponentiation.

procedure modular exponentiation(h: integer, n = (ag_yag-3 .. .ayag)a,
m: positive integers)
v =1
power := b mod m
fori :=0tok ~ 1
if @, = 1 then x := (x - power) mod m = > e e > =
' b s Els[Ele (e EleEle(sE|slzlelz elelelE 2B 2|
e medm 22122222 2|2 2|22'2|3|82|3|2 22122 /8I3'3
return 1 {x equals »* mod m) » EIFIEIS|® E BIE BIRIE B|la|d alala | E'BE 2ld &
- - - - - - L B L B B B B B o B - L B B o e
1 1 (o) 1 1 o 1 000 "B O 1 0O O ©




Timing Side Channel Attacks Examples

* The execution time for the square-and-multiply algorithm used
in modular exponentiation depends linearly on the number of '1' bits

in the key.
* While the number of '1' bits alone is not nearly enough information to make
finding the key easy, repeated executions with the same key and different

inputs can be used to perform statistical correlation analysis of timing
information to recover the key completely, even by a passive attacker.

Example: square-and-multiply RSA exponentiation.

procedure modular exponentiation(h: integer, n = (ag_yag-3 .. .ayag)a,
m: positive integers)
v =1
power := b mod m
fori :=0tok ~ 1
if @, = 1 then x := (x - power) mod m = > e e > =
' b s Els[Ele (e EleEle(sE|slzlelz elelelE 2B 2|
e medm 22122222 2|2 2|22'2|3|82|3|2 22122 /8I3'3
return 1 {x equals »* mod m) » EIFIEIS|® E BIE BIRIE B|la|d alala | E'BE 2ld &
- - - - - - L B L B B B B B o B - L B B o e
1 1 (o) 1 1 o 1 000 "B O 1 0O O ©




Examples

* Some versions of Unix use a relatively expensive implementation of the crypt library
function for hashing an 8-character password into an 11-character string.

* On older hardware, this computation took a deliberately and measurably long time: as
much as two or three seconds in some cases.

* The login program in early versions of Unix executed the crypt function only when the
login name was recognized by the system. This leaked information through timing about
the validity of the login name, even when the password was incorrect. An attacker could
exploit such leaks by first appiying brute-force to produce a list of login names known to
be valid, then attempt to gain access by combining only these names with a large set of
passwords known to be frequently used.

* Without any information on the validity of login names the time needed to execute such
an approach would increase by orders of magnitude, effectively rendering it useless.
Later versions of Unix have fixed this leak by always executing the crypt function,
regardless of login name validity.



Timing Side Channel Attacks Examples

* Two otherwise securely isolated processes running on a single
system with either cache memory or virtual memory can
communicate by deliberately causing page faults and/or cache
misses in one process, then monitoring the resulting changes in
access times from the other.

* Likewise, if an application is trusted, but its paging/caching is affected
by branching logic, it may be possible for a second application to
determine the values of the data compared to the branch condition
by monitoring access time changes; in extreme examples, this can
allow recovery of cryptographic key bits.



Timing Side Channel Attacks Examples

bool insecureStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
for (size t i = 0; i1 < length; i++)
if (ca[i) != ¢cb[i)])
return false;
return true;

}



Timing Side Channel Attacks Examples

bool insecureStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
for (size t i = 0; i < length; i++)
if (ca[i] != ecb[i])
return false;
return true;

bool constantTimeStringCompare(const void *a, const void *b, size t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size t i = 0; 1 < length; i++)
result &= ca[i) != cb[i];
return result;



Timing Side Channel Attacks Examples

bool check password(const char input[]){
const char correct_password[] = "hunter2”;

if (strlen(input) != strlen(correct password)) return false;
for (int i = 0; i1 < strlen(correct password); i++){
if (input[i] != correct password[i]) {

return false;

}

return true;



An Example from DARPA STAC Program

Challenge Program:
pwcheck.jar

Challenge Question:

Does the Challenge Program contain any vulnerability that would allow
for the password stored in the password file to be extracted (without
directly looking at the password file) solely by measuring the time
response of repeated queries to the the pwcheck program?

Additional background for question:

It may be assumed that the secret contained within the password file
consists of a password of 5..30 UTF-8 encoded UNICODE charactes from following subset:
[a..z|A..2]0..9]

Available Operations:

Passive Observations: None

Active Interactions: Run Challenge Program once (1)

Operational Budget:

Max number of operations : 186€@
Probability of success : 99%

Private Repository: https://github.com/EnSoftCorp/STAC-Engagement-Apps/tree/master/white-team-examples/jimple/ex3



Timing Attack Avoidance

* Many algorithms can be implemented (or masked by a proxy) in a way
that reduces or eliminates data dependent timing information,
a constant-time algorithm.

* Consider an implementation in which every call to a subroutine
always returns in exactly x seconds, where x is the maximum time it
ever takes to execute that routine on every possible authorized input.

* In such an implementation, the timing of the algorithm leaks no information
about the data supplied to that invocation.

* The downside of this approach is that the time used for all executions
becomes that of the worst-case performance of the function.



Timing Attack Avoidance

* The data-dependency of timing may stem from one of the following:

* Non-local memory access: Software run on a CPU with a data cache will
exhibit data-dependent timing variations as a result of cache lookups.

e Conditional jumps.
* “Complicated” Mathematical Operations depending on the actual CPU
hardware:

* Integer division is almost always non-constant time. The CPU uses a microcode loop that
uses a different code path when either the divisor or the dividend is small.

* CPUs without a barrel shifter runs shifts and rotations in a loop, one position at a time.
As a result, the amount to shift must not be secret.

e Older CPUs run multiplications in a way similar to division.



Side Channel Attacks Countermeasures

* Because side-channel attacks rely on the relationship between
information emitted (leaked) through a side channel and the secret
data, countermeasures fall into two main categories:

* Eliminate or reduce the release of such information.

* Eliminate the relationship between the leaked information and the secret
data.

 Make the leaked information unrelated, or rather uncorrelated, to the
secret data, typically through some form of randomization.



