CPE 310: Numerical Analysis for Engineers
Chapter 3: Interpolation and Curve Fitting

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.



Given values of an unknown function corresponding to certain values of x
What is the behavior of the function?

In this chapter, we would like to answer the question "What is the function?" but this is always impossible
to determine with a limited amount of data

Least-Squares

Direct Interpolation i ' ivi ' 3
P Lagrangian Polynomials Divided Differences  Evenly-Spaced Data e o



Interpolation versus Extrapolation

A
¢ o f(x)
Interpolation ~——

17
f(x ) Extrapolation

e

>
Extrapolation Interpolation

An estimation of a value beyond the range of An estimation of a value between the range of
the known data points the known data points

The set of data points should be close to the data point we
want to interpolate at



Fit a cubic polynomial through the
first four points and use it to find the
interpolated value for x = 3.0

To find a polynomial that passes through the same points as our unknown function, we set
up a system of equations involving the coefficients of the polynomial

x f(x)
3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7
Ax =

3.23 3.22 3.2
2.73 277 2.7
1 1 1.0
4.8 4.8 4.8
Our Polynomial:

The maximum degree of the polynomial is always
one less than the number of points

Cubic Polynomial ax® + bx? + cx + d requires 4 data points
We can write four equations involving the unknown coefficients a, b, ¢, and d
Ifx =3.2:a(3.2)3 + b(3.2)? + ¢(3.2) + d = 22.0
Ifx=27:a2.7)® +b(2.7)> +c(2.7) +d =17.8
Ifx =1.0:a(1.0)3 + b(1.0)> + ¢(1.0) + d = 14.2
If x = 4.8:a(4.8)° + b(4.8)* + c(4.8) +d = 38.3

a (22.0]

b 17.8 Gaussian a =—0.5275,b = 6.4952,
c| = |14.2 ‘ Er— ‘ ¢ = —16.1177,d = 24.3499
d 138.3.

—0.5275x3 + 6.4952x% — 16.1177x + 24.3499

At x = 3.0, the estimated value is 20.21



Adding/Subtracting a point from the set used to construct
the polynomial requires starting over the computations



Lagrangian Polynomials

The polynomial of lowest degree that passes the same points as our unknown function

The simplest way to exhibit the existence of a polynomial
for interpolation with unevenly spaced data



Lagrangian Polynomials

We don’t assume uniform spacing between the x-values, nor do we need the x-values arranged

fx)

fo
f1
f2
f3

in a particular order, however, the x-values must all be distinct

The Lagrangian polynomial of degree “3” is:

(x —x1)(x — x3)(x — x3) o+ (x — x0)(x — x2)(x — x3)
(X0 — x1) (%o — x2) (%o — Xx3) ° (x1 — x0) (%1 — x2) (%1 — X3)

P3(x) = fi

(x — x0)(x — x1)(x — x3) (x —x0)(x —x1)(x — x2)

* (X2 — x0) (X2 — x1) (X2 — xs)fz " (x3 — x0) (x5 — x1) (X3 — x3)

f3

The Lagrangian polynomial for degree n will have (n+1) terms



fx)

fo
f1
f2
f3
f4

Lagrangian Polynomials

We don’t assume uniform spacing between the x-values, nor do we need the x-values arranged
in a particular order, however, the x-values must all be distinct

The Lagrangian polynomial of degree “4” is:

(x —x1)(x —x2) (x — x3) (X — x4) (x — x0)(x — x2) (x — x3) (X — x4)
(X0 — x1) (X — x2) (X — x3) (Xo — X4) ° (1 — x0) (X1 — x2) (X1 — x3) (X1 — X4)

Py(x) = fi
(X — x0)(x —x1)(x — x3) (X — x4) (X — x0) (X —x1) (x — x2) (X — x4)

" (X2 — X0) (x2 — x1) (X2 — x3) (X2 — X4) 2 (x3 — x0) (x5 — x1) (X3 — x2) (X3 — X4)

f3

+ (x — x0) (x — x1) (x — x2)(x — x3) f
(g — x0)(Xg — 1) (X4 — x3) (X4 — X3) *




Fit a cubic polynomial through the
first four points and use it to find the
interpolated value for x = 3.0

x &)

P3(x) =

(x —x1)(x —x2)(x — x3)

(X0 — x1) (%o — x2) (%o — Xx3)

+

(x — x0)(x — x2)(x — x3)

fo+

(x —x0)(x —x1)(x — x3)

(X1 — x0) (1 — x2) (%1 — X3)

(x —x0)(x —x1)(x — x2)

f

(X2 — x0) (X2 — x1) (X2 — x3) 2 (x3 — X0)(x3 — x1) (X3 — x3)

f3

3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7

P;(3.0) =

(3.0 — 2.7)(3.0 — 1.0)(3.0 — 4.8)

(3.0 — 3.2)(3.0 — 1.0)(3.0 — 4.8)

(3.2 -2.7)(3.2 — 1.0)(3.2 — 4.8) (22.0

(3.0 —3.2)(3.0 — 2.7)(3.0 — 4.8)

) +

(2.7 = 3.2)(2.7 — 1.0)(2.7 — 4.8)

(3.0 —3.2)(3.0 - 2.7)(3.0 — 1.0)

(1.0 — 3.2)(1.0 — 2.7)(1.0 — 4.8)

(42) + 8 =328 - 2748 — 1.0)

(17.8)

(38.3)

P;(3.0) = 20.21




Lagrangian involves more arithmetic Adding/Subtracting a point from the set used to construct
operations than does the other methods the polynomial requires starting over the computations



Divided Differences



Divided Differences

We don’t assume uniform spacing between the x-values, nor do we need the x-values
arranged in a particular order, but some ordering may be advantageous

The polynomial for degree n will have (n+1) terms

Po(x) =ag+ (x —x¢)a; + (x —xo)(x —xp)a + -+ (x —x0)(x — x1) - (x — Xp_1)ayp




Divided Differences

We don’t assume uniform spacing between the x-values, nor do we need the x-values
arranged in a particular order, but some ordering may be advantageous

The polynomial for degree n will have (n+1) terms

P, (x) (x — xo (x — x0) (x — x1 + o (= x0) (X —x1) - (0 — x4

PuC) = [+ (= 2oy + (= x) = x)f )+

et (e —xp)(x —xp) e (x = xn—1)f£)n]

£ = flxl = f; A7 = flx i, ir] =

Zero Order Divided Difference

flxivs xiv2] = flxi xi44]

Xi+2 — Xj

Second Order Divided Difference

[1] _ . _ firan = fi
f; f[xl'xl+1] xi+1__ X;
First Order Divided Difference fl_["] = flxg, Xg, -+ 2] = flxw, x5, xn] = flxo, %1, Xn1]

Xn — Xo

n-Order Divided Difference



fo
f1

f2
f3
f4

Divided Differences Table

f[xir xi+1]
flxo,x1] = Q :f;
flen ) = 222
flaxs] = 222
Flis 4] = 2222

X4 — X3

flxi, xir1, Xi42]

flxo, x1, %3] =
flx1, %2, %3] =

flx2, %3, %4] =

f[xli-XZ] _ f[inxl]

X2 — Xo
flx1,x2] = flxo, 1]
X3 — X1
flx1, x2] — flxo, x1]
X4 — X2

flxi Xiv1, Xi42, Xi43]

f[in X1, X2, X3] =

f[xll X2, X3, X4_] =

flx1, %2, x3] = flx0,x1, %3]

X3 — Xp
f[xz,xg,x4] — flx1, %2, x3]
Xq4 — Xo



Write an interpolating polynomial of degree 3 that fits data at all data points

using divided differences

X

3.2
2.7
1.0
4.3
5.6

[(X)
22.0
17.8
14.2
38.3
51.7

P;(x) = f{,o] + (x — xo)f([)l] + (x — xo)(x — xl)fg,z] + (x —x0)(x —xq) (x — xz)f([)3]

i Ji flxi Xi4] flxi X1, Xi42] flxi, Xiv1, Xiv2, Xiy3]

xo Jfo

x1 fi flxox] = Q :];(:)

x2 f2 flxpx]= )Z :fl fxo,x1,%2] = ﬂxvx;j :QXO’M]

X3 f3 f[x21 X3] = Jj:z :J{Z f[xl, Xy, X3] = f[xl,x;i :Zl[xo’ xl] f[xO;xlyxz;xg] — f[xl'xZI X;;l :fC'(ExO,xl, x2]

Xi fi  Flxixiyal flxoxipn X2l FIXo Xiv1, Xiv2, Xiy3]
3.2 22.0

2.7 17.8 8.400

1.0 14.2 2.118 2.856

48 38.3 6.342 2.012 —0.528

Py(x) = 22.0 + (x — 3.2)8.400 + (x — 3.2)(x — 2.7)2.856 + (x — 3.2)(x — 2.7)(x — 1.0)(—0.528)




Write an interpolating polynomial of degree 4 that fits data at all points from

X9 = 3.2 to x3 = 4.8 using divided differences

X

3.2
2.7
1.0
4.3
5.6

0 1 2 3
(X)) P@=fy +@=x)fy + & —x)—x)fy + (& —x0)(x —x1) (x = x)f g
4
22.0 P, (x) = P3(x) + (x — x0) (x — 1) (x — %) (x — x3) fb
17.8 “We only have to add one more term to P5(x)”
14.2
xi  fi flxpxial  flxoxivn X2l Flxon Xiv1, X2, X3l FIX0 Xig1, Xiv2, Xiv3, Xival
38.3 32 220
2.7 17.8  8.400
51.7 1.0 142 2118 2.856
48 383 6342 2.012 —0.528
5.6 51.7 16.750 2.263 0.0865 0.256

P,(x)=22.0+ (x —3.2)8.400 + (x — 3.2)(x — 2.7)2.856 + (x —3.2)(x — 2.7)(x — 1.0)(—0.528)
+(x —3.2)(x —2.7) (x — 1.0)(x — 4.8)(0.256)




Divided Difference for f(x) a Polynomial

If f(x) =a,x™+ -+ a;x + a, is a polynomial of degree n, then the interpolating polynomial
0 1 2
() = f5) + (x = x)fg ) + (x = x0) (x — x)f ) + -+ (x = x0) (x — x1) +++ (x = X1 )f g

Since the polynomial that fits n + 1 points xy, x4, -*- X,, is unique, we have

f(x)=P,(x) = a, =f"

f(x)=2x3—x?+x—-1

0.30
1.00
0.70
0.60
1.90
2.10

fi
—0.7360
1.0000
—0.1040
—0.3280
11.0080
15.2120

2.4800
3.6800
2.2400
8.7200
21.0200

3.0000
3.6000
5.4000
8.2000

2.0000
2.0000 0.0000
2.0000 0.0000 0.0000

The divided-difference
of order greater than n
are all zero



Divided Difference for f(x) a Polynomial

If f(x) =a,x™+ -+ a;x + a, is a polynomial of degree n, then the interpolating polynomial
0 1 2
() = f5) + (x = x)fg ) + (x = x0) (x — x)f ) + -+ (x = x0) (x — x1) +++ (x = X1 )f g

Since the polynomial that fits n + 1 points xy, x4, -*- X,, is unique, we have

f(x)=P,(x) = a, =f"

f(x) =65x>—x%+x—1

ol =6.5
6

fo =0
20] _ o

0

f(x) =-10.33x8 — x>+ x — 20

5
fo' =?

ol = —10.33
20] _
=0 = o




Evenly Spaced Data

The problem of interpolation from tabulated data is considerably simplified if the values of
the function are given at evenly spaced intervals of the independent variable



A data (x;, f;),i = 0,1, -+, n is evenly spaced or equi-spaced if there
is a constant h such thatx;,y —x; = hfori =0,1,.---,n—1

First Order Difference: Af; = f;.1 — f;
Second Order Difference: A*f; = A(Af;) = fizs — 2fieq1 + [

n-Order Difference: A" f; = A(A™ 1 f)



Construct a difference table for f(x) = x> + 2 for the interval [0, 4] with
spacing of 1

It is necessary here to arrange the data in a
table with x-values in ascending order

xi  f M) Afx) Af) A
0.00 2.00

1.00 3.00 1.00

200 10.00 7.00  6.00

3.00 29.00 19.00 12.00 6.00

4,00 66.00 37.00 18.00 6.00  0.00




Construct a difference table for f(x) = x> + 2 for the interval [0, 4] with
spacing of 1

xi  f) Af(x) A f(x) A%f(x) A*f(x)
0.00 2.00

1.00 3.00  1.00

2.00 10.00 7.00  6.00

3.00 29.00 19.00 12.00  6.00

400 66.00 37.00 18.00 6.00  0.00

> =36 ) =12

One of the best ways to check for mistakes is to add the sum of the numbers in each column to the
top entry in the column to its left. This sum should equal the bottom entry in the column to the left




Relation between Differences and Divided Differences

Let (x;, f;),i = 0,1,---,nis evenly spaced data with x;.; —x; = h

M _ ey . o Jirn—fi A
f; f[xl'xl+1] Xirq — X h

AF: Af:
2] _ _ flxivn, xig2] = flxi xi44] _ % — % B A%f;
i = flxn X, Xig2] = o = 7 =21

A" f;
n! A"

fl[n] — f[xini+1' 'xi+n] —



Construct a difference table for f(x) = x> + 2 for the interval [0, 4] with
spacing of 1

xi  fx) Af(x) Af(x) Af() A
0.00 2.00

1.00 3.00 1.00

200 10.00 7.00  6.00

3.00 29.00 19.00 12.00  6.00

4,00 66.00 37.00 18.00 6.00  0.00

A,
fl[n] — f[xini+1' 'xi+n] — nl h1l’L

s A 6.00
Ji T (3)!(1)3 6.00

=1




Newton-Gregory Forward Polynomial

One of the easiest ways to write a polynomial that passes through a group of equispaced points



Newton-Gregory Forward Polynomial

One of the easiest ways to write a polynomial that passes through a group of equispaced points

P, (x) = fE,O] + (x — xo)f([)l] + (x — xo)(x — xl)fgz] + ot (0 —x)(x — x1) - (x — xn_l)fg']

A" f;
fi[n] = flx;, Xjst, ") Xjan] = W
2 ATL i
P.(x) = fo + (x —xo)i+ (x — x0) (x —xl)Z'i{g o (= x0) (X = 2q) (X — %) n!l{"
Pn(x):f0+SAf0+S(52—! 1)A2f0 S(S_ 3)!(5_ )A3ﬁ+ ...+S(S—1)--;1(!S—7’l+1)Anfi S=x_hx0

(s)zs(s—l)---(s—m+1)

m m!

F(x) = fo + (i) Afy + (;) A2y + (;) A3+ ot (i) A",



Write a Newton-Gregory forward polynomial of degree 3 that fits the four data points
from x = 0.4 to x = 1.0 with spacing of 0.2. Then, use it to interpolate for f (0.73)

xi fO Af(x) Af(x) A%f(x)
0.4 0.423

0.6 0.684 0.261

0.8 1.030 0.346 0.085

1.0 1557 0527 0.181 0.096

S i

P00 = fo+ () 8+ (5) 2% + (3) 2%

(s)zs(s—l)---(s—m+1) S X — X

m m! h

P,(x) = 0.423 + (i) 0.261 + (;) 0.085 + (;) 0.096

S
1

S
2

S
3

0.73-04

)0.096 s =~ = 1.65

P.(0.73) = 0423 + () 0.261 + () 0.085 +

1.65 1.65 1.65
P,(0.73) = 0.423 + ( 1 )0.261 + ( ) )0.085 + ( 3 )0.096 = 0.893




Differences Versus Divided Differences

f(x) =x3+2
xig  fx) A g2l B plal xi  f(xX) Af(x) A%f(x) A3f(x) A*f(x)
0.00 2.00 0.00 2.00
1.00 3.00 1.00 1.00 3.00 1.00
2.00 10.00 7.00 3.00 2.00 10.00 7.00 6.00
3.00 29.00 19.00 6.00 1.00 3.00 29.00 19.00 12.00 6.00
400 66.00 37.00 9.00 1.00 o0.00 4.00 66.00 37.00 18.00 6.00 0.00
n
_ m] _ _ A
an — fO fl — f[xirxi+1' )xi+n] — W

a,is the coefficient of x™

A",
A = f[n] — 0
w0 n! "




Least-Squares Approximations

We look for an approximation function P(x) from some particular class of functions such
that the least-squares measure of the error is minimized

Instead of the interpolating condition P(x;) = f(x;), we impose the condition:
n n

E= ) e/= ) [P(x) — f(x;)]? is minimum
i=0 i=0



Least-Squares Approximations

Find a line that would make a best fit

“Least-squares" principle is to minimize the sum of the
squares of the errors

R=aT + b

1000

O
o
o

00
o
o

Resistance, ohms

700

Temperature, °C

A
(
T,°C R,ohms
20.5 765
32.7 826
51.0 873
73.2 942
95.7 1032
>
0O 20 40 60 80 100




Least-Squares Approximations

Let Y, represent an experimental value, and let y; be a value from the
equationy; = a x; + b, where x; is a particular value of the variable
assumed to be free of error

We wish to determine the best values for a and b so that the y's predict the function values that
correspond to x-values

The least-squares criterion requires the following to be minimum

S=ef+tes+-+ef
. — Y. — 1. We reach the minimum by
el Yl Yi N proper choice of the

N
_ 2 2 parameters a and b, so
Il ei — (Yl — axX; — b) they are the "variables" of
=1

. the problem
=1

where N is the number of (x,Y) pairs




Least-Squares Approximations

S=612+622+---+e,%,

l:

At a minimum for
S, the two partial

N
derivatives will
2
e § (Yl — ax; — b) both be zero

1 =

OS

6

ZZ(Y — ax; — b)(—x;)

Z 2(Y, — ax; — b)(—1)

Dividing each of these
equations by -2 and
expanding the summation

Normal Equations

the values for slope and intercept a and b

Solving these equations simultaneously gives

a2x12+b2xi =inYi

ain+bN=ZYi




a2x12+b2xi =inYi
ain+bN=ZYi
N =5, Exi=273.1

le? = 18,607.27 z Y, = 4438

inyi — 254,932.5

18,607.27a + 273.1b = 254,932.5
273.1a + 5b = 4438

Find the least-square line for the data

a = 3.395,b =702.2

R = 3.395T + 702.2

1000
()

%900

O T,°C R,ohms

§ 20.5 765

5 32.7 826

é 800 51.0 873
73.2 942
95.7 1032

700 >

0O 20 40 60 80 100
Temperature, °C




What if we have a non-linear data?

In many cases, data from experimental tests are not linear, so we need to fit
to them some function other than a first-degree polynomial

Exponential forms n-Degree Polynomial Forms:
y = ax?,y = aeP* y=ag+ a;x + ax*+ -+ a,x"



Non-Linear Data with Exponential Form Fitting

Popular forms that are tried are the exponential forms:
y = ax? ORy = qeP*

We can develop normal equations for these analogously to the preceding development for a least-
squares line by setting the partial derivatives equal to zero

Such nonlinear simultaneous equations are much more difficult to solve than linear equations

S Inv =Ina+blnx Ains _
y = ax Linearized by 111 na nx 7 — I W=A+bZ

taking
y = aebx logarithms lny —lna + bx W=Iny W = A+ bx

A=Ina



Non-Linear Data with Exponential Form Fitting

W=A+bZ

bZZZ+AZZ=ZZW
bZZ+AN=ZW

W =A+ bx

bei2+Ain :zxiW
bei+AN=ZW




Find the least-square exponential curve on the form y = ax? for the given data points

X y W=A+bZ

1 2

2 16 by zeayz-Yaw |

3 54 1114

A=Ina

4 128 bEz_l_AN:ZW Z =Inx

5 250

6 432
X y z z? w ZxW B
{5 0 0 0.693147 N 9.409906b + 6.5792512124 = 32.79011
2 16 0.693147181 0.480453 2.772589 1.921812 6.579251212b + 6A = 12.89664
3 54 1.098612289 1.206949 3.988984  4.382347
4 128 1386294361 1.921812  4.85203  6.726342 b =3.0133,A = 0.6787,a = e4 = 1.97
5 250 1.609437912  2.59029 5521461 8.886449
6 432 6579251212 2.210402 6.068426 10.87316

y = 1 97x3.0133
Y  6.579251212 9.409906 23.89664 32.79011 '




Non-Linear Data with Polynomial Form Fitting

n-Degree Polynomial Forms:
Yy =ay+ a;x + azx? + -+ apx™
In the development of normal equations, we use n as the degree of the polynomial and N as the

number of data pairs

if N=n + 1, the polynomial passes exactly through each point and the methods discussed
earlier in this chapter apply, so we will always have N > n + 1 in the following

Yy =ag+ ax + ax® + -+ ax”

— — 2 n
e =Y~y =Y, —ag— ayX; — X — " — ApX;

We want to minimize the sum of squares:

N N
2
— 2 __ 2 n
S—Zei —Z(Yi—ao—alxi—azxi —---—anxi)
i=1 i=1




Non-Linear Data with Polynomial Form Fitting

We want to minimize the sum of squares:

N N
2
— 2 __ 2 n
S—Zei —E(Yi—ao—alxi—azxi —---—anxi)
i=1 i=1

At the minimum, all the partial derivatives vanish “Equal to Zero”:

aS = n
S—= 0= Z 2(Y; —ag — ayx; — - — a;x)(—1)
Ao -
=1
as :
S—=0= Z 2(Y; — ag — agx; — - — a;x") (—x;)
a, :
l:.l
aS -
5= 0= z 2(Y; —ag — a;x; — -+ — apx)(—xM)
an =1




Non-Linear Data with Polynomial Form Fitting

Dividing each by -2 and rearranging gives the n + 1 normal equations to be solved simultaneously:

aON+alzxi+aZin2+-‘-+an2x[‘ =ZYL-
aozxi+alzxi2 +a22xi3+-~+anzxi"+1 =zxiYi
aOinz+a12xf’+a22x{*+---+an2x{‘+2 =in2Yi

aoz:x?+alzx{‘+1+a22x?+2 +---+an2xi2" :Zx?Yi

All the summations run from 1 to N




Non-Linear Data with Polynomial Form Fitting

Putting these equations in matrix form shows an interesting pattern in the coefficient matrix

N le lez fo le" zY‘
Dwo par o dad Dbyl Ny,
Z 2 Z 3 Z 4 5 Z ntz 4T 2
X X X; Xpoooc X inyi

n n+1 n+2 n+3 2n ny.

All the summations run from 1 to N




Solving large sets of linear equations is
not a simple task

Round-off errors in solving them cause
unusually large errors in the solutions

Upton=4or5, the problem is not too
great, but beyond this point special
methods are needed



Find the least-square quadratic curve y = a, + a;x + a,x? for the given data points

Xi Yl

0.05 0.956 EEDEIE bR
o1 oney | |Xx 2t Xetla=| Y

0as osr| |2t XA | |[atn

0.52 0.539
0.70 0.378 lll 6.01 4.6545]7 l5.905]
6.01 4.6545 4.1150|a =12.1839
0.74 0.370 46545 41150 3.9161. 1.3357
0.82 0.306
0.98 0.242 0.998
1.17 0.104 a=(-1.018
0.225

y = 0.998 — 1.018x + 0.225x°




Find the least-square quadratic curve y = a, + a;x + a,x? for the given data points

Xi
0.05
0.11
0.15
0.31
0.46
0.52
0.70
0.74
0.82
0.98
1.17

Y;
0.956
0.890
0.832
0.717
0.571
0.539
0.378
0.370
0.306
0.242
0.104

|

N

11
6.01

S

Exi inz
Db D

6.01
4.6545 4.1150
4.6545 4.1150 3.9161.

4.6545]

a=[

—1.018
0.225

0.998 ]

y = 0.998 — 1.0138x

>
inyi

a

> xk,

2.1839

l5.905
1.3357

|

y=1-—x+0.2x?
We do not expect to reproduce
the coefficients exactly because of
the errors in the data

0.225x7



What Degree Polynomial Should be Used?

As we use higher-degree polynomials, we of course will reduce the deviations of the points from the
curve until, when the degree of the polynomial,n = N — 1, there is an exact match and we have an
interpolating polynomial

One can increase the degree of approximating polynomial as long as there is a
statistically significant decrease in the variance which is computed by:

o = Yei
N—n-1




Xi
0.05
0.11
0.15
0.31
0.46
0.52
0.70
0.74
0.82
0.98
1.17

Y;
0.956
0.890
0.832
0.717
0.571
0.539
0.378
0.370
0.306
0.242
0.104

Degree Equation o? Y e?
1 y = 0.952 — 0.760x 0.0010 | 0.0092
2 y = 0.998 — 1.018x + 0.225x2 0.0002 | 0.0018
3 y = 1.004 — 1.079x + 0.351x2 — 0.069x3 0.0003 | 0.0018
4 y = 0.998 — 0.838x — 0.522x2 + 1.040x3 — 0.454x* | 0.0003 | 0.0016

— — 2 3 4
e y = 1.031 %.704x +4.278x% —9.477x° +9.394x* | o 001 | 0.0007
—3.290x
y = 1.038 — 1.910x + 5.952x2% — 15.078x3
° +18.277x* — 9.835x° + 1.836x° 0.0002 1 0.0007
— — 2 3
. y =1.032 — 1.742x + 4.694x* — 11.898x 0.0002 | 0.0007

+16.645x* — 14.346x° + 8.141x° — 2.293x7




