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“simultaneous linear equations”

An extremely important topic is how to solve a large system of equations

Linear systems are perhaps the most widely applied numerical procedures when real-
world situations are to be simulated.



A matrix is a rectangular array of numbers in which not only the
value of the number is important but also its position in the array

a1 A12 A13  Aq4 A1m
A1 Az A3 Qpa A2m
_ 431 A3z aQzz Q34 - A3m | _
CAPITALLETTERS are used _—"A = |ay ay; aus agy -~ aym|= (%]
to refer to matrices : : : : :
An1 An2 an3 Ana Anm
i=1,2,..,n j=12,....m

Size of the matrix is described by the number of its
rows and columns

A matrix of n rows and m columns is said to be of size: nxm

Cli];_

—— j — th Column

/

I — th Row



Two matrices of the same size may be added or subtracted
A= [aij] and B = [bl]]

C=A+4+B = [al]+bu] — [Cij]
D =A—-B = |a;j—b;;] = |d;]



Az:—44 Z Ig B= [2 —6 3]
Ais 2X3 B is 2X3
C=A+B=[_52 3 I; D=A—B = [ 2 _99]



A= [aij] and B = [bl]]

AisnXm B ismXr
(a11b11 + agpby + -+ aymbiy) 0 (Qp1bir + o+ Aybmy)]
a,,b;1 + a,,b,q4 + -+ a,,,b -+ (ap1by, + -+ a,,b
C = [aij][bij] — [Cij] — ( 21Y11 22 21 2m ml) ; ( 21Y1r ; 2m mr)
-(anlbll + an2b21 + ot anmbml) (anlblr + ot anmbmr)-
CisnXr

m

Cij — 2 aikbkj'i — 1,2,---n,j — 1,2,"'T
k=1




AB #+ BA



If a matrix is multiplied by a scalar (a pure number), the product is a
matrix, each element of which is the scalar times the original element

If kKA = C;Cij = kaij



Column Vector
A matrix with only one column, n X 1 in size

Ais4Xx1

When the unqualified term vector is used, it nearly always means a column vector



Row Vector
A matrix with only one row, 1 X n in size

A=[1 2 5 6]

Ais1 x4




p—

VR

Y2

Y3

5
A:[—Bz Z —13] B:_(l)
A*B=[—1163 13‘
19 33 11
B+xA=|-6 3 -9
5 6 4.
A*XZ:_25]

[ 3y1 + 7y, +3’3]
Axy= —2y1 Ty, — 3Y3



a11x1 + alzxz + + alnxn — bl
aAr1X1 + Ay X9 + -+ AonXn = bz

Ap1X1 + ApoXy + -+ Ay Xy = by




3 2 4 14
1 -2 0)|*xx=]-7
-1 3 2 2

is the same as the set of equations

3x1 + 2x, + 4x3 = 14
X1 — 2X2 = -7
—Xx1 +3x, +2x3 =2



A very important special case is the multiplication of two vectors. The first must be a row vector if
the second is a column vector, and each must have the same number of components. It gives a
"matrix" of one row and one column.

[1 3 =2]*|-1|=[5]

| 3 \

Inner Product
“Scalar Product of Vectors”




A very important special case is the multiplication of two vectors. The first must be a row vector if
the second is a column vector, and each must have the same number of components.

If we reverse the order of multiplication of these two vectors,
we call result outer product

"4 4 12 -8
—-1|*[1 3 -2]=|-1 -3 2
| 3. 3 9 —6]

Outer Product



Diagonal Matrix

A Square Matrix with only the diagonal terms “elements” are nonzero

The diagonal elements are the line of elements a;; from upper left to lower right of the matrix




ldentity Matrix

A Square Matrix with the diagonal elements are each equal to unity while all off-diagonal elements are zero

0 O

0 O

Identity Matrix of order 3 Identity Matrix of order 4




Unit Vector

A vector whose length is one

J@Z b+ =1




Unit Basis Vector

A vector that has all its elements equal to zero except
one element, which has a value of unity

1 0] [0
0 0 1

o~>




What are the distinct unit basis vectors for order-4 vectors?

B

OO O =
O O kO
o = O O
_O0 O O



Lower-Triangular Matrix Upper-Triangular Matrix

If all the elements above the diagonal are zero If all the elements below the diagonal are zero

1 0 O 1 -3 3
L=14 6 0 U=10 -1 0
-2 1 —4 0O 0 1



Tridiagonal Matrix

A square matrix that have nonzero elements only on the diagonal and in the
positions adjacent to the diagonal

0 0 ]
1 -4 1 0 0
0 1 -4 1 0
0 0 1 -4 1
- 0 0 0 2 —4




Transpose of a Matrix

The matrix that results when the rows are written as columns (or, alternatively,
when the columns are written as rows)

The transpose of AT is just A itself



Trace of a Square Matrix

The sum of the elements on its main diagonal

3 —1 4 3 0 1
0 2 =3 Al =1-1 2 1
1 1 2 4 -3 2

tr(A) =3+2+2=7 tr(AT) =3+2+2=7

The trace remains the same if a square matrix is transposed



Examples
I
I




Examples

_01 ﬂ*[; _31]:[? :43}]

6 1 —11 .
3 _2] x| 2 |is NOT defined
1 .




Division of a matrix by another matrix is not defined, but we will
discuss the inverse of a matrix later



Determinant

The determinant of a square matrix is a number

det(4) = ‘Ccl Z‘ = ad — bc

A=[_75 g‘,det(A)=|_75 §|=(—5)(2)—(7)(3)=—31



Determinant

The determinant of a square matrix is a number

e
g h

=a(ei—fh) —b(di—fg) + c(dh — eg)
= aei —afh — bdi + bfg + cdh — ceg

a b c
det(4) =|d e f=a‘z f‘—b|
g h i




det(4) =

S~ KT

Determinant

The determinant of a square matrix is a number

;;lz f g h e g h e
1 l=ajkl—bl k l]l+cl|i
o D n o p m o p m

f h
ik
n o p




3 0 -1 2
14 1 3 =2
A_02—13
1 0 1 4
3 0 -1 2
4 1 3 =2
det(A)—OZ_13
1 0 1 4
1 3 =2 4 3 =2 4 1 =2 4 1 3
=312 -1 3|-0]0 -1 3|+(-D0o 2 3|[-2l10 2 -1
0 1 4 1 1 4 1 0 4 1 0 1

=3{1| 7 -3 Y+ vl Y- el
—2falz -1l sl 2
=3{(D7) - B)B) + (=2)(2)} + (—=D{)(B) — (1)(—3) + (—=2)(=2)}

—2{(41)2) - D)+ 3)(—2)}

=3(=7 =24 —4) + (-1)(39) — 2(1) = —146

Example



Determinant

The determinant of a square matrix is a number

a b ¢ d

e f g h f g h e g h e [ h e f
det(4) = i ok =al|j k U[{-=b|li k I|+c|i j kl-=-d|i |

mon oo p n o p m o p m n p m n

Positive Sign if (Row Number + Column Number) is EVEN

Negative Sign if (Row Number + Column Number) is ODD




|

Determinant Property

For square matrices A and B or equal size
det(AB) = det(4) * det(B)

-5 3|.|-1 5
1B — [11 _7 det(AB) = ‘ 7 2‘ * 5 ¢
—3 47
det(AB) = 496 det(AB) = (—31) = (—=16) = 496



Determinant Property

If A'is a triangular matrix of order n such that a;; = 0 wheneveri > jori <j

n
det(A)=l_[aii
=1
Lower-Triangular Matrix Upper-Triangular Matrix
If all the elements above the diagonal are zero If all the elements below the diagonal are zero
1 0 O 1 -3 3
L=14 6 0 U=10 -1 O
-2 1 —4 0 0 1

det(L) = (1)(6)(—4) = —24 det(L) = (D(-1D() = -1



Characteristic Polynomial

The characteristic polynomial is always of degree n if A isnXxXn

pa(1) = |A — AI| = det(4A — AI)

e 3]
A=, .
= ia-an=aec, 3403 )
= det(l, o]~ [g 3D
— det([lzl1 53/1])

=1-2DG-1D-0B)4)=r-61-7



If we set the characteristic polynomial to zero and solve for the
roots, we get the eigenvalues of A

The eigenvalues are most important in applied mathematics

A(A) — {7, _1}

The sum of eigenvalues for any matrix is equal to its trace

tr(A):tr(LlL :;):1+5:6



The Elimination Method

The first method we will study for the solution of a set of equations is just an enlargement of
the familiar method of eliminating one unknown between a pair of simultaneous equations

Generally called Gaussian elimination

This method is the basic pattern of a large number of methods that
are classified as direct methods



Let us find the values for x4, x5, x5 that solves the following set of equations

4‘x1 - 2x2 + x3 — 15
—3x1 — X, + 4x3 = 8
X1 - X, + 3x3 = 13

First: Let us eliminate x4

Multiplying the first equation by 3 and the Multiplying the first equation by -1 and the third
second by 4 and adding by 4 and adding
3R1 — 12.7(1 — 6x2 + 3x3 = 45 _1R1 — —4x1 + sz — X3 = —15
4R, — —12x; — 4x, + 16x3 = 32 4R; — 4x; — 4x, + 12x3 = 52
3R, + 4R, — — 10x, + 19x%; = 77 —1R, +4R3 — - 2x, + 11x3 = 37
— 10x, + 19x%3 = 77

— sz + 11x3 37



Let us find the values for x4, x5, x5 that solves the following set of equations

4x1 - sz + x3 — 15
—3x1 — X, + 4x3 = 8
X1 - X, + 3x3 = 13

Second: Let us eliminate x,

— 10x, + 19x%3 = 77
— 2x2 + 11x3 = 37

Multiplying the first by 2 and the second by -10 and adding

2R1 — — 20x2 + 38x3 = 154‘
—10R;— + 20x, — 110x; = -370
2R, + (—10)R, — — T72x; = -216




Let us find the values for x4, x5, x5 that solves the following set of equations

4x1 - sz + x3 — 15
—3x1 — X, + 4x3 = 8
X1 - X, + 3x3 = 13

Second: Let us eliminate x,

— 10x, + 19x%3 = 77
— 2x2 + 11x3 = 37

Multiplying the first by 2 and the second by -10 and adding

2R1 — — 20x2 + 38x3 = 154‘
—10R;— + 20x, — 110x; = -370
2R, + (—10)R, — — T72x; = -216




Let us find the values for x4, x5, x5 that solves the following set of equations

4x1 - sz + x3 — 15
—3x; — x, + 4x3 = 8 X1 = 2
X1 - X, + 3x3 = 13

Third: Back-substitute for finding the values for x4, x5, x3

— 10x, + 19x, 77
— 2x, + 1lx3 = 37 —72x3 = —216

x2=_2 X3=3




4‘X1
—3x1
X1

Now we present the same problem, solved in exactly the same way,

but this time using matrix notation

— sz + X3 =
— X9 + 4X3
— x; + 3x3

The arithmetic operations that we have performed affect only the coefficients and the constant terms,

15
8
13

Ax =0b

==

4
—3

L1

—2 1
-1 4
-1 3.

so we work with the matrix of coefficients augmented with the right-hand side vector

Alb =

4
—3

1

-2 115
-1 4 8

-1 3 13

15

113



4 -2 115
Ab=|-3 -1 4 8
1 -1 3 13

First: Let us eliminate x4

Multiplying the first equation by -1 and the third

Multiplying the first equation by 3 and the
by 4 and adding

second by 4 and adding

0 —-10 19 77
0 -2 11 37

3R{ + 4R, —

4 =2 1 15]
(=1)R{ +4R3 -

— 10x, + 19x%3 = 77
— sz + 11X3 = 37



4 -2 1 15
0 -10 19 77
0 -2 11 : 37

Second: Let us eliminate Xo Multiplying the first by 2 and the second by -10 and adding

4 -2 1 15
0 —10 19 77
2R, —10R; —»l0 0 -72 -216

—72x; = =216



4
0
0

4x4

-2 1 15
-10 19 @ 77
0 —72:-216.

ZXZ + X3

1OXZ + 19X3

—  72x5

Third: Back-substitute for finding the values for x4, x5, x5

—216

15
77

—216
X3 = __72 =3
(77 — 19(3))
27T T
_(15-113) - (=2)(-2)) _
X1 = 1 = 2




Alb

4

-3

1

-2 115
-1 4 8
-1 3 13.

Transform to Upper-Triangular Matrix

—

4

0

0

—2
—10
0

1 | 15 °
19 = 77
—-72 =216




Elementary Row Transformations

Will not change the validity of the solution for the given set of equations

(1) We may multiply any row of the augmented coefficient matrix by a constant.
(2) We can add/subtract a multiple of one row to a multiple of any other row.
(3) We can interchange the order of any two rows

4x, — 2x, + x3 = 15 4 —2 1 15]
n - ox + 4 - 3 EEENp (-3 -1 4 8
X1 — X9 + 3X3 = 13 _1 _1 3 13_




This process of Gaussian Elimination is good for
hand calculations

What if we have a large set of equations?
the multiplications will give very large and unwieldy numbers that
may overflow the computer's registers



Gaussian Elimination

1. Write the system of equations in matrix form Ax = b.

2. Form the augmented matrix A|b.

3. Perform elementary row operations to get zeros below the diagonal:
* Multiply each element of the row by a non-zero constant
* Switch two rows
e Add (or subtract) a non-zero constant times a row to another row



Gaussian Elimination

[d11 Q12 Q13 Q14 A1m by
Az1 Qp2 QA3 Apg aym by
Alb = 31 d3zz dzz dzg azm b3
Qg1 Qg2 Q43 afm Aym by
LAn1 An2 an3 a1.14 Anm bn—
Column 1 Column2  _______. Column “n-1"” Back Substitution

“Elimination of x; from R,,R; ...R,,” “Elimination of x, from R3, R, ...R,” “Elimination of x,,_; from R,,” “Finding the values of of x4, X, ..., xp



Column 1

“Elimination of x4 from R,, R5 ... R,,”

Pivot

R, — (azl/all)Rl —1| 0
Ry — (a31/a11)R1 —1 0
R, — (Cl41/a11)R1 —1 0

RTL - (anl/all)Rl —L 0




OOOE
[N

Column 2

“Elimination of x, from R3,R, ... R,”

Pivot
)
0
Ry — (asz/azz)Rz —1 0
R, — (a42/a22)R2 —1 0
Rn - (anz/azz)RZ —L 0




a

[

o O O

ain
aso

- {4 »
%1 Column “n-1
z “Elimination of x,,_; from R,,”
bs
by
b, |

Anm-1
Ru = (""" agy-1ynsy ) Ry =

Pivot

CDCDO»—*Q
=

air
aso

0
0

a3
a3

as3
0




air
aso

0
0

a3
a3

as3
0

Back Substitution

“Finding the values of of x4, x5, ..., X,

by
AnmXn = bn == Xp = a
nm

An-1)(m-1)Xmn-1) T An-1)mXn = bn-1)



Problem

We must guard against dividing by zero. Observe that zeros may be created in the
diagonal positions even if they are not present in the original matrix of coefficients

Pivot

aj; a4 13 Q14 A1m by

0 A7 Q33 Ay Aym by
a

Ry —("%q,, )R — | 0 azz azz Az azm b3
a

Ry—("%/a, )R — | 0 Q42 Quz Ay Aym by
a

Ry _( nz/azz)RZ — L0 Anz Qp3 QApg Anm bn




Pivoting Operating

A useful strategy to avoid (if possible) such zero divisors is to rearrange the equations so as to
put the coefficient of largest magnitude “absolute value” on the diagonal at each step

Complete Pivoting Partial Pivoting
May require both row and column Places a coefficient of larger magnitude “on
interchanges. “This is not frequently done” the diagonal by row interchanges only

Guarantees a nonzero divisor if there is a solution
to the set of equations

Must check for possible row interchanges before the
elimination process of each column



Gaussian Elimination

4 -2 1 15
Alb=|-3 -1 4 8
1 -1 3 13

Column 1 Column 2

“Elimination of x; from R,, R3” “Elimination of x, from R3”

4 =2 1 15
0 —2.5 475 19.25

R,—(73/4)Ri— [0 =25 475 19.25 [
R~ (05 _,s)k.—lo 0 18 540

4 -2 1 15]
Rs— (/R — L0 —05 275 9.25

1.8x5 = 5.40 = x3 = 3 4

Back Substitution _2.5x, + 4.75x; = 19.25 = x, = 2 x = |2
“Finding the values of of x{, x,, x3”

. 4x) —2x, +x3=15=x7 = 4 3]




Gaussian Elimination

4 =2 1 15]

A|b=[—3 ~1 4 8

1 -1 3 13

Column 1

“Elimination of x; from R,, R3”

4 -2 1
R, — (73/4)Ri — |(=0.75) —2.5 4.75

15 4
19.25] [(—0.75)
9.25 ]| |Rs=(7%5/_5 5)R. — | (0.25)

Column 2

“Elimination of x, from R3”

—2

1

15

—2.5 4.75 19.25

Rs— (YR — | (0.25) —0.5 2.75 (0.20) 18 5.40
1.8x; = 540 = x5 = 3 4]
Back Substitution —2.5x, +4.75x3 = 19.25 = x, = 2 x =12
“Finding the values of of x, x,, x3” 4‘X1 _ sz + X3 — 15 — x1 — 4_ 3




Result from the final step

1

4

| (0.25)

—2 1
-1 3

(—0.75)

—2

—2.5 4.75 19.25

(0.20)

o/

—0.75 1

\

0.25 0.20

1.

0
0
1

J

Y

L
Lower-Triangular

8

]*

15 7

5.40 |

‘ LU Decomposition
4 -2 1

|

J

0 —-2.5 4.75
0 0 1.8
\

Y

U

Upper-Triangular



oA N O

Gaussian Elimination

ZXZ ~+ + X4 = 0

2xy + 2x, + 3x3 + 2x, = -2

4‘x1 — 3x2 + X4 = =7

6x;, + x, — 6x3 — 5x4 = 6
X1 0 0 2 0 1
x| -2 12 2 3 2
x| T | =7 Alb = 4 -3 0 1
_x4_ 6 _6 1 _6 _5




Gaussian Elimination

0 2 0 1 0]
12 2 3 2 =2
Alb =1, -3 0 1 -7
6 1 -6 -5 6.
Column 1
“Elimination of x; from R, R3”
Pivot =0 Pivot =6
Interchange row 1 with row 4
1 -6 -5 6 6 1 —6 -5 6 6 1 —6 -5 6

6
5 2 3 2 _o R,— (¥R, —|0 16667 5 3.6667 —4 (0.3333) 1.6667 5 3.6667 —4
4 -3 0 1 -7 Ri—(Yg)Ry — |0 —3.6667 4 43333 -—11 (0.6667) —3.6667 4 4.3333 -—11
0o 2 0 1 0 Ry — (%/g)R: — LO 2 0 1 0 (0) 2 0 1 0




Ga

ussian Elimination

6 1 —6 -5 6 ]
0 1.6667 5 3.6667 —4
0 —-3.6667 4 43333 -11
10 2 0 1 0 |
Column 2
“Elimination of x, from R3,R,”
Pivot = 1.6667 Pivot =-3.6667
Interchange row 2 with row 3
6 1 —6 -5 6 6 1 —6 -5 6
0 —-3.6667 4 43333 -—11 0 —3.6667 4 4.3333 —11
C: 0 1.6667 5 3.6667 —4 Ry — (1:6667/ o )R, — |0 0 6.8182 5.6364 —9.0001
0 2 0 1 0 Re—(%/_3 6667) R — LO 0 2.1818 3.3636 —5.9999
6 1 —6 -5 6
(0.3333) —3.6667 4 4.3333 —11
(0.6667) (—0.4545) 6.8182 5.6364 -—9.0001
(0) (—0.5454) 2.1818 3.3636 —5.9999]




Gaussian Elimination

6 1 —6 -5 6
0 —3.6667 4 43333 —11
0 0 68182 5.6364 —9.0001
0 0 21818 3.3636 —5.9999.
Column 3
“Elimination of x3 from R,”
Pivot = 6.8182
_ 6 1 —6 5
6 1 —6 =5 6 (0.3333) —3.6667 4 43333
8 ‘3-3667 684182 g-zgzi 9‘010101 (0.6667) (—0.4545) 6.8182 5.6364
re- (1919 g g~ |0 0 0 15600 —3.1199] (0)  (=0.5454) (0.32) 1.5600

6
—11
—9.0001
—3.1199]




Gaussian Elimination

6 1 —6 _5 6
0 —3.6667 4 43333 —11
0 0 6.8182 5.6364 —9.0001
0 0 0 15600 —3.1199]
Back Substitution
_ 31199
*= 5600
_ 90001 - 5.6364(=19999) _ .. _
A3 = 6.8182 -
_ —11-43333(-19999) - 4(033325) _
X2 = —3.6667 -
6 — (=5)(—1.9999) — (—6)(0.33325) — (1)(1.0000)
x1 = =

6

= —0.50000

1.9999
0.33325
1.0000

—0.50000.




What is the LU Decomposition?

6 1 —6 -5 6

(0.3333)  —3.6667 4 43333 -—11

(0.6667) (—0.4545) 6.8182 5.6364 —9.0001
(0) (—0.5454) (0.32) 15600 —3.1199

Augmented Matrix from last step

1 0 0 0 6 1 —6 -5
(0.3333) 1 0 0], |0 —3.6667 4 43333
(0.6667) (—0.4545) 1 ol |o 0 6.8182 5.6364

(0) (—0.5454) (0.32) 1] 1o 0 0 1.5600
\ J \ J

Y Y
L U

Lower-Triangular Upper-Triangular



What is the LU Decomposition?

(0.6667) (—0.4545) 6.8182 5.6364 —9.0001

6 1 —6 -5 6
I(0.3333) —3.6667 4 43333 -—11 ‘
(0) (—0.5454) (0.32) 15600 —3.1199

Augmented Matrix from last step

0 2 0 1
1 0 0 0 6 1 -6 -5
(0.3333) 1 0 0\ Io —3.6667 4 4.3333 A= 2 2 3 2
(0.6667) (—0.4545) 1 0|*|o 0 6.8182 5.6364 4 -3 0 1
(0) (—0.5454) (0.32) 11 lo 0 0 1.5600 6 1 —6 -5
J \ J
¥ Y Because we interchanged rows
L U
Lower-Triangular Upper-Triangular ‘6 1 —g —o
' 4 -3 0 1
A 2 2 3 2
0 2 0 1




What is the LU Decomposition?

(0.6667) (—0.4545) 6.8182 5.6364 —9.0001

6 1 —6 -5 6
I(0.3333) —3.6667 4 43333 -—11 ‘
(0) (—0.5454) (0.32) 15600 —3.1199

Augmented Matrix from last step

1 0 0 01 [6 1 —6 _5 6 1 —6 -—5]
(0.3333) 1 0 0‘*10 —3.6667 4 4.3333‘ _ A = 4 -3 0 1
(0.6667) (-0.4545) 1 0| (o0 0 6.8182 5.6364 |2 2 3 2

(0) (—-0.5454) (0.32) 1l lo 0 0 1.5600 _ 0 2 0 1

J \ J ) )
Y Y

A permutation of A due to row

L_ u interchanges
Lower-Triangular Upper-Triangular



LU Decomposition

A=LxU A =L U

LU Decomposition is equal to A If there is no LU Decomposition is equal to a permutation of A
row/column interchanges If there is row/column interchanges



|

Determinant Property

For square matrices A and B or equal size
det(AB) = det(4) * det(B)

-5 3|.|-1 5
1B — [11 _7 det(AB) = ‘ 7 2‘ * 5 ¢
—3 47
det(AB) = 496 det(AB) = (—31) = (—=16) = 496



Determinant Property

If A'is a triangular matrix of order n such that a;; = 0 wheneveri > jori <j

n
det(A)=l_[aii
=1
Lower-Triangular Matrix Upper-Triangular Matrix
If all the elements above the diagonal are zero If all the elements below the diagonal are zero
1 0 O 1 -3 3
L=14 6 0 U=10 -1 O
-2 1 —4 0 0 1

det(L) = (1)(6)(—4) = —24 det(L) = (D(-1D() = -1



LU Decomposition

A=LxU A =LxU

LU Decomposition is equal to A If there is no LU Decomposition is equal to a permutation of A
row/column interchanges If there is row/column interchanges
det(A) = det(L = U) = det(L) * det(U) det(A") = det(L * U) = det(L) * det(U)
det(A) = det(L = U) = det(U) det(A") = det(L * U) = det(U)

det(A) = (—1)™ = det(L * U) = (—1)™det(U)

m represents the number of row interchanges



1 -6 =5]

1 0 0 0] [6 1 —6 _s 6
(0.3333) 1 0 O‘*IO —-3.6667 4  4.3333 _ A = 4 -3 0 1
(0.6667) (—0.4545) 1 0| |o 0 6.8182 5.6364 12 2 3 2
(0) (-0.5454) (0.32) 1l lo 0 0 1.5600 _ 0 2 0 1
\ J \ J i
Y Y
2-row Interchanges
L U
Lower-Triangular Upper-Triangular

det(A") = det(L * U) = det(U) = (6)(—3.6667)(6.8182)(1.5600) = —234.0028

0 2 0 1]
12 2 3 2
A=14 23 0 1

6 1 -6 -5

det(4) = (—1)™ = det(L  U) = (—1)™ * det(U) = (—1)2(6)(—3.6667)(6.8182)(1.5600) = —234.0028




Solve the system Ax = b, with multiple values of b, by Gaussian elimination

3 2 o . .

. 1 4 0 2 1 _ |0 p2@) = 1 (3):2
A= 2 1 2 -1 =1 j y g
1 1 -1 3 0. - -

Form the Augmented matrix A|bDp(2)p3)

32 -1 2 0 -2 2

wp@p® = |1 4 0 2 0 1 2
AlbT b 2 1 2 -11 3 0
11 -1 3 0 4 o0




Gaussian Elimination

3 2 -1 2 0 =2 2
1 4 0 2 0 1
2 1 2 -1 1
1

AlpDp@DpB) = ;
1 -1 3 0 4

O O NI

Column 1

“Elimination of x; from Ry, R3, R,”

Pivot =3

-3 2 ~1 2 0
R,— (/)R — [(0.333) 3333 0333 1333 0 1.667 1.333
Rs—(3/3)R, — [(0.667) —0333 2667 —2.333 1 4333 —1.333
R~ (Y3)R — [(0.333) 0333 —0.667 2333 0 4667 —0.667.




Gaussian Elimination

3
(0.333)

(0.667)

(0.333)

3
(0.333)

2 —1 2 0
3.333 0.333 1.333 0
—0.333 2.667 —2.333 1
0.333 —0.667 2.333 0
Column 2
“Elimination of x, from R3,R,”
Pivot = 3.333
2 -1 2
3.333 0.333 1.333
(0.667) (—0.100) 2.700 —2.200
(0.100) —0.700 2.200

(0.333)

—2

1.667

4.333
4.667

O = O O

—2
1.667
4.500
4.500

—1.333
—0.667

2
1.333

2
1.333
—1.200
—0.800.




R4 _ (—0.700/2. 200 )R3 —

Gaussian Elimination

3
(0.333)

2 -1 2
3.333 0.333 1.333

(0.667) (—0.100) 2.700 —2.200

(0.333)

3
(0.333)

(0.100) —0.700 2.200

Column 3

“Elimination of x3 from R,”

Pivot = 2.700

2 -1 2
3.333 0.333 1.333

(0.667) (—0.100) 2.700 —2.200

(0.333)

(0.100) (0.259) 1.630

—2

4.500 -1.200
4.500 —0.800.

0 —2

0 1.667

1 4.500
0.259 5.667

2

0
0 1.667 1.333
1
0

2
1.333
—1.200
—1.111]




Gaussian Elimination

3 2 —1 2 0 —2 2
(0.333)  3.333 0333 1333 0 1667 1.333
(0.667) (—=0.100) 2.700 —2200 1 4500 —1.200
(0.333) (0.100) (0.259) 1.630 0.259 5.667 —1.111

Back Substitution
" 0.137 ° —0.591 " 0.273
_|-0.114 L2 _ | 1340 L3 _ | 0.773
0.500 4.500 —1.000
. 0.159 _  3.477 | —0.682.




LU Decomposition

3 2 —1 2 0 —2 2

(0.333)  3.333 0333 1333 0 1667 1.333
(0.667) (—0.100) 2.700 —2200 1 4500 —1.200
(0.333) (0.100) (0.259) 1.630 0.259 5.667 —1.111

1 0 0 01 3 2 ~1 2 3 2 -1 2
(0.333) 1 0 0\ Io 3.333 0.333  1.333 \ _ A= 1 4 O 2
(0.667) (-0.100) 1 ol"jlo o 2 700 —2.200 12 1 2 -1
\(0.333) (0.100)  (0.259) j \0 0 1.630 y _ 1 1 -1 3
Y
L U
Lower-Triangular Upper-Triangular det(4) = det(L * U) = det(L) * det(U) = det(U)

det(4) = (3)(3.333)(2.700)(1.630) = 44.005599



Gaussian Elimination

Solves the System of Computes the determinant
Equations of a matrix efficiently

Provide us with the LU decomposition
of the matrix of coefficients



Solve the system of equations using Gaussian Elimination

+ ZXZ + X3 = -8
x1 — sz — BX3 — 0
—X1 + X9 + ZX3 = 3



Solve the system of equations using Gaussian Elimination

+ ZXZ + X3 = -8
x1 — sz — BX3 — 0
—X1 + X9 + ZX3 = 3

4
X =|-5
L 2 .




Scaling

The operation of adjusting the coefficients of a set of equations so that they
are all of the same order of magnitude to avoid propagated round-off error



3
0
0

Using Gaussian Elimination

With 3 digits precision

2 100 105 7
3.66 133 137
0 —82.6 —82
1.00
X = [1.09]
0.94

7.

3 2 100]
-1 3 100|x =
1 2 -1

Partial
Pivoting

1057 1.00]
102 Xoxact — | 1.00

B 11.00
By Scaling

dividing each row by the magnitude of the largest coefficient

+-10.03 0.02 1.00 1.05
=-1-0.01 0.03 1.00 [x =[1.02
0.50 1.00 -0.50 1.00

Using Gaussian Elimination

Rs
—
2

With 3 digits precision

0.50 1.00 -0.50 1.00
0O 005 099 1.04
1.82 1.82

0 0
No 1.00
Pivoting x = 11.00

1.00



Gauss-Jordan Elimination Method

“An extension to Gaussian Elimination”

The diagonal elements may all be made ones as a first step before creating zeros in their column; this
performs the divisions of the back-substitution phase at an earlier time



Gauss-Jordan Elimination

0 2 0 1 07

12 2 3 2 =2
Alb = 4 -3 0 1 =7
6 1 —-6 -5 6.

Column 1

“Elimination of x; from R,, R3, R,”
Pivot = 0 Aeee Plvot=1

Interchange row 1 with row 4 Divide the first row by pivot “6

0 2 0 1 0

R, 1 01667 -1 —08333 1
. 3 22 B [y 01067 o1 08333 R,—(%/{)R,— |0 1.6667 5 33667 —4
2 2 3 2 =2 6 2 2 3 2 =2 1
4 -3 0 1 =7 4 —3 0 1 _7 Ry —(¥/)R, — |0 —3.6667 4 43334 -—11
0 2 0 1 0

0 2 0 1 0 Ry = (%R —



Gauss-Jordan Elimination

1 0.1667 —1 —0.8333 1 ]
0 1.6667 5 3.3667 —4

0 —-3.6667 4 43334 -—11
10 2 0 1 0 .

Column 2

“Elimination of x, from Ry, R3, R,”

Pivot = 1.6667 Pivot = -3.6667 Pivot = 1

: Divide the second row by pivot “-3.6667”
Interchange row 2 with row 3 44

R, — (O1667/)R, —> 1 0 —08182 —0.6364 0.5
1 01667 -1 -0.8333 1 R, 1 01667 -1  -0.8333 1 0 1 —-1.0909 -1.1818 3
< 0 -—-3.6667 4 43334 -—11 — |0 1 —1.0909 -1.1818 3 R3_(1-6667/1)R2_> 0 0 68182 56364 —9
0 16667 5 33667 —4 —3.6667 0 1.6667 5 3.3667 —4 Ro—(2/;)R, — L0 0 21818 33636 —6

0 2 0 1 0 0 2 0 1 0 * 12

Elimination is done above and below diagonal



Gauss-Jordan Elimination

0 —-0.8182 —-0.6364 0.5]
1 -1.0909 -1.1818 3

0 6.8182 5.6364 -9
0 2.1818 3.3636 —6

==

Column 3

“Elimination of x3 from Ry, R,, R,”

Pivot = 6.8182 Pivot=1
Divide the third row by pivot ”76.8182”
R, —(708182/ p, —~T1 0 0 004 —058
1 0 —0.8182 —0.6364 0.5 R, — (~1.0909/)g, — [0 1 0 —0.280 156
R, 0 1 -1.0909 -1.1818 3 0 0 1 08267 -—1.32
o183 0 0 1 0.8267 —1.32 R, —(21818/)r, — 10 0 0 15599 —3.12
- 0 0 21818 33636 —6

Elimination is done above and below diagonal



Gauss-Jordan Elimination

1 0 O 0.04 —0.58]
0O 1 0 -0.280 1.56
O 0 1 08267 -—1.32
O 0 0 15599 -—-3.12]
Column 4

“Elimination of x, from Ry, R,, R3”

Pivot = 1.5599 Pivot =1
Divide the fourth row by pivot “1.5599”

_ _ R, — (94 )DR,—[1 0 0 0 —0.5]

1 0 0 0.04 -0.58 R, — (70289 )R, —[0 1 0 0 1.0001

0 1 0 —0280 156 Ry —(08267/ )R, —»[0 0 1 0 0.3333
R, 0 0 1 0.8267 -1.32 0 0 0 1 -2
15599 L0 0 0 1 —2

Elimination is done above and below diagonal



Gauss-Jordan Elimination

1 0 0 0 —0.5
0 1 0 0 1.0001
0 0 1 0 0.3333
0 0 0 1 —2

- —0.5 |

1.0001

=
|

0.3333
| =2




Solve the system of equations using Gauss-Jordan Elimination

+ ZXZ + X3 = -8
x1 — sz — BX3 — 0
—X1 + X9 + ZX3 = 3




Gauss-Jordan Elimination requires 50% more
operations than Gaussian Elimination

Gaussian Elimination Gauss-Jordan Elimination

ns n n3 7n
O(—+n?—-) < —_ 12
(7 +n"—3) O0(5 +n* -

+2)



Pathology in Linear Systems



For arbitrary system of linear equations Ax = b,
one of the following cases must hold.

It has a unique solution
Consistent System

It has no unique solution “infinite solutions”

Inconsistent System{ It has no solution



What are the possible different kinds of equation in a linear system?

Type 1 Equation Type 2 Equation
An equation that provides information about the unknowns Redundant equation that provides information
without any repetition or conflict “inconsistency” with any about the unknowns that has been provided by
previous information provided by previous equation in the system previous equations in the system

Type 3 Equation

X + y = ) Type 1 Equation An equation that provides information about the

unknowns that is inconsistent with previous information
provided by previous equations in the system

X — Zy = 3 Type 1 Equation
2x + Zy — 4. | Type 2 Equation
2X — Yy = 1 Type 3 Equation




nXn linear system has n variables and and n equations

For arbitrary system of linear equations Ax = b,
one of the following cases must hold.

It has a unique solution
Consistent Syste m If the number of type 1 equations is equal to the the number of unknowns

It has no unique solution “infinite solutions”

If the number of type 1 equations is less than the number of unknowns

Inconsistent System{ It has no solution

If there is at least one type 3 equation regardless of the number of unknowns or equations



For arbitrary system of linear equations Ax = b, if the
number of equations is less than the number of unknowns then
its impossible to have a unique solution

Maybe infinite solutions OR no solution



For arbitrary system of linear equations Ax = b, if the
number of equations is equal to the number of unknowns then
its not necessary for the system to have a unique solution

Except if all equations were type 1 equations



For an arbitrary system of linear equations Ax = b, and
its augmented matrix A|b, there are 3 possibilities:

+ 0
G i 0 S0
aussian S
CASELl: Alb mmp o EEplo 0 7
Elimination Y

0 0 O

Full Rank Coefficient Matrix Nonsingular det(4) # 0

“n-Rank" Coefficient Matrix
Rank(A)= Number of non-zero rows in the Unique Solution

triangulated coefficient matrix



For an arbitrary system of linear equations Ax = b, and
its augmented matrix A|b, there are 3 possibilities:

: 0 |
. Gaussian \ |
CASE2: Albmmp - w0 o 1 redundn

_O 0 O 0 0 J Equation
If one or more zeros occur on the final diagonal, there is no unique Sioulas det(4) =0
gonal, g Coefficient Matrix et(4) =

solution and the set will be consistent (and have redundancy) if
back-substitution gives (0/0) indeterminate forms Rank(A)= Number of non-zero rows in the

triangulated coefficient matrix

No Unique Solution



For an arbitrary system of linear equations Ax = b, and
its augmented matrix A|b, there are 3 possibilities:

: 0 |
. Gaussian \ |
CASE3: Albmmp - mEplo o 1 comsstent

_O 0 O 0 # 0 J Equation
If the final di | there i Singular det(4) = 0
one or more zeros occur on e Tina |ag0na , ereis no Coefficient MatriX et( ) =

solution and the set will be inconsistent if back-substitution
divided a nonzero term by zero Rank(A)= Number of non-zero rows in the

triangulated coefficient matrix

No Solution



Singular Matrix

The coefficient matrix is singular

The set of equations with these coefficients has
no unique solution

Gaussian elimination cannot avoid a zero on
the diagonal

The rank of the coefficient matrix is less than n
The coefficient matrix has a zero determinant

The coefficient matrix has no inverse

Nonsingular Matrix

The coefficient matrix is nonsingular

The set of equations with these coefficients has
a unique solution

Gaussian elimination proceeds without a zero
on the diagonal

The rank of the coefficient matrix is equal to n

The coefficient matrix has a nonzero
determinant

The coefficient matrix has an inverse



Find Rank(A), then determine whether the following systems: Ax(1) = b Ax(2) = p(2) have unique solution, infinity
many solutions or no solution

1 —2
A=1]2 4 b(l)—[]b(Z)—[]

-1 —-14 11

Gaussian
Elimination ‘ 08 —71-3 —3

Rank(A)=2<3

Ax® = pMD | No Solution “Singular Matrix”

1 —
APV |p@ =| 2 4 —1 7 7‘ -

-1 -14 11 2 1

. , For any b, there will be no unique solution
Ax@® = p@ | Infinite “Many” Solutions




_ W N

4
2
0
2

Matrix Determinant

A=LxU

LU Decomposition is equal to A If there is no

row/column interchanges

det(A) = det(L * U) = det(L) * det(U)

det(A) = det(L * U) = det(U)

-2 3 1 4 =2
0 4 0 -6 4
-1 2 0O 0 -3
2 =3 0 O 0

Gaussian
Elimination

With no Row Interchanges

det(A) = (1)(—6)(—3)(—8) = —144

W N R

A =LxU

LU Decomposition is equal to a permutation of A

If there is row/column interchanges

det(A") = det(L = U) = det(L) * det(U)

det(A") = det(L * U) = det(U)

det(A) = (=1)™ * det(L * U) = (—=1)™det(U)

4
2
0
2

m represents the number of row interchanges

-2 3 3 0 -1
0 4 Gaussian 0 4 -1.677
-1 2 Elimination 0 0 3.167
2 -3 0 O 0

With 3 Row Interchanges

2
2.333
—4.833
3.789

det(A) = (-1)3(3)(4)(3.167)(3.789) = —144




Matrix Inverse

While division of matrices is not defined, the matrix inverse gives the equivalent result

Not all square matrices have an inverse Singular matrices do not have an inverse

If the product of two square matrices is the identity
matrix, the matrices are said to be inverses

AB=1=B=A1andA=B"1




How to compute a Matrix Inverse?

Gaussian Elimination

Augment the given matrix A with the identity
matrix of the same order

Reduces the augmented matrix to the identity
matrix by elementary row transformations

Apply back-substitution to last right half of the
augmented matrix, the inverse of the original
stands as the right half

Gauss-Jordan Elimination

Augment the given matrix A with the identity
matrix of the same order

Reduces the augmented matrix to the identity
matrix by elementary row transformations

When the identity matrix stands as the left
half of the augmented matrix, the inverse of
the original stands as the right half



1 -1 2
FindA 1forA=1|3 0 1
1 0 2
Gaussian Elimination Gauss-Jordan Elimination
1 -1 2 1 0 0 1 -1
A|I=[3 0 1 0 1 0‘ A|I=[3 0
1 0 2 0 0 1 1 0
3 0 1 0 1 0
l(0.333) —1 1.667 1 —0.333 0‘ 1 00
(0.333) (0) 1.667 0 —0.333 1 0 1 0
Apply back-substitution for the last three columns 0 0 1
3 0 1 0 1 0
[(0.333) —1 1.667 1 —0.333 o]
(0.333) (0) 1.667 0 —0.333 1 :
0
0 0.4 —0.2 »
x(l)z[_ll x(2)=[ 0 x(3)=[ 1 ] A" =|-1
0 ~0.2 0.6 0




We confirm the fact that we have found the inverse by multiplication

AA 1 =1
i ) 1-
1 -1 21|% 5 "5 1o o
AA‘1=l3 0 1]*—1 0 1 =[o 1 0]=1
1 0 20, _1 3 0 0 1
| 5 5 .



lterative Methods

Preferred over the direct methods especially when the coefficient matrix is sparse (has many
zeros), these methods may be more rapid and economical regarding memory requirements

For hand computation they have the distinct advantage that
they are self-correcting if an error is made

Jacobi Method Gauss-Seidel Method



Jacobi

6x4
X1
—2Xq

Begin by solving each equation for one of the
variables, choosing, when possible, to solve for
the variable with the largest coefficient

Start with some initial approximation to the
value of the variables. (Or zero if no better
initial estimates are at hand)

Substituting these approximations into the
right-hand sides of the set of equations
generates new approximations that, we hope,
are closer to the true value

The new values are substituted in the right-

hand sides to generate a second approximation,

and the process is repeated until successive
values of each variable are sufficiently alike

_|_
_|_

sz
ZXZ
7Xx5

From 1t Equation = X4
From 3" Equation = X,

From 2" Equation = X3

Method

X3 = 11
— 5x3 = -1
+ ZX3 — 5

2
Xactual = |1
1

(n+1) _

(n+1) _

(n+1)

1.8333 + 0.3333x"
0.7143 + 0.2857x\"
0.2000 + 0.2000x.™

0.1667x
0.2857x
+ 0.4000x

Starting with an initial vector of

O [

0
0
0

|

-mmmmmmmm

X3

1.833 2.038 2.085 2.004 1.994 1.996 2.000 2.000
0 0.714 1.181 1.053 1.001 0.990 0.998 1.000 1.000
0 0.200 0.852 1.080 1.038 1.001 0.995 0.998 1.000



How to compute the new set of equation programmatically?

6x;, — 2x, + x3 = 11 "D = 18333 + 033332 — 0.1667x)”
X, + 2x, — 5x3 = -1 ‘ Y = 07143 + 0.2857x — 0.2857x(V
—2x; + Tx; + 2x3 = 5 M = 02000 + 020002 + 0.4000x"

_1 11 6 -2 1 0 0 0] [6 0 O 0 -2 1
2 I ‘—272=—200+070+002
_1 1 2 =5 1 2 0ol lo o -5 lo o o
Ax=(L+D+Wx=b =Dx=—(L+U)x+b
x=—-DYL+U)x+D1h
xHD = _D~Y(L + U)x™ + D~ 1p
x(M+D) = —px () 4 p’
0 —0.3333  0.1667 C L [1833S
B= DY(L+U)=|-02857 0 0.2857 b'= D™"b =10.7143
0.2000

—0.2000 —0.4000 0



Fixed-Point Iteration Method

Xne1 = 9(x,) n=20,12,3,..

fx)=x4—-2x—-3=0

3 x4 -3

600 = VI +3 g2(0) = —— g5(x) =




Jacobi method for a set of equations is exactly the same as the
fixed-point iteration method for a single equation

Jacobi Method Fixed-Point Iteration Method
x(n+1) — G(x(n)) =ph' — Bx(n) Xni1 = g(xn)
n=0,1273,.. n=0,1.23,..



Gauss-Seidel IVIethod

6x4
X1
—2Xq

Begin by solving each equation for one of the
variables, choosing, when possible, to solve for
the variable with the largest coefficient

Start with some initial approximation to the
value of the variables. (Or zero if no better
initial estimates are at hand)

Proceed by improving each x-value in turn,

always using the most recent approximations
to the values of the other variables

The process is repeated until successive values
of each variable are sufficiently alike

The rate of convergence is more rapid!

— sz + X3 =
+ ZXZ — 5x3 =
+ 7x2 + ZX3 =

(n+1) _

From 1%t Equation = X4
From 3 Equation = X,

From 2" Equation = X3

0
Starting with an initial vector of | x(®) = [0‘

(n+1) _

(n+1)

—1 Xactual — [ ]
5

= 18333 + 03333xY —  0.1667x("
= 07143 + 028572 - 0.2857x(V
= 02000 + 0.2000x"™"" + 0.4000xY

0

-mmmmm

1.833 2.069 1.998 1.999 2.000

Xo 0

X3 0

1.238 1.002 1.053 1.000 1.000

1.062 1.015 1.080 1.000 1.000



