CPE 460 Laboratory 1: A Crash Course in C

Department of Computer Engineering
Yarmouk University

Spring 2017

1 Purpose

Welcome to CPE 460! This lab will give you a brief introduction to and Linux operating system and its
development tools. You will be asked to perform a few exercises and read various manuals about some
function calls. There are lots of great C and Linux resources available online. Manual pages, Googleﬂ and
StackOverFlowﬂ are your best friends in this lab. In addition, you can always ask your TA and instructor
for clarifications.

2 Submission

There is no lab report for this lab, but you are expected to review, understand, and ask questions about
this material during the lab period. Future labs will build on this material.

3 Logging In

Linux is a multi-user operating system — it allows multiple users to have accounts and to be logged in
at one time. TA will assign you a username and a default password to login. Linux presents a desktop
environment that enables users to easily use and configure their computers. Once you feel marginally
comfortable with the desktop, open a terminal window by going to the top menu Applications then
Accessories and finally Terminal. You can add the Terminal program to the Desktop by right-clicking
on the Terminal item in the previous menu and selecting Add Launcher to Desktop.

4 Command Line

The command line in Linux is just another program, usually called a shell. The shell allows you to run
other programs or scripts, and is generally useful for managing your computer once you know which
commands to use. Linux distributions ship with several shell types (e.g., bash, korn, bourne, etc.)ﬂ
Ubuntu comes with bash as the default shell. When you start a terminal, the first thing you will see is
the prompt (often called the command line). As its name would suggest, it is prompting you to enter a
command. It should look something like this:

[username@host currentdirectory]$

We type the commands after the prompt ($).

Thttp://www.google.com
%http://www.stackoverflow.com
3You can find more on these different type of shells and their differences on:https://en.wikipedia.org/wiki/Unix_shell

http://www.google.com
http://www.stackoverflow.com
https://en.wikipedia.org/wiki/Unix_shell

5 gedit Text Editor

If you aren’t already proficient with a Unix editor, you should pick one to become proficient with. The
editor gedit is a useful editor. There are several other editors available, many with more features. More
seasoned programmers tend to use emacs or vi, which are console-based editors.

To run the gedit editor:

$ gedit somefile &

6 GCC Compiler

A compiler converts source code into object code or executable code. The GNU Compiler Collection (gcc)
is included with Linux. Several versions of the compiler (C, C++, Objective C, Fortran, Java and CHILL)
are integrated; this is why we use the name “GNU Compiler Collection.” GCC can also refer to the “GNU
C Compiler,” which is the gcc program on the command line.

7 Experiments

Execute the C programs given in the following experiments. Observe and interpret the results.

7.1 Files, Directories, Listing, and Paths

7.1.1 File & Directory Creation

Let us make a new directory named 460-1abl to contain your work for this lab:
$ mkdir 460-labl

Navigate/go to the directory:

$ cd 460-labl

Edit/create a new file named practice.txt:

$ gedit practice.txt

A window should open for you to type in. You can create files without an editor using the command
touch filename. You can refer to man touch for more info.

It is always helpful to display the line number along with lines of code so you can fix compilation errors
and debug your code more easily. To display line numbers: go to Edit menu, then Preferences, and
finally check the checkbox for Display Line Number, then hit Close.

7.1.2 Foreground and Background Processes/Jobs

Go back to the command line. Notice anything odd? The prompt didn’t reappear. That’s because it’s
waiting for gedit to finish. We’d like to continue typing commands at the same time, so let’s fix this:

gedit is currently in the foreground. On the command line, type Ctrl-Z. You've just suspended gedit
and placed it in the background. You should have a prompt again. However, because gedit is suspended,
we can’t use it until it returns to the foreground or we start running it in the background.

Type bg gedit, gedit will now be running in the background while we continue to type commands. If
we wanted to return it to the foreground, we could have typed fg gedit. To list a list of jobs in the

background, use the jobs command.

Note: you can avoid this whole mess in the future by starting gedit in the background. Just type an &
after the command:

$ gedit somefile &

Now that we have an editor running, type something into the window and save it.

7.1.3 Directory Listing

Back on the command line, type the following:

$ 1s

The file practice.txt should be listed. Now try:

$ 1s -a

“wo» »

You should see two additional entries — and “..”. . is a reference to the current directory, and .. is

a reference to the parent directory. Type:

$ cd ..
$ 1s

You should see the 460-1ab1l directory in the listing, since you're now in the parent directory.

7.1.4 Absolute & Relative Paths

You need to know two more things about directories: absolute and relative paths.

An absolute path is a path that starts with “/”. Because it starts with the root of the file system, it will
always refer to the same file no matter what your current directory is.

A relative path is a path that starts with any other character. It is relative to the current directory, and
will refer to different files depending on the current directory.

Type pwd to see the current absolute path. You should see something like /home/username, which indicates
you're in the username directory under the home directory. This is where to find your account in Linux.
It’s the default current directory when you login. You can always go back to it by typing:

$ cd

Now try using an absolute path to switch directories. Type (replacing username with your own username):
$ cd /home/username/460-1labl

You should now be in your 460-1abl directory. To confirm this, type

$ pwd

To return to your home directory, type:

$ cd

Now switch to the directory again using a relative path:

$ cd 460-labl

Again, use pwd to verify that you're in the subdirectory. So far there’s no difference, right? There will
be occasions when you will want to specify the file or directory you want to work with unambiguously
by using an absolute path. You can use relative and absolute paths to describe files and directories in
many commands. For example, if you’re in your home directory, the following two commands should be
equivalent:

$ 1s /
$ 1s ../..

Why does this work? Since the first command uses an absolute path (it starts with /), then it will always
return the same result no matter where you are. If you're in the directory /home/username, then ../.. re-
solves to the parent of the parent of the current directory, or /. If you were in /home/username/460-1abl
and typed 1s ../.., you would see the directory listing for /home instead.

7.1.5 More Commands

Here’s a list of commands you might find helpful. Try a few out, but be careful with the ones that delete
files! You don’t have permission to delete anything other than your own files, but there isn’t a recycling
bin to recover your work from!

e mkdir — make a directory
e rmdir — remove a directory
e cd — change current directory
e 1s — lists files and directories
e mv — move/rename a file/directory
e rm — remove a file
e cp — copy a file
e less — view a file (use arrow keys or space to scroll). Use q to quit.
e man — display the manual for a subject or command. Use q to quit.
Can you find the proper command line for performing each of the following operations?

1. Copy all files from directory dirl into an existing directory dir2.

2. Move files from one directory into an existing directory.

3. Delete all files that ends with .txt in the current directory.

7.1.6 General Linux Tips

e Linux has two clipboards to allow more convenient copy/paste while keeping the features of stan-
dard cut/copy/paste. When you select text in the terminal or any application, it is copied to the
“selection” clipboard; use the middle mouse button (wheel button) to paste into an application. The
second clipboard is usually accessed through Ctrl-C and similar shortcuts; however, these do not
work in the terminal as they are sent to the program in the terminal.

e You can use the tab key to finish commands and paths. Hit tab twice to see a list of potential
matches.

e You can use the arrow keys to look through recently typed commands. In bash, Ctr1-R will search
your command history for the text you type.

7.2 printf, scanf, and Command-Line Options

In this exercise, we will write a program to read user input from keyboard and output to screen. We will
also know how to intepreta the user arguments passed to the program from command line.

7.2.1 Example Program

First, create a directory exercisel under directory 460-1ab1l, by typing:
$ mkdir exercisel

Second, create a source file named test.c, by typing:

$ gedit test.c &

Third, write the following program:

#include <stdio.h>

int main(int argc, char** argv) {

if (argec == 1){
printf ("Enter your name:");
char name[100];
scanf ("%s", name);
printf ("Welcome [%s] to CPE 460!\n", name);

} else{
printf("User has sent me ’%d arguments, they are:\n", argc);
for(int i = 0; i < argc; i++){

printf ("Argument [%d]: %s\n", i, argv[il);

}

}

return 0;

3

If your code was typed in correctly, you can compile and link test.c into an executable by typing this
sequence of commands:

$ gcc -c test.c
$ gcc -o test test.o

When you use the -c option in gee, the C files are compiled into object files (.0) that can be linked
together into an executable. If you got an error similar to the following: error: ’for’ loop initial
declarations are only allowed in C99 mode. That means that you are using an old C compiler and
you need to compile your code using the flag —std=c99 as follows:

$ gcc -c -std=c99 test.c
$ gcc -o test test.o

Remember to save your work and always re-compile and build your work after each edit to the source files.

It is also possible to compile test.c file at one time with the command
$ gcc -o test test.c

Compiling the C files to object files is less memory intensive when you have hundreds of files in a project;
in addition, since compiling from C to object is much more expensive than linking object files, compiling
to object files will allow you to only recompile files that have changed, rather than an entire project. The
make utility automates this process. make will be discussed in the next Lab.

7.2.2 Running without Options/Arguments
To run the program without any arguments, type:
$./test

Note: why “./”?7 Recall the discussion of directory navigation in the previous section? . is a reference
to the current directory. Since the shell needs to find the file you want to run, you have to specify the
complete path (or have the file in a directory stored in the PATH environment variable). You can think of
./ as a shortcut for the absolute path up to the current directory. Don’t forget this — you’ll need it to run
programs for the rest of the semester.

The previous program when run it produces the following output:

Enter your name: Mansaf
Welcome [Mansaf] to CPE 460!

Observations
e Function printf and scanf is equivalent to std::cout and std::cin in C++, repectively.
e Function printf is used to print to the “standard output,” which, for a PC, is typically the screen.

e Function scanf is used for a formatted read from the “standard input,” which is typically the
keyboard.

printf Function Call
int printf(const char *Format, ...);

printf takes a formatting string Format and a variable number of extra arguments, determined by the
formatting string, as indicated by the ... notation. The keyword const means that printf cannot
change the string Format.

The formatting strings consist of plain text, the special character \n that prints a newline, and directives
of the form %s and %d indicates that printf will be looking for a corresponding variable in the argument
list to insert into the output. A non-exhaustive list of directives is given here:

e /d Print an int. Corresponding argument should be an int.

e f Print a float.

e J.c Print a character according to the ASCII table. Argument should be char.

e s Print a string. Argument should be a pointer to a char (first element of a string).
e /X Print an unsigned int as a hex number.

Please refer to printf man page for further info through the command man printf.

scanf Function Call
int scanf(const char *Format, ...);

Arguments to scanf consist of a formatting string and pointers to variables where the input should be
stored. Typically the formatting string consists of directives like %d, %f, etc., separated by whitespace.
The directives are similar to those for printf. For each directive, scanf expects to see a pointer to a
variable of that type in the argument list. A very common mistake is the following:

int i;

scanf ("%d",i); // WRONG! We need a pointer to the variable.

scanf ("%d",&i); // RIGHT.

char message[20];
scanf ("%s", &message); // WRONG! message is already a pointer to the start of array.
scanf ("%s", message); // RIGHT.

The pointer allows scanf to put the input into the right place in memory. Please refer to scanf man page
for further info.

7.2.3 Exercises

Answer the following questions:

e Can you find what would be the output string if you enter a space-separated input to the program
instead of Mansaf and why?

e Can you modify the program to accept space-separated string of size 250 and print it out fully?
(Hine: man gets)
7.2.4 Running with Command Line Options/Arguments

Command line options are options that are passed to a program when it is initiated. For example, to get
1s to display the size of files as well as their names the -1 option is passed to it. (e.g. 1s {1 /home/me).
In this example, /home/me is also a command line option which specifies the desired directory for which
the contents should be listed. From within a C program, command line options are handled using the
parameters argc and argv which are passed into main.

int main(int argc, char *xargv)
To run the program with arguments, type:
$./test mansaf maqloba makmoora

The previous program when run it produces the following output:

User has sent me 4 arguments, they are:
Argument [0]: ./test

Argument [1] : mansaf

Argument [2] : maqloba

Argument [3] : makmoora

7.2.5 Exercises

Answer the following questions:
e What does argc refer to?
e What does argv contains?

e Write a C program sum.c that sum of the user-provided numbers through the command line argu-
ments to the program. Hint: You can convert a string representing integer to its integer value using
the atoi function call. Refer to man atoi for details.

	Purpose
	Submission
	Logging In
	Command Line
	gedit Text Editor
	GCC Compiler
	Experiments
	Files, Directories, Listing, and Paths
	File & Directory Creation
	Foreground and Background Processes/Jobs
	Directory Listing
	Absolute & Relative Paths
	More Commands
	General Linux Tips

	printf, scanf, and Command-Line Options
	Example Program
	Running without Options/Arguments
	Exercises
	Running with Command Line Options/Arguments
	Exercises

