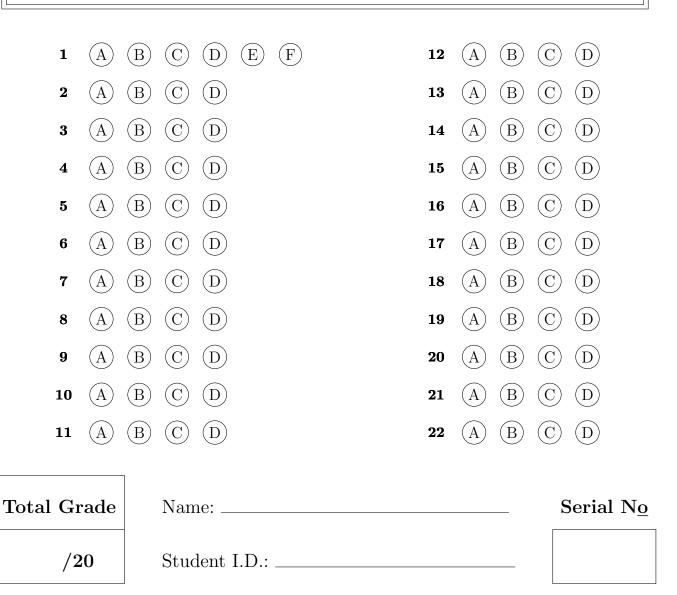
CPE 310C: Numerical Analysis for Engineers Second Exam, April 15, 2017

- This is a CLOSED BOOK exam. Textbooks, notes, laptops, cell phones, and Internet access are NOT allowed.
- It is a **60-minute** exam, with a total of **20 marks**. There are **20 questions plus 1 bonus question**, and **7 pages** (including this cover page).
- All your answers to multiple choice questions must be marked on this answer sheet. We will **not** take into consideration anything written on the question booklet or if multiple markings are made on the answer sheet. Make sure to mark only one answer.



GOOD LUCK

Divided Difference Interpolating Polynomial

 $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$

1. Which of the following is your class _____

- (A) Dr. Ahmed Tamrawi (9:30am 11:00am)
- (B) Dr. Ola Al-Ta'ani (11:00am 12:30pm)
- (C) Dr. Hussein Al-Zoubi (8:00am 9:00am)
- (D) Dr. Hussein Al-Zoubi (9:00am 10:00am)
- (E) Dr. Ahmed Tamrawi (1:00pm 2:00pm)
- (F) Dr. Farouq Al-Omari (12:00pm 1:00pm)

2. For a function f, the divided difference formula gives the interpolation polynomial:

on the data points $x_0 = 1, x_1 = 1.1$, and $x_2 = 1.2$. The value of f(1.2) is:

- $(A) \quad 0.36236$
- (B) 0.10226
- $(C) \quad 0.5403$
- $(D) \quad 0.227$
- 3. A is a 5×5 matrix and a matrix B is obtained by the row operations of exchanging Row1 with Row3, and then Row3 is replaced by: $2 \times \text{Row3}$. If det(A) = 17, then det(B) is:
 - (A) 17
 - (B) -17
 - (C) -34
 - (D) 112
- 4. In cicruit's lab, you had the chance to measure the voltage drop V across a resistor for a number of different values of current i. The results are:

i	0.25	0.75	1.25	1.5	2.0
V	-0.45	-0.6	0.70	1.88	6.0

Using direct interpolation method to fit a linear interpolating polynomial, the voltage drop for i = 1.3 is most nearly:

- (A) -0.765
- $(B) \quad 0.936$
- (C) = 0.83
- $(D) \quad 0.232$

5. The Lagrangian polynomial that passes through the following three data points is given by:

$P_2(x) = L_0(x)(24) + L_1(x)(37) + L_2(x)(25)$	\boldsymbol{x}	15	18	22
$L_2(x) = L_0(x)(24) + L_1(x)(51) + L_2(x)(25)$	\boldsymbol{y}	24	37	22 25

The value of $L_1(x)$ at x = 16 is:

- (A)-0.07143
- (B) 0.50000
- (C)0.57143
- (D)4.3333

6. The augmented matrix for a 3×3 system of linear equations $A|b = \begin{bmatrix} 2 & 6 & 1 & 8 \\ 0 & 1 & 4 & 9 \\ 4 & 2 & 1 & 4 \end{bmatrix}$. The matrix after eliminating x_2 from the first and the third rows using the Gauss-Jordan elimination without primetic rise is $x_1 = 1$.

without pivoting is given by:

(A)	$\begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}$	${3 \\ 1 \\ 2 }$	$\begin{array}{ccc} 0.5 & 4 \\ 4 & 9 \\ 1 & 4 \end{array}$	
(B)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{array}{cc} 0 & 0 \\ 0 & 1 \\ 1 & 2 \end{array}$	
(C)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} 0 \\ 1 \\ 0 \end{array}$	-11.5 4 39	$\begin{bmatrix} -23\\9\\78 \end{bmatrix}$
(D)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	-1.75 4 -19.5	-3.5 9 -39

7. Assume that DA = C such that $D = \begin{bmatrix} \frac{1}{6} & 0 & 0\\ 0 & \frac{-1}{2} & 0\\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 & -3\\ 0.5 & -1 & 2\\ 0 & 1 & \frac{1}{3} \end{bmatrix}$. What is the value

for tr(A)? (Note: the trace of a square matrix is the sum of its diagonal elements)

- $\frac{-1}{36}$ (\mathbf{A})
- (B)0
- (C)15
- $\frac{8}{6}$ (D)

8. Given the two points (a, f(a)) and (b, f(b)), the <u>linear Lagrangian polynomial</u> $P_1(x)$ that passes through these two points is given by:

(A)
$$P_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{a-b}f(b)$$

(B)
$$P_1(x) = \frac{x}{b-a}f(a) + \frac{x}{b-a}f(b)$$

(C)
$$P_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(b - a)$$

(D)
$$P_1(x) = \frac{1}{a-b}[(x-b)f(a) - (x-a)f(b)]$$

9. Consider the linear system below, the <u>maximum error</u> in evaluating the solution of the system at the second iteration $(x^{(2)})$ using Jacobi method with the initial guess $x^{(0)} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ and knowing that the solution of the system is $x^{\text{actual}} = \begin{bmatrix} 1, 2, -1 \end{bmatrix}^T$:

$$9x_1 + x_2 + x_3 = 10$$

$$2x_1 + 10x_2 + 3x_3 = 19$$

$$3x_1 + 4x_2 + 11x_3 = 0$$

(**<u>Recall</u>** that the maximum error is the maximum of actual errors: $(x_i^{\text{actual}} - x_i^{(2)})$)

- (A) 3.22E 1
- (B) 1.44E 1
- (C) 5.06E 2
- (D) 4.02E 2

10. For which values of α the following system has <u>no solution</u>?

(A) 1
$$x_1 + 2x_2 - 3x_3 = 4$$
$$3x_1 - 2x_2 + 5x_3 = 2$$
$$4x_1 + x_2 + (\alpha^2 - 14)x_3 = \alpha + 2$$

- (B) 5.2500 $4x_1 + x_2 + (\alpha$
- $(D) \quad 0.2000$
- (C) -3.7749
- (D) -2.5414
- 11. Given that $x^{(1)} = \begin{bmatrix} -2.8333 & -1.4333 & -1.9727 \end{bmatrix}^T$ resulting from applying Gauss-Seidel method using the initial guess $x^{(0)} = \begin{bmatrix} 1 & x_2 & x_3 \end{bmatrix}^T$ and using the following arrangement:

$$x_1 = \frac{1}{6} - \frac{7}{12}x_2 - \frac{1}{4}x_3, \qquad x_2 = -1 - 0.2x_1 - 0.2x_3, \qquad x_3 = -\frac{6}{11} + \frac{2}{11}x_1 + \frac{7}{11}x_2$$

Then, the initial guess $x^{(0)} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ that was used is most nearly:

(A)
$$\begin{bmatrix} 1 & 3 & 5 \end{bmatrix}^{T}$$

(B) $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T}$
(C) $\begin{bmatrix} 1 & -0.9046 & -0.8491 \end{bmatrix}^{T}$
(D) $\begin{bmatrix} 1 & -1 & -1 \end{bmatrix}^{T}$

- 12. Find a relationship between a, b, and c so that the system is <u>consistent</u>:

 - (D) $a+b-c \neq 0$
- 13. When the divided differences of order n are all equal to zero, i.e. $f_i^{[n]} = 0$, then the data we used to build the table:
 - (A) exactly fits a degree *n* polynomial if $f_i^{[n-1]} > 0$
 - (B) exactly fits a degree *n* polynomial if $f_i^{[n-1]} = 0$
 - (C) exactly fits a degree n-1 polynomial if $f_i^{[n-1]} > 0$
 - (D) exactly fits a degree n-1 polynomial if $f_i^{[n-1]} = 0$
- 14. The actual polynomial f that passes through the following data is given by:

$f(x) = 8.125x^2 - 324.75x + 3237, 15 \le x \le 24$	f
	J

\boldsymbol{x}	18	22	24
f(x)	?	25	123

The corresponding divided difference polynomial is: $b_0 + b_1(x - 18) + b_2(x - 18)(x - 22)$. The value of b_2 is:

- $(A) \quad 324.75$
- (B) 8.125
- (C) 24
- (D) 25

15. If the after applying Gaussian elimination method given final matrix isby 2554 10.40 Then, the lower triangual matrix L in the LU decomposition is: (0.32)20.72(0.5769)(0.4)2.4462

- 16. Which one of the following is the correct form of A, the matrix of coefficients in the system of equations Ax = b, using LU decomposition of A:
 - $(A) \begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21} & l_{21}u_{12} + l_{22} & l_{21}u_{13} + l_{22}u_{23} \\ l_{31} & l_{31}u_{21} + l_{32} & l_{31}u_{13} + l_{32}u_{23} + l_{33} \end{bmatrix}$ $(B) \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix}$ $(C) \begin{bmatrix} l_{11}u_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + l_{22}u_{22} & l_{21}u_{13} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} \end{bmatrix}$ $(D) \begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21} & l_{21}u_{12} + l_{22}u_{22} & l_{21}u_{13} + l_{32}u_{23} \\ l_{31} & l_{31}u_{21} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + l_{33}u_{33} \end{bmatrix}$ (Cimp u + 1 data parine a unious polynomial of dormal
- 17. Given n + 1 data pairs, a unique polynomial of degree _____ passes through n + 1 data points.
 - (A) n+1
 - (B) n+1 or less
 - (C) n
 - (D) n or less
- 18. Using the divided differences method to find <u>quadratic polynomial</u> $P_2(x)$ to fit the following data, the value of $P_2(0.5)$ is:
 - $(A) \quad 0.775$

0.75

(B)

$oldsymbol{x}$	0.3	0.6	0.9
f(x)	0.43	1.12	3.07

- (C) 1.35
- (D) 0.43
- 19. While solving a system of linear equations by Gauss-Jordon elimination method, if there are still zeros on the main diagonal after all the elementary row operations. Which of the following is <u>true</u> about the system?
 - (A) It has a unique solution
 - (B) It has no unique solution
 - (C) The upper triangular matrix after Gauss elimination has no zeroes on the diagonal
 - (D) We cannot know about the solution without applying Gauss elimination to the system
- 20. Which of the following statements is <u>incorrect</u> about iterative methods of finding roots?
 - (A) More economical in terms of memory requirements than direct methods
 - (B) They are self-correcting if an error is made at an iteration
 - (C) Examples of such methods include: fixed-point iteration, Jacobi, and Gauss-Seidel
 - (D) They become slower in convergence when the coefficient matrix is sparse (has many zeros)

- 21. The process of finding the values <u>**outside**</u> the interval (x_0, x_n) is called _____
 - (A) interpolation
 - (B) extrapolation
 - (C) iterative
 - (D) polynomial equation
- 22. (Bonus Question) A civil engineer involved in construction requires 4800, 5800, and 5700 m^3 of sand, fine gravel, and coarse gravel, respectively, for a building project. There are three pits from which these materials can be obtained. The composition of these pits is:

	Sand	Fine Gravel	Coarse Gravel
Pit 1 (p_1)	52%	30%	18%
Pit 2 (p_2)	20%	50%	30%
Pit 3 (p_3)	25%	20%	55%

How many cubic meters must be hauled from each pit in order to meet the engineer's needs? The equations in a matrix form are:

(A)	$\begin{bmatrix} 52 & 20 & 25 \\ 30 & 50 & 20 \\ 18 & 30 & 55 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 4800 \\ 5800 \\ 5700 \end{bmatrix}$
(B)	$\begin{bmatrix} 0.52 & 0.20 & 0.25 \\ 0.30 & 0.50 & 0.20 \\ 0.18 & 0.30 & 0.55 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} 4800 \\ 5800 \\ 5700 \end{bmatrix}$
(C)	$\begin{bmatrix} 52 & 30 & 18\\ 20 & 50 & 30\\ 25 & 20 & 55 \end{bmatrix} \begin{bmatrix} p_1\\ p_2\\ p_3 \end{bmatrix} = \begin{bmatrix} 4800\\ 5800\\ 5700 \end{bmatrix}$
(D)	$\begin{bmatrix} 0.52 & 0.30 & 0.18\\ 0.20 & 0.50 & 0.30\\ 0.25 & 0.20 & 0.55 \end{bmatrix} \begin{bmatrix} p_1\\ p_2\\ p_3 \end{bmatrix} = \begin{bmatrix} 4800\\ 5800\\ 5700 \end{bmatrix}$