Yarmouk University Hijjawi Faculty for Engineering Technology Department of Computer Engineering CpE310C: Numerical Analysis for Engineers *'First Exam'*

						اسم الطالب	
						الرقم الجامعي	
						الرقم المتسلسل	
د. فاروق العمري	د. احمد الطمراوي		ن الزعبي	د. حسير	د. علا الطعاني	مدرس المادة	
6 12:00-1:00	5 1:00-2:00	1 9:30-11:00	4 9:00-10:00	3 8:00-9:00	2 11:00:12:30	الشعبة	

Bisection Method	$x_2 = (x_0 + x_1)/2$
Secant Method/ False Position	$x_2 = x_0 - f(x_0) * \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$
Newton Method	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
Fixed-Point Iteration	$x_{n+1} = g(x_n)$

Question	1	2	3	4	Total
Grade					

Question 1: (11 points)

Question	1	2	3	4	5	6	7	8	9	10	11
Answer	А	D	В	Е	D	A	D	G	В	G	С

- 1. Which of the following statements is CORRECT?
 - A. Accuracy refers to how closely a computed or measured value agrees with the true value.
 - B. Computers can compute the root for $f(x) = x^2 2 = 0$ with an actual error equals to zero.
 - C. Our calculations for computing the area of a circle is always exact using the relation πr^2 where *r* is the radius of a circle.
 - $D. \quad A \ and \ B$
 - E. A and C
 - F. A, B, and C
 - G. None of the above.
- 2. Which of the following methods of finding roots of nonlinear equations falls under the category of bracketing methods
 - A. Bisection and Newton.
 - B. Secant and Newton
 - C. Secant and False position.
 - D. False position and Bisection.
 - E. Fixed-point iteration and Newton.
 - F. Secant and Fixed-point iteration.
 - G. None of the above.
- 3. The Bisection method is applied to the function f(x) = (x 1) (x 3) (x 4) (graph given below). The initial guess interval used is [0, 5]. Which root will the method converge to:

E. 4 F. 5

A. 0
B. 1
C. 2
D. 3

G. Cannot apply Bisection method because we will have $f(x_1)f(x_2) > 0$ at [1.5, 2].

4. When finding the root of $sin(x + \frac{\pi}{2}) = 0$, [x in radians] using the Secant method, the following choice of initial guesses would not be appropriate:

A. $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$ B. $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ C. $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$ D. [1.3, 1.5] E. $\left[-\frac{\pi}{8}, \frac{\pi}{8}\right]$ F. $\left[\left(-\frac{\pi}{2}-0.2\right), \left(-\frac{\pi}{2}+0.2\right)\right]$

- G. Secant method won't work because there are multiple roots.
- 5. The newly predicted root for false-position and secant method is given by:

λ

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

the major **difference** between the two methods is:

- A. False-position method is not guaranteed to converge.
- B. Secant method is guaranteed to converge
- C. Secant method requires the 2 initial guesses x_{i-1} and x_i to satisfy $f(x_{i-1}) * f(x_i) < 0$
- D. False-position method requires the 2 initial guesses x_{i-1} and x_i to satisfy $f(x_{i-1}) * f(x_i) < 0$
- E. A and D
- F. B and C
- G. No difference between the two method as both use the same predicted root formula: $x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$
- 6. Apply Newton's Method to find the roots of $f(x) = e^x$ starting from $x_0 = 5$. The condition $|f(x)| < \varepsilon$, where ε is a tolerance, is used as the stopping criterion. How many iterations are required to reach a tolerance of 10^{-18} ?
 - A. 47
 - B. 41
 - C. 40.00764
 - D. 180
 - E. 174
 - F. Cannot be determined as we are missing the value for x_1 .
 - G. Newton's method cannot be applied because f'(x) does not exist at x = 0.
- 7. We want to solve the cubic equation $f(x) = x^3 3x^2 + 7x 5$ using the Fixed-Point Iteration Method. If we use the arrangement $x = \frac{-1}{7}x^3 + \frac{3}{7}x^2 + \frac{5}{7}$, which of the following starting points will lead to an oscillatory convergence?
 - A. $x_0 = 4$
 - B. $x_0 = -1$
 - C. $x_0 = 0.5$
 - D. $x_0 = -0.5$
 - E. $x_0 = -3$
 - F. $x_0 = 1$
 - G. The arrangement $g(x) = \frac{-1}{7}x^3 + \frac{3}{7}x^2 + \frac{5}{7}$ will always diverge for all x

8. Which of the following methods can be used to find root for $f(x) = x^2 - 3x + 2$ which is plotted below:

- A. Bisection method with initial guess interval of [0, 3]
- B. Secant method with initial guess interval of [0, 3]
- C. False-position method with initial guess interval of [0, 3]
- D. Newton's method with $x_0 = 1.5$
- E. Fixed point iteration, where $g(x) = \frac{x^2+2}{3}$ and $x_0 = 3$.
- F. Cannot determine as f(x) has complex roots.
- G. None of the above
- 9. Which of the following is a unit vector?
 - A. $[\frac{1}{2} \quad \frac{1}{2}]^{T}$ B. $[(2+2i) \quad (2-2i) \quad 1]^{T}$ C. $[1 \quad 1 \quad 1 \quad 1]^{T}$ D. $[(4-3i) \quad (4+3i) \quad (3-4i) \quad (3-4i)]^{T}$ E. $\begin{bmatrix}\frac{1}{3}\\\frac{1}{3}\\\frac{1}{3}\\\frac{1}{3}\end{bmatrix}$ F. $\begin{bmatrix}1\\0\\1\end{bmatrix}$ C. Now each the since shows
 - G. None of the given choices
- 10. Which of the following statements is not correct?
 - A. A*I = A
 - $B. \quad (A * B)^T = B^T * A^T$
 - C. $det(I_4) = 1$
 - D. A+A=2A
 - E. $AB \neq BA$, if A is a lower triangular matrix and B is an upper triangular matrix.
 - F. $(I_4)^T = I_4$
 - G. I A = -A

11. Suppose that the following matrix *A* has eigenvalues at 7 and -1, what are the possible values for *k* and *c*:

$$A = \begin{bmatrix} 1 & 3 \\ k & c \end{bmatrix}$$

- A. k = -4, c = 5B. k = 0, c = 2
- C. k = 4, c = 5
- D. k = 1, c = -1
- E. k = -5 + i, c = 4 + i
- F. Cannot determine a value for both *k* and *c* because the matrix is a square matrix.
- G. k = 4c

Question 2: (2 points)

A. The graph below depicts the situation of finding the two roots of $f(x) = 1.9 - \frac{1}{x^3} - x$ using the fixed-point iteration method via the arrangement: $g(x) = 1.9 - \frac{1}{x^3}$. By drawing on the graph neatly, show how each of the following initial points ($x_0 = 0.75, x_0 = 4$) converge or diverge to or from any of the roots.

B. Prove that Newton's Method applied to f(x) = ax + b converges in one step.

Question 3: (4 points)

- Consider the root finding problem $f(x) = x^2 5 = 0$: A. Write down the Secant method formula and simplify it as much as possible. B. Using $x_0 = 2.00$, $x_1 = 2.10$, use the Secant method to find x_2 .

Question 4: (3 points)

For the given equation $f(x) = e^x - 2x - 1 = 0$, if $x_0 = 1.5$

- a. Give one rearrangement of the equation.
- b. Find the value of the root after two iterations using the arrangement you found.
- c. What is the actual error **<u>at second iteration</u>** knowing that f(1.25643) = 0.