CPE 460 Operating System Design
Lecture 2: Operating Systems Structures

Ahmed Tamrawi

February 13, 2017

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

IEVEY Von Neumann Architecture

Input
Device

John von Neumann

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Computer System Architecture

Single Processor System Clustered System

Multiprocessor System

Single Processor System

One main CPU capable of executing a general-purpose instruction set

Graphics E
Adapter =

USB
Controller

Controller

Multiprocessor System

Two or more processors in close communication, sharing the computer
bus and sometimes the clock, memory, and peripheral devices.

Parallelization
Increased Throughput

Economy of Scale

Increased Reliability

Dual Processor

, Dual core
Graceful Degradation
. L . i . FaU|t TOIerant CPU coreg CPU corey
| registers J | registers J registers registers
I l | |
cache cache cache cache

memory memory

Multiprocessor System

Two or more processors in close communication, sharing the computer
bus and sometimes the clock, memory, and peripheral devices.

Asymmetric Symmetric
Multiprocessing Multiprocessing

Clustered System

mme‘.“.‘c
clusterin®

computer

interconnect

_—

High-Performance Computing

High Availability

computer

Multiple systems working together

interconnect

E//

storage area

i

computer

Computer System Structure

Multiprogramming (Batch System) Timesharing (Multitasking)

Multiprogramming (Batch System)

Timesharing (Multitasking)

Kernel Data Structures

Linked List

12

—>»99

o>

12

37

oL

99

T

12

09| &

37

https://en.wikipedia.org/wiki/Linked list

https://en.wikipedia.org/wiki/Linked_list

3. 4~
~N Push y
21— Push y 3
Push y 2 2
1 1 1
> 6
/ Pop 5
5 Pop //” 4
4 4 [Pop
3 3 x|
2 2 2
1 1 1

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

el

)

Push

- N W B O -

Binary Search Trees

Binary search tree
Type vee
Invented 550
invented PF. Windley, A.D. Boomh, AJT.
by Colin, and TN. Hibbard

Time complexity in big O notation

Aigorithm Average Worst Case
Space S(n) O(n)
Search Nlogn) On)
Insert O(logn) Ofn)
Cw et Nlogn) O(n)

https://en.wikipedia.org/wiki/Binary_search_tree

Hash Table

hash
keys function
00
John Smith =
02
Lisa Smith 03
13

Sandra Dee
15

buckets

521-8976

521-1234

221-9655

Hash table

Type Unordered associative array

Invented 1953

Time complexity in big O notation

Algorithm Average

Space O(n){"]
Search 0O(1)
Insert O(1)
Delete 0O(1)

Worst Case
O(n)
O(n)
O(n)
O(n)

Bitmap

A string of n binary digits representing the status of n items

101011110001110101

Linux Kernel Repository
https://github.com/torvalds/linux

Linux Travolds

Doubly Linked List Implementation FIFO Queue Implementation Red Black Trees Implementation

https://github.com/torvalds/linux/blob/master/include/linux/list.h https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h https://github.com/torvalds/linux/blob/master/include/linux/rbtree.h

Computing Environments

Cloud Computing Real-Time Embedded Systems

Emulation & Virtualization

Allows operating systems to run applications within other OSes

. Virtualization
. 5 .
Emulation : -
SN ¢
el X s L
1h '"‘;."‘f“".’.:"“r""“.'“”“ ol 'a
-jj'l.'-n:t " o
Motorola 68k CPU Intel x86 CPU 3
Emulation used when source CPU OS natively compiled for CPU, running

type different from target type guest OSes also natively compiled

Application

No Virtualization

OS-Level Virtualization

Full Virtualization

open source

https://github.com/android

http://www.apple.com/opensource/ V \ ¢
FreeBSD.

https://github.com/torvalds/linux https://svnweb.freebsd.org/base/

Realistic View of Operating System

—
iy 3]

Applications

l

Operating System

l

Hardware

CEl

=
|'|

QAN2I0ID

A

-

<

A View of Operating System Services

Operating systems provide an environment for execution of programs
and services to programs and users

user and other system programs

GUI batch command line

user interfaces

‘ system calls

program /O file S resource .
: . communication > accountin
execution operations systems allocation 9
error pro;itz}lon
detection _ security
services

operating system

hardware

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

Bourne

Sometimes implemented in kernel, Primarily fetches a command from Sometimes commands built-in,
sometimes by systems program user and executes it sometimes just names of programs

User Operating System Interface - GUI

User-friendly desktop metaphor interface

Many systems now include both CLI
and GUI interfaces

User Operating System Interface - Touchscreen Interfaces

Touchscreen devices require new interfaces

$EE Manad W/ AMom's G

— Rifchen

‘_.""J

¢
=

An operatmg system is interrupt driven

System Call | &
Y N

(“» Software Interrupt (Trap)

Programming interface to the services provided by the OS

Typically written in a high-level language (C or C++)

Accessible via a high-level Application Programming
Interface (API) rather than direct system call use

System Call

Create, Delete Communication Connection Create/Terminate/Load/Execute Process

Message Passing Model Host/Process Name Get/Set Process Attributes
Shared-Memory Model Wait for Time/Event

Transfer Status Information wait event, signal event
Attach/Detach Remote Devices Allocate/Free/Dump Memory

Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File

) -
@ Get/Set File Attributes

System Call i (‘“

R'}_v

Control access to resources
Get and set permissions
Allow and deny user access

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

User processes cannot perform privileged
operations themselves

Library Functions

System Calls

Kernel

1 y | =) wmoDE
u MODE

4
. System Calls _»

—~—

Library Functions

e 0o Is ~~color=tty (zsh) e’

tratium = Test ls

TestFile. txt

tratium =» Test cp TestFile.txt TestFile-Copy.txt
tratium = Test ls

TestFile~Copy.txt TestFile,txt

tratium - Test

strace cp TestFile.txt TestFile-Copy.txt

Open the input file (TestFile.txt)

If (TestFile.txt) does not exist, abort

Create the output file (TestFile-Copy.txt)

If (TestFile-Copy.txt) exists, abort

Loop Until No bytes available in TestFile.txt
1. Read byte from (TestFile.txt)
2. Write byte to (TestFile-Copy.txt)

Close (TestFile.txt)

Close (TestFile-Copy.txt)

8. Terminate normally.

SRt D =

e

System call sequence to copy the contents of
one file to another file

#include <stdio.h>
int main ()

printf ("Greetings"); |-

return 0; user process
i user mode
MODE user process executing —i calls system call return from system call | | (Mode bit=1)
L
\ /
standard C library “. !1
trap retum
v kemel (““modebiho mode bit = 1
‘MODF write ()({“) - kemel mode
- execute system call (mode bit = 0)
et write ()

system call

How the kernel know which system call to execute?

System call interface maintains a System Call The system call interface invokes the intended
Table (Vector) with a number corresponding to system call in OS kernel and returns status of
each system call the system call and any return values
https://github.com/torvalds/linux/blob/mas . https://github.com/torvaIds/Iinux/bIob/master/a;

ter/include/linux/syscalls.h rch/x86/entry/syscalls/syscall_32.tbl

How the kernel know which system call to execute?

» write(..);

printf(..);

¥

movl NR-write, %eax

m int ox89

MODE

ret // GNU 1libc

MOYDE’

Ox80 system_call() —

Interrupt Dispatch Vector

system_call(){

System Call Table

sys_write(..){

sys_call table[%eax]() // do real work
} T~ sys_write -/}

https://github.com/torvalds/linux/blob/master
/arch/x86/entry/entry_32.S

https://github.com/torvalds/linux/blob/master/a
rch/x86/entry/syscalls/syscall_32.tbl

https://github.com/torvalds/linux/blo
b/master/fs/read_write.c

How Parameters are Passed?

Registers User-Mode Stack Block/Table in Memory

More parameters than registers Do not limit the number or length of

Do not limit the number or length of parameters being passed
parameters being passed

operating system

printf(“Hello!”);]\
register
-4 X: parameters
° for call
3 Local ' > use parameters code for
© | Variables for ————setup by callee load address X _/ from table X system
g function Anchor point (EBP) system call 13 > call 13
@
g cc |2 . = setup by
write(screen, “Hello!” , ..); § — e
Argument 2 -éulup by
‘ T —1- caller user program

movl “Hello”, %edx
movl _ NR-write, %eax
int ox80

ret // GNU 1libc

Open
System Call

N

The caller need know nothing about how the system call is
implemented

Just needs to obey APl and understand what OS will do as a
result call

Most details of OS interface hidden from programmer by API
Managed by run-time support library (set of functions built into
libraries included with compiler)

orEx(2) Linux Progresmer’'s Mansal OrEN(2)

NAME e

open, Openat, creat - open and possibly create a file

SYNOPSIS
finclude <sys/typos.b>
finclude <mys/stat.bh>

finclude <fecatl.b>

int opea(const char *pathnane, iat flage)

int opea(conat char *pathnane, iat flagse, mode t mode);

int creat{coast ehar *pathnane, sode ¢t node)

Ank opeaat(int dirfd, const ehar *pathname, Aat flage)

Ant opeaat(int dirfd, const ehar *pathname, Aot flags, mode b node))
Featuare Test Macro Reguiresments for qlilibe (see |

openat |

dince giiwe 3

' i VOURCE »= J0000%L
Pefore giil |

ATTILE SOURCE

DESCRIPTION

Jiven & pathnane for & file, opea() returas a file descriptor, »

mall, nonnegative integer for use in subsequent system calls
eadid), ¥ teld), poexid), 1 t i). e,). he fiie descripror
eturned by & successt cal will be the lovest-nsabered file

sescriptor not currently open for the process.

by default, the sev file descriptor 4is set L0 renain open ACTORE A2
(L.0., the D CLORXRC file descriptor flag described in
in initially disabled); the O CLORXIRC flag, described below,

can be used to change this default. The file offset i» set to the
beginning of the file (see laeek)

A call to open|) creates a new opea file description, an eatry in the
systea-vide table of open filles. The opea file descripticn records
the file offset and the file status flage (sece below). A file

descriptor is & reference to an open file description; this referesce ,

http://man7.org/linux/man-pages/man2/open.2.html

#tinclude <unistd.h>
#tinclude <fcntl.h>

int main() {
int filedesc = open("testfile.txt", O_WRONLY | O_APPEND);
if(filedesc < 0){

return 1;

}

return 0;

With GNU C Library (Glibc)

#tinclude <unistd.h>
#tinclude <fcntl.h>

#define _ NR open 5
_syscall3(long, open, const char *, filename, int, flags, int, mode)

int main() {
int filedesc = open("testfile.txt", O _WRONLY | O_APPEND);
if(filedesc < 0){
return 1;

}

return 0;

http://stackoverflow.com/questions/11609110/how-to-access-the-system-call-from-user-space

Without GNU C Library (Glibc)

http://stackoverflow.com/questions/11609110/how-to-access-the-system-call-from-user-space

Windows X86-64 System Call Table (XP/2000Vista/2008/7/2012/8/10)

Nt Matwns S Pt e s ek My
L

— - Nt By L Sy o ed " a0 may
aage
4 w— -
—age
N
aagr
| e e b e e e
.
aage
aage v
.esr ey wme
eage
M .—A—-—ll‘l-l-—-h - 1 |G bas Ve | s B o 1 | B s O e -~ Ly s
. rv— o by I.T.\I - - I—. 'T' TA' — _— g |
+ 4 + + + + + -+
— poar e + 4+t t—+—14—<4—1—4+—+1—+ + +t
‘. —— = t ot o ———— - - 4 $
>-- 1 ' L B R B B e { 4 {
. -'-’ﬁ_m‘ - + - I 4 + 1 1 1
::.:z*-v.m 4 | $ 3) - 4 4 | +
v e A ehant 4 4 3 $ 4 t e 4 - '
“—ayr o e e ok pehent b 1 B — - 1 1
Pousms nak griendost-ptgregy ~fcy +
“apr Pt a T e
.esr . y
== About 400 System Calls
~ . Pomheet vy
" it
- - s : I . : : :))
- Wg B i 43333 { 44444
. ou stem Lalls T S S S S S S e S S S S S S e — —
v g R R R I t o4 e | 4
- Ao\»-v- - ' $ 4 + 4 * 1 + . % 1 *
Pt ey “randd + + + + 4+ . + + + +
-y ~ L N SR + t + + + +
g R seteme @ N ———— - - 1 -
pitrrrae Sregtun + + 4+ 0+ . 4+ 4 + 4+ 4
— pesrrn + D T + + + +—1
e : ! ! ! !
o e ‘ } 4 4 (R
- - Rl + 4+ e e . 4 1 + +
s + + o+ 1. t 1 1 1
o 3 4 4 1 |
e preees 1 $ 4 4 I

...4 . http://j00ru.vexillium.org/ntapi_64/

https://github.com/torvalds/linux/blob/master/include/linux/syscalls.h

AlC]H
S T W

————— —————— | — p—
~O

, -
[+]
Vel

= /3 e Ay g W B |
——— P’ L A
@ Q ‘ o O ot; XP VISTA 7J .a .31- s
-bd w Win32 API for Windows

POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

e

debian -

apm—
)4
.

\0
o

Windows 10

Add a System Call to Linux that prints:
“Iam awesome!”

References:
https://www.youtube.com/watch?v=5rr VoQCOgE

http://franksthinktank.com/howto/addsyscall/
https://tssurya.wordpress.com/2014/08/19/adding-a-hello-world-system-call-to-linux-kernel-3-16-0/

https://www.youtube.com/watch?v=5rr_VoQCOgE
http://franksthinktank.com/howto/addsyscall/
https://tssurya.wordpress.com/2014/08/19/adding-a-hello-world-system-call-to-linux-kernel-3-16-0/

Create, Delete Communication Connection Create/Terminate/Load/Execute Process

Message Passing Model Host/Process Name Get/Set Process Attributes
Shared-Memory Model Wait for Time/Event

Transfer Status Information wait event, signal event
Attach/Detach Remote Devices Allocate/Free/Dump Memory

Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File

@ Get/Set File Attributes

Control access to resources
Get and set permissions
Allow and deny user access

S

ystem Call
“ih

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Examples of Windows and Unix System Calls

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe ()
shmget ()
mmap ()

chmod ()
umask ()
chown()

System Programs (Utilities)

provide a convenient environment for program Some of them are simply user interfaces to system
development and execution calls; others are considerably more complex

File Manipulation

Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

Background Services (Daemons)

Launch at boot time
Program Loading and Execution Some for system startup, then terminate
Some from system boot to shutdown
Disk checking, process scheduling, error logging
Run in user context not kernel context

Absolute loaders, relocatable loaders, linkage editors, and
overlay-loaders, debugging systems for higher-level and
machine language

Communications

Provide the mechanism for creating virtual connections
among processes, users, and computer systems

Status Information

System Info, Hardware Status, Registry

Programming Language Support

Compilers, assemblers, debuggers and
interpreters sometimes provided

Application Programs

Run by users
Not typically considered part of OS
Launched by command line, mouse click,
finger poke

Operating System Desigh and
Implementation

There is no perfect OS, but some have proven to be successful

Define the User/System Goals

Define the Policies (What will be done?) and
Mechanisms (How to do it?)

Internal structure of different Operating Systems
can vary widely; Affected by choice of hardware,
type of system

Kernel

Simple Structure

application program

resident system program

ROM BIOS device drivers b

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block /O page replacement

character 1/0O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware
terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Structure

Layered Structure

Microkernel Structure

Application File Device user
Iayer N Program System Driver mode
user interface ~ S ~ A
messages messages *
Interprocess e CPU kernel
Communication managment scheduling mode
microkernel N
layer O
hardware ‘ hardware ‘

Modular Structure

scheduling
classes

device and
bus drivers

core Solaris
kernel

miscellaneous
modules

Hybrid Structure

loadable
system calls

STREAMS
modules

executable
formats

Mac OS Structure

API

BSD Classic m Java

Application services

| Quartz J{ OpenGL J{ PrintCore) ...
Core services

Core (" Coreservces) non-Gu1 APL.

Core OS ("Darwin”)
System utilities

Kernel ("xnu")

10S Structure

Applications

Core OS

Android Structure

System Apps

Native C/C++ Libranies

Hardware Abstraction Layer (HAL)

Linux Kemed

https://developer.android.com/guide/platform/index.html

Operating System Debugging

Kernighan’s Law: “Debugging is twice as hard as writing the code in the first place. Therefore, if
you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

OS generates log files containing error information
OS must provide means of computing and displaying

measures of system behavior
Application failure can generate core dump file

capturing memory of the process
CPU acm rosisvn: 133 tetets 3 tenie: 1 sicrrg: T 1 -
OS failure can generate crash dump file meetens SHES oot L0 oS, B e, 3T sor
containing kernel memory | S i B R
PR o
6 6 (s 6 e mrx e |
Wy we sm am em |
06 1758 o 1% e e |
o e w4
582 S R aEsat

Operating System Generation

Operating systems are designed to run on any of a class of machines; the system must be
configured by obtaining information concerning the specific configuration of the hardware system

https://github.com/torvalds/linux/tree/master/arch

