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Ordinary	differential	equations	is	essential	for	modelling	many	physical	situations.	
These	equations	have	also	demonstrated	their	usefulness	in	many	fields.	

The	basic	problem	to	be	solved
𝑦" = 𝑓 𝑥, 𝑦 , 𝑦 𝑥' = 𝑦'

Taylor-Series	Method
Euler	and	Modified	
Euler	Methods Runge-Kutta Methods



The	Taylor-Series	Method
It	is	not	strictly	a	numerical	method,	but	it	is	sometimes	used	in	conjunction	

with	numerical	schemes



The	Taylor-Series	Method

We	develop	the	relation	between	𝑦 and	𝑥 by	finding	the	coefficients	
of	the	Taylor	series	in	which	we	expand	𝑦 about	the	point	𝑥 = 𝑥'

𝑦 𝑥 = 𝑦 𝑥' + 𝑦" 𝑥' 𝑥 − 𝑥' +
𝑦"" 𝑥'
2! 𝑥 − 𝑥' , +

𝑦""" 𝑥'
3! 𝑥 − 𝑥' . + ⋯

If	we	let	𝒙 − 𝒙𝟎 = 𝒉,	we	can	write	the	series	as:

𝑦 𝑥 = 𝑦 𝑥' + 𝑦" 𝑥' ℎ +
𝑦"" 𝑥'
2! ℎ, +

𝑦""" 𝑥'
3! ℎ. + ⋯

“Initial	Condition”

If	the	expansion	or	the	“initial	condition”	is	about	the	point	𝑥' = 0,	the	
Taylor	series	is	actually	the	Maclaurin	series



Example
𝑑𝑦
𝑑𝑥 = 𝑦" = −2𝑥 − 𝑦, 𝑦 0 = −1

Given	the	following	initial	condition,	find	the	solution	for	𝑦 using	Taylor-series	method	using	𝑛 = 4

𝑦 𝑥 ≈ 𝑦 𝑥' + 𝑦" 𝑥' 𝑥 − 𝑥' +
𝑦"" 𝑥'
2! 𝑥 − 𝑥' , +

𝑦""" 𝑥'
3! 𝑥 − 𝑥' . +

𝑦:; 𝑥'
4! 𝑥 − 𝑥' <

From	the	given	equations:	𝑥' = 0, 𝑦 𝑥' = −1

𝑦" 𝑥 = −2𝑥 − 𝑦, 𝑦" 𝑥' = −2 𝑥' − 𝑦 𝑥' = −2 0 − −1 = 1

We	get	the	second	and	higher	derivatives	by	successively	differentiating	the	equation	for	the	first	
derivative.	Each	of	these	derivatives	is	evaluated	corresponding	to	𝑥 = 0 to	get	the	various	derivatives

𝑦"" 𝑥 = −2 − 𝑦", 𝑦"" 𝑥' = −2 − 𝑦" 𝑥' = −2 − 1 = −3

𝑦""′ 𝑥 = −𝑦"", 𝑦""" 𝑥' = −𝑦"" 𝑥' = −(−3) = 3

𝑦:; 𝑥 = −𝑦""", 𝑦:; 𝑥' = −𝑦""" 𝑥' = − 3 = −3

𝑦 ℎ = −1 + ℎ	 − 1.5ℎ, + 0.5ℎ. − 0.125ℎ< + error
If	we	let	𝒙 − 𝒙𝟎 = 𝒉,	we	can	write	the	series	as:



𝒙 𝒚 𝒙 − 𝒙𝟎 𝒚𝐚𝐜𝐭𝐮𝐚𝐥 𝒙
0.0 −1.00000 −1.00000
0.1 −0.91451 −0.91451
0.2 −0.85620 −0.85619
0.3 −0.82251 −0.82245
0.4 −0.81120 −0.81096
0.5 −0.82031 −0.81959

𝑦 𝑥 = −3𝑒PQ − 2𝑥 + 2

𝑦 ℎ = −1 + ℎ	 − 1.5ℎ, + 0.5ℎ. − 0.125ℎ< + error



The	Taylor	series	is	easily	applied	to	a	higher-order	equation	
The	Taylor-Series	Method

𝑦"" = 3 + 𝑥 − 𝑦,, 𝑦 0 = 1, 𝑦" 0 = −2
Given	the	following	initial	condition:

𝑦"" 𝑥 = −3 + 𝑥 − 𝑦,, 𝑦"" 𝑥' = −3 + 𝑥' − 𝑦 𝑥'
, = −3 + 0 − 1, = −4

𝑦""" 𝑥 = 1 − 2𝑦𝑦", 						 𝑦""" 𝑥' = 1 − 2 1 −2 = 5

𝑦:; 𝑥 = −2𝑦𝑦"" − 2𝑦"𝑦", 𝑦:; 𝑥' = −2𝑦 𝑥' 𝑦"" 𝑥' − 2𝑦" 𝑥' 𝑦" 𝑥' = −2 1 5 − 2(−2)(−2) = −18

𝑦 ℎ = 1 − 2ℎ	 − 2ℎ, + 0.833ℎ. − 0.75ℎ< + error

𝑦 𝑥 = 𝑦 𝑥' + 𝑦" 𝑥' ℎ +
𝑦"" 𝑥'
2! ℎ, +

𝑦""" 𝑥'
3! ℎ. +

𝑦:; 𝑥'
4! ℎ< + 𝑂(ℎT)



The	Taylor-series	method	may	be	awkward to	apply	if	the	derivatives	become	
complicated	and	in	this	case	the	error	is	difficult	to	determine

The	error	in	a	Taylor	series	will	be	small if	the	step	size	𝒉 is	small.	If	ℎ is	small	enough,	
we	may	only	need	a	few	terms	of	the	Taylor-series	expansion	for	good	accuracy



Euler	and	Modified	Euler	Methods



The	Euler	method	uses	only	the	first	two	terms	of	the	Taylor	
series	for	first-order	differential	equations

Simpler	Euler	Method

𝑦 𝑥 = 𝑦 𝑥' + 𝑦" 𝑥' 𝑥 − 𝑥' +
𝑦"" 𝑥'
2! 𝑥 − 𝑥' ,

𝑦 𝑥' + ℎ = 𝑦 𝑥' + ℎ𝑦" 𝑥' + 𝑶(𝒉𝟐)

𝑦WXY = 𝑦W + ℎ𝑦W" + 𝑶(𝒉𝟐)

𝑥

𝑦

𝑦Y

𝑦'

𝑥' 𝑥Y

True	𝑦Y value

Slope	at	𝑥Ycomputed	with	𝑥Y, 𝑦Y



Example
𝑑𝑦
𝑑𝑥 = 𝑦" = −2𝑥 − 𝑦, 𝑦 0 = −1

Use	Euler	method	to	solve	the	following	with	ℎ = 0.1 to	get	𝑦(0.4)

𝑦WXY ≈ 𝑦W + ℎ𝑦W"

𝒙𝒏 𝒚𝒏 𝒚𝒏" 𝒉𝒚𝒏" 𝒚𝒏X𝟏
0.0 −1.00000 1.00000 0.10000 −0.90000
0.1 −0.90000 0.70000 0.07000 −0.83000
0.2 −0.83000 0.43000 0.04300 −0.78700
0.3 −0.78700 0.18700 0.01870 −𝟎. 𝟕𝟔𝟖𝟑𝟎
0.4 −𝟎. 𝟕𝟔𝟖𝟑𝟎

Actual	Error	is:	𝑦`abc`d 0.4 − 𝑦 eefg 0.4 = −0.04266

𝑦`abc`d 0.4 = −0.81096



𝑥

𝑦

𝑦Y

𝑦'

𝑥' 𝑥Y

True	𝑦Y value

Slope	at	𝑥Ycomputed	with	𝑥Y, 𝑦Y

In	the	simple	Euler	method,	we	use	the	slope	at	
the	beginning	of	the	interval	to	determine	the	

increment	to	the	function.	
This	technique	would	be	correct	only	if	the	function	was linear	



We	use	the	correct	average	slope	within	the	interval.	This	can	be	
approximated	by	the	mean	of	the	slopes	at	both	ends	of	the	interval.

Modified	Euler	Method

𝑦WXYhijklmnoi = 𝑦W + ℎ𝑦W"

𝑦WXYpoiijmnoi = 𝑦W + ℎ
𝑦W" + 𝑦′WXYhijklmnoi

2
𝑥

𝑦

𝑦Yqfrs:abgf

𝑦'

𝑥' 𝑥Y

True	𝑦Y value

Slope	at	𝑥Ycomputed	with	𝑥Y, 𝑦Yqfrs:abgf

𝑦Ytgffrabgf
Slope	computed	with	

mean	of	slopes



Example
𝑑𝑦
𝑑𝑥 = 𝑦" = −2𝑥 − 𝑦, 𝑦 0 = −1

Use	Modified	Euler	method	to	solve	the	following	with	ℎ = 0.1 to	get	𝑦(0.5)

𝒙𝒏 𝒚𝒏 𝑦WXYhijklmnoi 𝑦WXYpoiijmnoi

0.0 −1.0000 −0.9000 −0.9150
0.1 −0.9150 −0.8453 −0.8571
0.2 −0.8571 −0.8114 −0.8237
0.3 −0.8237 −0.8013 −0.8124
0.4 −0.8124 −0.8112 −𝟎. 𝟖𝟐𝟏𝟐
0.5 −𝟎. 𝟖𝟐𝟏𝟐

𝑦`abc`d 0.5 = −0.8196

𝑦WXYhijklmnoi = 𝑦W + ℎ𝑦W"

𝑦WXYpoiijmnoi = 𝑦W + ℎ
𝑦W" + 𝑦′WXYhijklmnoi

2



Runge-Kutta Methods
While	we	can	improve	the	accuracy	of	previous	methods	by	taking	smaller	step	sizes,	much	

greater	accuracy	can	be	obtained	more	efficiently	by	Runge-Kutta methods

Fourth-Order	Runge-Kutta methodsSecond-Order	Runge-Kutta methods
Similar	to	Modified	Euler	method	



2nd Order	Runge-Kutta Methods

𝑦WXY = 𝑦W + 𝑎𝒌𝟏 + 𝑏𝒌𝟐 ℎ

𝒌𝟏 = 𝑓(𝑥W, 𝑦W) 𝒌𝟐 = 𝑓(𝑥W + 𝛼ℎ, 𝑦W + 𝛽𝒌𝟏ℎ)

𝑎 + 𝑏 = 1 𝛼𝑏 =
1
2

𝛽𝑏 =
1
2

3	Equations	with	4	variables



2nd Order	Runge-Kutta Methods
𝑦WXY = 𝑦W + 𝑎𝒌𝟏 + 𝑏𝒌𝟐 ℎ

𝒌𝟏 = 𝑓(𝑥W, 𝑦W) 𝒌𝟐 = 𝑓(𝑥W + 𝛼ℎ, 𝑦W + 𝛽𝒌𝟏ℎ)

𝑎 + 𝑏 = 1 𝛼𝑏 =
1
2

𝛽𝑏 =
1
2

Heun’s Method Mid-Point	Method Ralston’s	Method
𝒂 =

𝟏
𝟐 , 𝑏 =

1
2 , 𝛼 = 1, 𝛽 = 1 𝒂 = 𝟎, 𝑏 = 1, 𝛼 =

1
2 , 𝛽 =

1
2

𝒂 =
𝟏
𝟑 , 𝑏 =

2
3 , 𝛼 =

3
4 , 𝛽 =

3
4

𝑦WXY = 𝑦W + ℎ
1
2𝒌𝟏 +

1
2
𝒌𝟐

𝒌𝟏 = 	𝑓(𝑥W, 𝑦W)
𝒌𝟐 = 𝑓(𝑥W + ℎ, 𝑦W + 𝒌𝟏ℎ)

𝑦WXY = 𝑦W + ℎ𝒌𝟐

𝒌𝟏 = 	𝑓(𝑥W, 𝑦W)

𝒌𝟐 = 𝑓(𝑥W +
1
2ℎ, 𝑦W +

1
2𝒌𝟏ℎ)

𝑦WXY = 𝑦W + ℎ
1
3𝒌𝟏 +

1
3
𝒌𝟐

𝒌𝟏 = 	𝑓(𝑥W, 𝑦W)

𝒌𝟐 = 𝑓(𝑥W +
3
4ℎ, 𝑦W +

3
4𝒌𝟏ℎ)



Example
𝑑𝑦
𝑑𝑥 = 𝑦" = 3𝑒PQ − 0.4𝑦, 𝑦 0 = 5

Use	2nd Order	Ralston	Runge-Kutta Method	to	solve	the	following	with	ℎ = 1.5 to	get	𝑦(3)

𝑦`abc`d 0.5 = −0.8196

𝑦WXY = 𝑦W + ℎ
1
3𝒌𝟏 +

1
3
𝒌𝟐

𝒌𝟏 = 	𝑓(𝑥W, 𝑦W)

𝒌𝟐 = 𝑓(𝑥W +
3
4ℎ, 𝑦W +

3
4𝒌𝟏ℎ)

𝑖 𝒙𝒏 𝒚𝒏 𝑘Y 𝑘𝟐 𝒚𝒏X𝟏
0 0.0 5 1.000 −1.476 4.024
1 1.5 4.024 −0.9402 −0.9692 2.5847
2 3.0 𝟐. 𝟓𝟖𝟒𝟕



4th Order	Runge-Kutta Methods

𝑦WXY = 𝑦W +
ℎ
6 𝒌𝟏 + 2𝒌𝟐 + 2𝒌𝟑 + 𝒌𝟒

𝒌𝟏 = 𝑓(𝑥W, 𝑦W)

𝒌𝟐 = 𝑓(𝑥W +
1
2ℎ, 𝑦W +

1
2𝒌𝟏ℎ)

They	are	most	widely	used	and	are	derived	similar	to	the	second-order	ones.	Greater	complexity	
results	from	having	to	compare	terms	through	ℎ<,	and	gives	a	set	of	11	equations	in	13	unknowns.	

The	set	of	11	equations	can	be	solved	with	2	unknowns	being	chosen	arbitrarily.

𝒌𝟑 = 𝑓(𝑥W +
1
2ℎ, 𝑦W +

1
2𝒌𝟐ℎ)

𝒌𝟒 = 𝑓(𝑥W + ℎ, 𝑦W + 𝒌𝟑ℎ)



Example
𝑑𝑦
𝑑𝑥 = 𝑦" = −2𝑥 − 𝑦, 𝑦 0 = −1

Use	4th Order	RK	method	to	solve	the	following	with	ℎ = 0.1 to	get	𝑦(0.5)

𝒙𝒏 𝒚𝒏 𝑘Y 𝑘𝟐 𝑘𝟑 𝑘𝟒
0.0 −1.0000 1.000 0.850 0.858 0.714
0.1 −0.9145 0.715 0.579 0.586 0.456
0.2 −0.8562 0.456 0.333 0.340 0.222
0.3 −0.8225 0.222 0.111 0.117 0.011
0.4 −0.8110 0.011 −0.090 −0.085 −0.181
0.5 −𝟎. 𝟖𝟏𝟗𝟓𝟗

𝑦`abc`d 0.5 = −0.8196

𝑦WXY = 𝑦W +
ℎ
6 𝒌𝟏 + 2𝒌𝟐 + 2𝒌𝟑 + 𝒌𝟒

𝒌𝟏 = 𝑓(𝑥W, 𝑦W)

𝒌𝟐 = 𝑓(𝑥W +
1
2ℎ, 𝑦W +

1
2𝒌𝟏ℎ)

𝒌𝟑 = 𝑓(𝑥W +
1
2ℎ, 𝑦W +

1
2𝒌𝟐ℎ)

𝒌𝟒 = 𝑓(𝑥W + ℎ, 𝑦W + 𝒌𝟑ℎ)

4th Order	RK	Method	is	further	gain	in	accuracy	with	less	effort	than	with	the	Taylor	
series	method,	and	certainly	is	better	than	the	Euler	or	modified	Euler	methods


