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Ordinary differential equations is essential for modelling many physical situations.
These equations have also demonstrated their usefulness in many fields.

The basic problem to be solved

v =fxy), y(x) =y
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The Taylor-Series Method

It is not strictly a numerical method, but it is sometimes used in conjunction
with numerical schemes



The Taylor-Series Method

We develop the relation between y and x by finding the coefficients
of the Taylor series in which we expand y about the point x = x,
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“Initial Condition”

If we let x — xo = h, we can write the series as:
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y(x) =y(xg) +y' (xo)h + 1 h* + 3

If the expansion or the “initial condition” is about the point x,; = 0, the
Taylor series is actually the Maclaurin series
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EXGmple Given the following initial condition, find the solution for y using Taylor-series method using n = 4

dy
_— = ’:—2 —Y, O :—1
=Y X—y y(0)

, ¥ (xo) y'" (xo) y* (xo)
y(x) = y(xo) + ¥ (x0) (x — x0) + o (x — x0)? +T(x_xo)3 +T(x—x0)4
From the given equations: xo = 0, y(x,) = —1

We get the second and higher derivatives by successively differentiating the equation for the first
derivative. Each of these derivatives is evaluated corresponding to x = 0 to get the various derivatives

Y () =-2x—y, y'(x)=—-2(x0) —y(xo) =—-200)—- (-1 =1
y')=-2-y" ¥y =-2-y"(x)=-2-1=-3
ynl(x) — _y//’ y’”(xo) — _y”(xo) — _(_3) — 3

yW(x) =—y'", YW (xo) = =y""(xp) = —(3) = =3
If we let x — xo = h, we can write the series as:

y(h) = -1+ h — 1.5h% + 0.5h3 — 0.125h* + error



y(h) = =1+ h — 1.5h% + 0.5h% — 0.125h* + error

\ / y(x) = —-3e™ — 2x + 2

X y(x_xO) Yactual(x)
0.0 -1.00000 -1.00000

0.1 -0.91451 -0.91451
0.2 -—-0.85620 -—0.85619
0.3 —-0.82251 —0.82245
0.4 -0.81120 -0.81096
0.5 -0.82031 -0.81959



The Taylor-Series Method

The Taylor series is easily applied to a higher-order equation

Given the following initial condition:

y'=34+x—-y% y0)=1,  y'(0)=-2
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y(x) = y(xo) + y'(x0)h +

Y ==3+x—y%  y'(xo)=-3+x— (y(x)) =-3+0—12 = —4
ylll(x) — 1 _ Zyy,, ylll(xo) — 1 . 2(1)(_2) — 5

yP) = =2yy" = 2y'y',  y¥(xo) = —2y(x0)y" (xo) — 2" (x0)y' (x0) = —2(1)(5) — 2(=2)(-2) = —18

y(h) =1 —2h — 2h* + 0.833h3 — 0.75h* + error



The Taylor-series method may be awkward to apply if the derivatives become
complicated and in this case the error is difficult to determine

The error in a Taylor series will be small if the step size h is small. If h is small enough,
we may only need a few terms of the Taylor-series expansion for good accuracy



Euler and Modified Euler Methods



Simpler Euler Method

The Euler method uses only the first two terms of the Taylor
series for first-order differential equations

y'"(x0)
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y(x) = y(xo) + ¥y (xo)(x — x0) + (x — x)*

y Slope at x;computed with x4, y4

Yifp--=-=======---

y(xo + h) = y(xo) + hy'(x0) + 0O(h?*)
Yn+1 = Yn T h%fl + O(hz) Yol-cooo_

True y, value




EXGmple Use Euler method to solve the following with h = 0.1 to get y(0.4)

dy (0.4) = —0.81096
— 4 = _ Yactual\V-7) = :
—=y' =-2-y,  y(0)=-1
dx
~ !/

Yn+1 = Yn + hyn
Xn Yn Yn hyn Yn+1
0.0 —1.00000 1.00000 0.10000 —0.90000
0.1 —0.90000 0.70000 0.07000 —0.83000
0.2 —0.83000 0.43000 0.04300 —0.78700
0.3 —0.78700 0.18700 0.01870 —0.76830
0.4 —0.76830

Actual Error is: ¥gc11q1(0.4) — Yappro(0.4) = —0.04266



y Slope at x;computed with x4, y;

Yip-=--===-===--

In the simple Euler method, we use the slope at
the beginning of the interval to determine the
increment to the function.

True y; value

Yol------

1
1
This technique would be correct only if the function was linear ;
1
1
1




Modified Euler Method

We use the correct average slope within the interval. This can be
approximated by the mean of the slopes at both ends of the interval.

y Slope at x; computed with x,, yFredictor

yPredictor | ____________ ¢ Slope computed with
yCorrector __________ mean of slopes
: 1
y71;_1|‘_e1d1ctor =y, + hyﬁ ! True y, value

|
Yol------ ;
1 1
/ 'Predictor ! !
Corrector _ + hy‘n T Y+ : :
Yn+1 = In 2 ! ;
| ]




EXGmple Use Modified Euler method to solve the following with h = 0.1 to get y(0.5)

dy (0.5) = —0.8196
. I . Yactuat\Y- - .
— =y =-2x-y, y0)=-1
dx
Predictor __ /
Yn+1 = Yn + hyn
/ 'Predictor
+y
Corrector __ Yn n+1
Vn+1 =Ynth >
X, VY yP_li"_e::ldictor yC_(ilirector
n n
0.0 —1.0000 —0.9000 —0.9150
0.1 —0.9150 —0.8453 —0.8571
0.2 —0.8571 —0.8114 —0.8237
0.3 —0.8237 —0.8013 —0.8124
0.4 —0.8124 —0.8112 —0.8212
0.5 —0.8212




Runge-Kutta Methods

While we can improve the accuracy of previous methods by taking smaller step sizes, much
greater accuracy can be obtained more efficiently by Runge-Kutta methods

Second-Order Runge-Kutta methods Fourth-Order Runge-Kutta methods

Similar to Modified Euler method



2"d Order Runge-Kutta Methods

Yn+1 = Yn T+ (aky + bk,)h

ki = f(xn Yn) ky, = f(xp, +ah,y, + kih)
1
a+b=1 ab:% ,8b=§

3 Equations with 4 variables



2"d Order Runge-Kutta Methods
Yn+1 = Yn T (akq + bky)h

ki = f(xXn ¥n)

a+b=1 ab=% Bb

Heun’s Methoc
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Yn+1 = Yn +h(§k1 + Zk,
2

ki = f(xnr Vn)
ky = f(xn + b,y + k1h)

)

Mid-Point Method

ky, = f(xy, +ah,y, + kih)

1
=0,b:1, = -, = —
a a 2[)’ 5

Yn+1 = Yn T hk;

ki = f(nyn)
1 1
ke = [ Gt + 5 h i + 5 ks )

Ralston’s Method

1 2 3

3
3=z a=ph=g

a =

3
ki = f(Cnyn)

3 3
ko = fCon +Zhyn + 3 Kah)

1 1
Yn+1 = Yn T h<_k1 +§k2)




EXGmple Use 2"d Order Ralston Runge-Kutta Method to solve the following with h = 1.5 to get y(3)

dy Yactua(0.5) = —0.8196

Y = 3e™™ — 0.4y, y(0) =5

1 1
Y =Y+ h(5Hr + 2k

3
ki = f(anYng) ;
ke = fCon + 31y + 2 Keh)

L Xn Yn kl kZ Yn+1

0 0.0 5 1.000 -—-1.476 4.024
1 1.5 4.024 —0.9402 —-0.9692 2.5847
2 3.0 2.5847




4t Order Runge-Kutta Methods

They are most widely used and are derived similar to the second-order ones. Greater complexity
results from having to compare terms through h*, and gives a set of 11 equations in 13 unknowns.
The set of 11 equations can be solved with 2 unknowns being chosen arbitrarily.

h
Yn+1 = Yn T+ g (kl + 2k, + 2k3 + k4)

ki = f(Xn ¥n)

1 1
ky = f(xp +§h»37n +§k1h)

1 1
ks = f(n + 5 Yo + 5 ko)

ky = f(xy,+ h,y, + ksh)



EXGmple Use 4t Order RK method to solve the following with h = 0.1 to get y(0.5)

dy _ _
y (0.5) = —0.8196
_— yl — —Zx _ y, y(O) — _1 actual
dx
h Xn Yn k4 ko ks ky
= +—(k{ + 2k, + 2k, + k
In+1 = In 6( 1 2 3+ k) 0.0 ~1.0000  1.000 0.850 0.858 0.714
Ky = F(t ) 0.1 09145  0.715 0.579 0.586 0.456
k, = f(xn+%h,yn+%k1h) 0.2 —0.8562  0.456 0.333 0.340 0.222
1 1 -
s = £+ L+ L) 0.3 0.8225  0.222 0.111 0.117 0.011
0.4 —0.8110 0.011  —0.090 —0.085 —0.181
Ky = f(tn + h,yn + ksh)
05 —0.81959

4t Order RK Method is further gain in accuracy with less effort than with the Taylor
series method, and certainly is better than the Euler or modified Euler methods




