
CPE 150 Laboratory 10: Arrays II

Department of Computer Engineering
Yarmouk University

Summer 2017

1 Objectives

• To declare arrays, initialize arrays and refer to individual array elements.

• To be able to pass arrays to functions.

• To understand basic sorting techinques.

• To understand basic searching techinques.

2 Lab Exercise 1 - Array Operations

Write a program that creates a one-dimentional array initialized with test data. The program should have
the following functions:

• void readArray(int array[], const int size): This function reads the elements of the array
from a user.

• void printArray(const int array[], const int size): This function prints the elements of
the array.

• int searchArray(const int array[], const int size): This function sequentially searches the
array for a number and returns the first index (or −1 if not found)

• void sortDesc(int array[], const int size): This function uses bubble sort to sort the array
in a descending order.

3 Lab Exercise 2 - Selection Sort

Write a program to implement a selection sort algorithm. As the name implies, in the selection sort
algorithm, we rearrange the list by selecting an element in the list and moving it to its proper position.
This algorithm finds the location of the smallest element in the unsorted portion of the list and moves it
to the top of the unsorted portion of the list. The first time, we locate the smallest item in the entire list.
The second time, we locate the smallest item in the list starting from the second element in the list, and
so on.

1



4 Lab Exercise 3 - Binary Search

The binary search is a clever algorithm that is much more efficient than the linear search. Its only
requirement is that the values in the array be sorted in order. Instead of testing the array’s first element,
this algorithm starts with the element in the middle. If that element happens to contain the desired value,
then the search is over. Otherwise, the value in the middle element is either greater than or less than the
value being searched for. If it is greater, then the desired value (if it is in the list) will be found somewhere
in the first half of the array. If it is less, then the desired value (again, if it is in the list) will be found
somewhere in the last half of the array. In either case, half of the array’s elements have been eliminated
from further searching.

If the desired value wasn’t found in the middle element, the procedure is repeated for the half of the
array that potentially contains the value. For instance, if the last half of the array is to be searched,
the algorithm immediately tests its middle element. If the desired value isn’t found there, the search is
narrowed to the quarter of the array that resides before or after that element. This process continues until
either the value being searched for is found or there are no more elements to test.

Here is the pseudocode for a function that performs a binary search on an array:

Set first index to 0.

Set last index to the last subscript in the array.

Set found to false.

Set position to -1.

While found is not true and first is less than or equal to last

Set middle to the subscript halfway between array[first] and array[last].

If array[middle] equals the desired value

Set found to true.

Set position to middle.

Else If array[middle] is greater than the desired value

Set last to middle - 1.

Else

Set first to middle + 1.

End If.

End While.

Return position.

Write a program to implement the binary search algorithm. To sort the array before calling the
binary search algorithm, you can use the selection sort algorithm you developed earlier or the bubble sort
algorithm in the textbook.

5 Postlab Exercise

Write a program that will performs rotating operations on single-dimensional array. The operations
allowed are rotate left and rotate right.

Enter 10 elements to be stored in an array: 0 1 2 3 4 5 6 7 8 9

Enter 1 to rotate the array to the left, or 2 to rotate to the right (-1 to end): 1

Left Rotation is Selection.

Your rotated array is: 1 2 3 4 5 6 7 8 9 0

2



Enter 1 to rotate the array to the left, or 2 to rotate to the right (-1 to end): 2

Right Rotation is Selection.

Your rotated array is: 0 1 2 3 4 5 6 7 8 9

Enter 1 to rotate the array to the left, or 2 to rotate to the right (-1 to end): -1

3


	Objectives
	Lab Exercise 1 - Array Operations
	Lab Exercise 2 - Selection Sort
	Lab Exercise 3 - Binary Search
	Postlab Exercise

