
CPE 460 Operating System Design
Lecture 2: Operating Systems Structures

Ahmed Tamrawi

February 13, 2017

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

1945

John von Neumann

Von Neumann Architecture

Computer System Architecture
Single Processor System

Multiprocessor System

Clustered System

Single Processor System

Graphics
Adapter

USB
Controller

Disk
Controller

One main CPU capable of executing a general-purpose instruction set

Multiprocessor System
Two or more processors in close communication, sharing the computer

bus and sometimes the clock, memory, and peripheral devices.

Dual Processor Dual core

Increased Throughput

Economy of Scale

Increased Reliability

Parallelization

Graceful Degradation

Fault Tolerant

Asymmetric

Multiprocessing
Symmetric Multiprocessing

Multiprocessor System
Two or more processors in close communication, sharing the computer

bus and sometimes the clock, memory, and peripheral devices.

Asymmetric
Multiprocessing

Symmetric
Multiprocessing

Clustered System
Multiple systems working together

Asymmetric

Clustering
Symmetric Clustering

computer
interconnect

computer
interconnect

computer

storage area
network

High Availability

High-Performance Computing

Computer System Structure
Multiprogramming (Batch System) Timesharing (Multitasking)

Multiprogramming (Batch System)

I/O

Timesharing (Multitasking)

I/O

Kernel Data Structures

https://en.wikipedia.org/wiki/Linked_list

Linked List

https://en.wikipedia.org/wiki/Linked_list

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Binary Search Trees

https://en.wikipedia.org/wiki/Binary_search_tree

Hash Table

Bitmap
A string of n binary digits representing the status of n items

101011110001110101

https://github.com/torvalds/linux/blob/master/include/linux/list.h

Doubly Linked List Implementation

https://github.com/torvalds/linux/blob/master/include/linux/kfifo.h https://github.com/torvalds/linux/blob/master/include/linux/rbtree.h

Linux Kernel Repository
https://github.com/torvalds/linux

FIFO Queue Implementation Red Black Trees Implementation

Linux Travolds

Computing Environments

Traditional Computing

Mobile

Client-Server

Peer-to-Peer

Server Network

client
desktop

client
laptop

client
smartphone

client

clientclient

client client

Cloud Computing Real-Time Embedded Systems

Allows operating systems to run applications within other OSes

Emulation & Virtualization

Emulation used when source CPU
type different from target type

OS natively compiled for CPU, running
guest OSes also natively compiled

Motorola 68k CPU Intel x86 CPU

Emulation

Virtualization

No Virtualization OS-Level Virtualization Full Virtualization

https://github.com/torvalds/linux https://svnweb.freebsd.org/base/

http://www.apple.com/opensource/
https://github.com/android

Operating System

Hardware

Applications

Realistic View of Operating System
Manage Resources

Provide Abstractions

A View of Operating System Services
Operating systems provide an environment for execution of programs

and services to programs and users

Manage Resources

Provide Abstractions

User Operating System Interface - CLI
CLI or command interpreter allows direct command entry

Sometimes implemented in kernel,
sometimes by systems program

Primarily fetches a command from
user and executes it

Sometimes commands built-in,
sometimes just names of programs

bash

korn

zsh

Bourne

User Operating System Interface - GUI
User-friendly desktop metaphor interface

Many systems now include both CLI
and GUI interfaces

User Operating System Interface - Touchscreen Interfaces
Touchscreen devices require new interfaces

An operating system is interrupt driven
ةروــــــــنم ةــعمــش ةـــــلف

System	Call

Programming interface to the services provided by the OS

System	Call
Typically written in a high-level language (C or C++)

Accessible via a high-level Application Programming
Interface (API) rather than direct system call use

Software Interrupt (Trap)

Create/Terminate/Load/Execute Process
Get/Set Process Attributes
Wait for Time/Event
wait event, signal event
Allocate/Free/Dump Memory
Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File
Get/Set File Attributes

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Create, Delete Communication Connection
Message Passing Model Host/Process Name
Shared-Memory Model
Transfer Status Information
Attach/Detach Remote Devices

Control access to resources
Get and set permissions
Allow and deny user access

System	Call

Provide Abstractions

User processes cannot perform privileged
operations themselves

MODE

System call sequence to copy the contents of
one file to another file

1. Open the input file (TestFile.txt)
2. If (TestFile.txt) does not exist, abort
3. Create the output file (TestFile-Copy.txt)
4. If (TestFile-Copy.txt) exists, abort
5. Loop Until No bytes available in TestFile.txt

1. Read byte from (TestFile.txt)
2. Write byte to (TestFile-Copy.txt)

6. Close (TestFile.txt)
7. Close (TestFile-Copy.txt)
8. Terminate normally.

strace cp TestFile.txt TestFile-Copy.txt

MODE

How the kernel know which system call to execute?
System call interface maintains a System Call

Table (Vector) with a number corresponding to
each system call

The system call interface invokes the intended
system call in OS kernel and returns status of

the system call and any return values

https://github.com/torvalds/linux/blob/master/a
rch/x86/entry/syscalls/syscall_32.tbl

https://github.com/torvalds/linux/blob/mas
ter/include/linux/syscalls.h

How the kernel know which system call to execute?

write(…);

movl __NR-write, %eax
int 0x80
ret // GNU libc

system_call()

Interrupt Dispatch Vector

0x80
system_call(){

sys_call_table[%eax]()
}

https://github.com/torvalds/linux/blob/master
/arch/x86/entry/entry_32.S

sys_write(…){
// do real work

}
https://github.com/torvalds/linux/blo

b/master/fs/read_write.c

https://github.com/torvalds/linux/blob/master/a
rch/x86/entry/syscalls/syscall_32.tbl

sys_write

System Call Table

MODE

printf(…);

How Parameters are Passed?

write(screen, “Hello!” , …);

movl “Hello”, %edx
movl __NR-write, %eax
int 0x80
ret // GNU libc

printf(“Hello!”);

Registers
More parameters than registers

Block/Table in Memory
Do not limit the number or length of parameters being passed

User-Mode Stack
Do not limit the number or length of

parameters being passed

System	Call
Open

Most details of OS interface hidden from programmer by API
Managed by run-time support library (set of functions built into
libraries included with compiler)

The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a
result call

http://man7.org/linux/man-pages/man2/open.2.html

#include <unistd.h>
#include <fcntl.h>

int main() {
int filedesc = open("testfile.txt", O_WRONLY | O_APPEND);
if(filedesc < 0){

return 1;
}
return 0;

}

#include <unistd.h>
#include <fcntl.h>

#define __NR_open 5
_syscall3(long, open, const char *, filename, int, flags, int, mode)

int main() {
int filedesc = open("testfile.txt", O_WRONLY | O_APPEND);
if(filedesc < 0){

return 1;
}
return 0;

}

With GNU C Library (Glibc)

Without GNU C Library (Glibc)

http://stackoverflow.com/questions/11609110/how-to-access-the-system-call-from-user-space

http://stackoverflow.com/questions/11609110/how-to-access-the-system-call-from-user-space

http://j00ru.vexillium.org/ntapi_64/

About 400 System Calls
About 300 System Calls

https://github.com/torvalds/linux/blob/master/include/linux/syscalls.h

Win32 API for Windows

POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

Add a System Call to Linux that prints:
“I am awesome!”

References:
• https://www.youtube.com/watch?v=5rr_VoQCOgE
• http://franksthinktank.com/howto/addsyscall/
• https://tssurya.wordpress.com/2014/08/19/adding-a-hello-world-system-call-to-linux-kernel-3-16-0/

https://www.youtube.com/watch?v=5rr_VoQCOgE
http://franksthinktank.com/howto/addsyscall/
https://tssurya.wordpress.com/2014/08/19/adding-a-hello-world-system-call-to-linux-kernel-3-16-0/

Create/Terminate/Load/Execute Process
Get/Set Process Attributes
Wait for Time/Event
wait event, signal event
Allocate/Free/Dump Memory
Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File
Get/Set File Attributes

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Create, Delete Communication Connection
Message Passing Model Host/Process Name
Shared-Memory Model
Transfer Status Information
Attach/Detach Remote Devices

Control access to resources
Get and set permissions
Allow and deny user access

System	Call

Examples of Windows and Unix System Calls

System Programs (Utilities)
provide a convenient environment for program

development and execution
Some of them are simply user interfaces to system

calls; others are considerably more complex

File Manipulation
Status Information

Programming Language SupportProgram Loading and Execution

Communications

Background Services (Daemons)

Application Programs

Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories System Info, Hardware Status, Registry

Compilers, assemblers, debuggers and
interpreters sometimes provided

Absolute loaders, relocatable loaders, linkage editors, and
overlay-loaders, debugging systems for higher-level and

machine language

Provide the mechanism for creating virtual connections
among processes, users, and computer systems

Run by users
Not typically considered part of OS

Launched by command line, mouse click,
finger poke

Launch at boot time
Some for system startup, then terminate

Some from system boot to shutdown
Disk checking, process scheduling, error logging

Run in user context not kernel context

Operating System Design and
Implementation

There is no perfect OS, but some have proven to be successful

Internal structure of different Operating Systems
can vary widely; Affected by choice of hardware,

type of system

Define the User/System Goals

Define the Policies (What will be done?) and
Mechanisms (How to do it?)

Operating System Structure
Simple Structure

Layered Structure
Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

Microkernel Structure

Modular Structure

Hybrid Structure

Mac OS Structure

iOS Structure

Android Structure

https://developer.android.com/guide/platform/index.html

Operating System Debugging
Kernighan’s Law: “Debugging is twice as hard as writing the code in the first place. Therefore, if
you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

Application failure can generate core dump file
capturing memory of the process

OS failure can generate crash dump file
containing kernel memory

OS generates log files containing error information
OS must provide means of computing and displaying

measures of system behavior

Operating System Generation
Operating systems are designed to run on any of a class of machines; the system must be

configured by obtaining information concerning the specific configuration of the hardware system

https://github.com/torvalds/linux/tree/master/arch

