
CprE 308 Laboratory 3: Unix Processes

Department of Computer Engineering
Yarmouk University

Spring 2017

1 Submission

Include the following in your lab report:

• Your full name and lab section in the upper right corner of the first page in large print.

• A cohesive summary of what you learned through the various experiments performed in this lab.
This should be no more than two paragraphs. Try to get at the main idea of the exercises, and
include any particular details you found interesting or any problems you encountered.

• A write-up of each experiment in the lab. Each experiment has a list of items you need to include. For
output, cut and paste results from your terminal and summarize when necessary. For explanations,
keep your answers concise, but include all relevant details. Please include the problem statement
before your responses.

The report should include the following:

1. Summary sheet

2. Write-ups for individual experiments.

2 Purpose

In this lab, you will become familiar with the following Unix calls: getpid, getppid, sleep, fork, exec,
wait, and kill.

3 Comments on Learning about Unix Processes

1. When a system is booted, the first userspace process is /lib/systemd/systemd, and has a PID of
1. This process will in turn launch startup scripts and eventually login prompts. If you do a ps

-eafl, you should see that process 1 is systemd and it will be the ancestor of all other processes on
the system.

2. When you login or start a terminal, a process for the shell is started. The shell will then launch
other processes, which will be children of the shell. If the parent process dies (for example, you exit
the shell), systemd will adopt the orphaned processes (on Linux and many other Unix variants).

3. The status of a Unix process is shown as the second column of the process table (viewed by executing
the ps -eafl command). Some of the states are R: running, S: sleeping, Z: zombie.

1

4. The call to the wait() function results in a number of actions

• If the calling process has no children, wait() returns -1.

• If the calling process has a child that has terminated (a zombie), that child’s PID is returned
and it is removed from the process table

• Otherwise, the call blocks (suspends the process) until a child terminates. The waitpid()

function allows the WNOHANG flag to be specified to return immediately in all cases.

5. Manual pages, Google1 and StackOverFlow2 are your best friends in this lab. In addition, you can
always ask your TA and instructor for clarifications.

4 Experiments

Execute the C programs given in the following experiments. Observe and interpret the results. You will
learn about child and parent processes, and much more about Unix processes in general, by performing
the suggested experiments. We recommend that you read through an entire experiment before starting
it. Each experiment is worth 10 points.

4.1 Process Table

Run the following program twice, both times as a background process (i.e., suffix it with an ampersand
“&”). Once both processes are running as background processes, view the process table (use ps -el to
view all processes on the system, or ps -l to view only the processes running on your terminal). If you
see the message “I am awake”, the process has finished and will no longer show up in the process table.

int main(int argc, char** argv) {

printf("Process ID is: %d\n", getpid());

printf("Parent process ID is: %d\n", getppid());

sleep(120); /* sleeps for 2 minutes */

printf("I am awake.\n");

return 0;

}

If there’s too much output, you can scroll back in the terminal window, you can pipe the output to less,
or you can redirect the output to a file.

$ ps -l | less

will pipe the output to the program less, and

$ ps -l > out

will redirect the output to a file named out (overwriting it if it existed before).
The first line from a “ps -l” is duplicated here:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

You should be able to find descriptions of these fields in the ps man page (man ps). This time we’ll help
you decode the column headers: S is the state, PID and PPID are the process ID and parent process ID
respectively, and CMD is the name of the program.

1http://www.google.com
2http://www.stackoverflow.com

2

http://www.google.com
http://www.stackoverflow.com

6 pts In the report, include the relevant lines from “ps -l” for your programs, and point out the following
items:

• output

• process name

• process state (decode the letter!)

• process ID (PID)

• parent process ID (PPID)

2 pts Repeat this experiment and observe what changes and doesn’t change.

2 pts Find out the name of the process that started your programs. What is it, and what does it do?
Note: Now that you know how to find a PID for a running program, you can use kill to terminate an
unwanted process. Just type kill followed by the process ID. If a process refuses to terminate, kill -9

followed by the process ID will terminate any process you have permission to kill. You might also try
killall to kill all processes with the same name (man killall).

4.2 The fork() system call

Run the following program and observe the number of statements printed to the terminal. The fork()

call creates a child that is a copy of the parent process. Because the child is a copy, both it and its parent
process begin from just after the fork(). All of the statements after a call to fork() are executed by
both the parent and child processes. However, both processes are now separate and changes in one do not
affect the other.

Draw a family tree of the processes and explain the results you observed. Try the program again
without sleep(2). Explain any differences you see.

int main() {

fork();

fork();

usleep(1);

printf("Process %d’s parent process ID is %d\n", getpid(), getppid());

sleep(2);

return 0;

}

1 pt Include the output from the program

4 pts Draw the process tree (label processes with PIDs)

3 pts Explain how the tree was built in terms of the program code

2 pts Explain what happens when the sleep statement is removed. You should see processes reporting
a parent PID of 1. Redirecting output to a file may interfere with this, and you may need to run the
program multiple times to see it happen.

3

4.3 The fork() syscall, continued

Run the following program and observe the output. In Unix, fork() returns the value of the child’s PID
to the parent process and zero value to the child process.

#include <stdio.h>

int main() {

int ret;

ret = fork();

if (/* TODO add code here to make the output correct */) {

/* this is the child process */

printf("The child process ID is %d\n", getpid());

printf("The child’s parent process ID is %d\n", getppid());

} else {

/* this is the parent process */

printf("The parent process ID is %d\n", getpid());

printf("The parent’s parent process ID is %d\n", getppid());

}

sleep(2);

return 0;

}

2 pts Include the (completed) program and its output

4 pts Speculate why it might be useful to have fork return different values to the parent and child. What
advantage does returning the child’s PID have? Keep in mind that often the parent and child processes
need to know each other’s PID.

4.4 Time Slicing

Run the following program and observe the result of time slicing. You will have to redirect the output to
a file or pipe it to less (see exercise 1).

#include <stdio.h>

int main() {

int i=0, j=0, pid;

pid = fork();

if (pid == 0) {

for(i=0; i<500000; i++)

printf("Child: %d\n", i);

} else {

for(j=0; j<500000; j++)

printf("Parent: %d\n", j);

}

}

You may need to increase the number of iterations from 500000 depending on the speed of your machine.

2 pts Include small (but relevant) sections of the output

4

4 pts Make some observations about time slicing. Can you find any output that appears to have been
cut off? Are there any missing parts? What’s going on (mention the kernel scheduler)?

4.5 Process synchronization using wait()

Run the following program and observe the result of synchronization using wait().

#include <stdlib.h>

#include <stdio.h>

int main() {

int i=0, j=0, ret;

ret = fork();

if (ret == 0) {

printf("Child starts\n");

for(i=0; i<500000; i++)

printf("Child: %d\n", i);

printf("Child ends\n");

} else {

wait(NULL);

printf("Parent starts\n");

for(j=0; j<500000; j++)

printf("Parent: %d\n", j);

printf("Parent ends\n");

}

return 0;

}

6 pts Explain the major difference between this experiment and experiment 4. Be sure to look up what
wait does (man 2 wait).

4.6 Signals using kill()

Examine and run the following program to observe one use of kill():

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

int main() {

int i=0, child;

child = fork();

if (child == 0) {

while (1) {

i++;

printf("Child at count %d\n", i);

/* sleep for 1/100 of a second */

usleep(10000);

}

} else {

printf("Parent sleeping\n");

5

sleep(10);

kill(child, SIGTERM);

printf("Child has been killed. Waiting for it...\n");

wait(NULL);

printf("done.\n");

}

return 0;

}

2 pts The program appears to have an infinite loop. Why does it stop?

4 pts From the definitions of sleep and usleep, what do you expect the child’s count to be just before
it ends?

2 pts Why doesn’t the child reach this count before it terminates?

4.7 The execve() family of functions

Run the following program and explain the results.

main() {

execl("/bin/ls", "ls", NULL);

printf("What happened?\n");

}

8 pts Read the man page for execl and relatives (man 3 exec). Under what conditions is the printf

statement executed? Why isn’t it always executed? (consider what would happen if you changed the
program to execute something other than /bin/ls.)

4.8 The return value of main()

Run the following program a few times to observe the use of the status argument to wait():

#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/wait.h>

int main(int argc, char** argv) {

int child, status;

child = fork();

if (child == 0) {

srand(time(NULL));

if (rand() < RAND_MAX/4) {

/* kill self with a signal */

kill(getpid(), SIGTERM);

}

return rand();

} else {

wait(&status);

if (WIFEXITED(status)) {

6

printf("Child exited with status %d\n", WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {

printf("Child exited with signal %d\n", WTERMSIG(status));

}

}

return 0;

}

4 pts What does WIFEXITED, WEXITSTATUS, and WTERMSIG do? Explain with concrete example from the
run.

2 pts What is the range of values returned from the child process?

2 pts What is the range of values sent by child process and captured by the parent process?

2 pts When do you think the return value would be useful?

4.9 Extra Credit

2 pts What is a zombie process?

6 pts Write a program that creates a zombie process and describe how to verify that the zombie process
has been created.

7

	Submission
	Purpose
	Comments on Learning about Unix Processes
	Experiments
	Process Table
	The fork() system call
	The fork() syscall, continued
	Time Slicing
	Process synchronization using wait()
	Signals using kill()
	The execve() family of functions
	The return value of main()
	Extra Credit

