
CPE 460 Laboratory 5: IPC Using Pipes

Department of Computer Engineering
Yarmouk University

Spring 2017

1 Purpose

Understand and use both ordinary and named pipes for inter-process communication.

2 Introduction

Inter-process communication (IPC) is the mechanism whereby one process can communicate with another
process, i.e., exchange data. One of the most fundamental IPC mechanisms is the pipe, which symbolizes
data flowing sequentially between related processes in a pipeline. Pipes are byte streams which connect
the standard output from one process into the standard input of another process. There are two types of
pipes:

• Ordinary Pipes are accessible through two file descriptors that are created through the function
pipe(fd[2]), where fd[1] signifies the write file descriptor, and fd[0] describes the read file
descriptor. Ordinay pipes are only used for unidirectional communication between a child and it’s
parent process, because it dose not have a particular name.

Blocking Nature in Ordinary Pipes When reading from a pipe: read() will return 0 (end of
file) when the write end of the pipe is closed. If write end of the pipe is still open and there is no
data, read() will sleep until input become available. When writing to a pipe: If read end of pipe is
closes, a write() will fail.

• Named Pipes are also called FIFO (first in first out). They have “names” and exist as special
files within a file system. They exist until they are removed with rm or unlink(). Named pipe is
referred through it’s name only by the reader and writer. All instances of a named pipe share the
same pipe name, so they can be used for communication between two unrelated processes.

Blocking Nature in Named Pipes Named pipes are created using mkfifo() system call. Once
a named pipe is created, processes can open(),read() and write() to them just like any other file.
Using the default system call without O NONBLOCK flag: read() will block until a process open the
pipe for writing. write() will block until a process opens the pipe for reading.

1



3 Exercise

1 Write and execute the following program:

#include <stdio.h>

#include <unistd.h>

void main(){

int p[2];

char buff;

pipe(p);

read(p[0],&buff,1);

printf("Done.\n");

}

Why the program blocks and never executes printf() statment?

2 Propose two methods to prevent the blocking in the previous part (without remove anything).

3 Write a program that consists of three process P1,P2 and P3, where P1 is the parent of the other two
processes. Process P1 reads five integers from the standad input, and saves them into the data element
of an instance of the struct below.

struct record{

int data[5];

int sum;

double average;

}

Then, P1writes its instance of the struct record into a pipe so that P2 may read it. P2 read the
struct instance, finds the sum of five integers and save it into sum element of the passed struct. Then, P2
passes the updated struct instance to P3 via another pipe. Upon receiving the struct instance, P3 divides
the sum by 5 and saves the result into average element. Again P3 writes the updated struct instance
into a third pipe for P1 to read. Finally, P1 reads the updated struct instance from the third pipe, and
print its content to the standard output.

2


	Purpose
	Introduction
	Exercise

