CPE 460 Operating System Design
Lecture 3: Once Upon a Process

Ahmed Tamrawi

February 15, 2017

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Any program to run must be loaded in memory

Unit of Work in Computer

L_» // File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

gcc -0 test test.c

L_‘ // File: test.c
#tinclude <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

gcc -0 test test.c

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-

Program becomes process
when executable file
loaded into memory

L__ // File: test.c
#tinclude <stdio.h>

. . Disassenbly of section _ YEXT, _text:
int main() { _text:
. & | o 100000 150! 55 pvithg \rop
. 100000151 M e sove Nsp, Vi
pr‘lntf(I 1ove Mansa-F' \n)J 100000 154: & B ec 0 e $16, Wwsp
. 1e0000158: MMM MNN lese SSiNris), wai
return 0; 100000151 €745 TC 00 00 00 00 mevl 38, ~&iwie
100000146 bt N sevd 0, wal
} 100000 168: ef 04 00 00 00 cally 13
100000 180: 39 wer) e, Sedx
100000141 8% 45 18 sovl Sean, ~Bivwrte
100000102 8 8 sevl Sedn, Sear
100000174 LR LS AL a0ae $16, Wwsp
1000001)8: 5¢ peoe \rop
10000019 (3 rete
Mmaint
100000 150: 55 pvithg NP
100000151 4 M e sove Nrsp, Ve
gcc -0 test test.c 100000154 a8 83 ec 10 side 316, Wrsp
1e0000158: 4 MMBMNMMN®N lese SSinris), Wi
100000151 cTAsS fcoamb e sovl 0, ~tive
100000146 LR sevd 0, Wl
100000 148: el MW elle 13
100000 180! 31 9 wer) Sedn, Sedx
100000141 8% 45 18 sevl Sean, ~Biwrte
100000172 8% 8 sevl Sedn, Sean
100000174 LR LS e 0de $16, Wwsp
1e00001)8: 5¢ peoe \rdp
100000109: (3} rete
Disasseably of section __YEXT, _stubs
Studs:
1000001)0 frSsmmememnm L] slétivie

Disasseably of section __YEXT, _stub_helper

Stub relper

100000140 dMisiMNe N Lese 1Mivig), w2
100000147 41 53 pwsdg Wl

100000149 ff3ISsT 1o n j.oe «113(wiy
100000141 e nep

100000190 68 00 00 0 00 Pt W

100000195 eh eb 11 11 11w 6 «__stud_helgers .

objdump -d test

http://www.thegeekstuff.com/2012/09/objdump-examples/?utm_source=feedburner
https://jvns.ca/blog/2014/09/06/how-to-read-an-executable/

——— o~

3

&

e
)
P

P & e

Process Memory Layout

Higher Address

uninitialized data

bss

initialized data

data

text

Lower Address

https://en.wikipedia.org/wiki/Data segment

Stack Area contains the program stack, a LIFO structure. A “stack pointer”
register tracks the top of the stack; it is adjusted each time a value is
“pushed” onto the stack. The stack area contains temporary data: function
parameters, return addresses, and local variables.

Heap Area is the memory that is dynamically allocated during process run
time. The heap area is managed by malloc, calloc, realloc, and free,
which may use the brk and sbrk system calls to adjust its size

BSS Data Segment contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in source code.

Initialized Data Segment contains any global or static variables which have
a pre-defined value and can be modified

Text (Code) Segment is one of the sections of a program in an object file or
in memory, which contains executable instructions

Process execution
must progress in
sequential fashion

https://en.wikipedia.org/wiki/Data_segment

#include <stdio.h>
int main(void) {
return 0;

#include <stdio.h>

int global;

int main(void) {
return 0;

}

#include <stdio.h>

int global;

int main(void) {
static int i;
return 0;

#include <stdio.h>

i
i

}

nt global = 10;

nt main(void) {
static int i = 100;
return 0;

#include <stdio.h>

int main(void) {
printf(“hello\n”)’
return 0;

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 8 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec

960 248 8 1216

filename
memory-layout

filename
memory-layout

filename
memory-layout

filename
memory-layout

filename
memory-layout

http://www.geeksforgeeks.org/
memory-layout-of-c-program/

One program can be several processes

(4] (-] 3 < [+] o]). | ’
cH Opeca “© Ov o 9N -3
o o ° = - -
., a
"; e t—— | Task Manager
\\L'lxll{'i;);.'\ Weicome to Wikipedia, : ® uo Processes Performance | App history | Startup | Users | Detaits | Services
Chrome Browser is multiprocess with 3 different types of processes: '
1. Browser Process manages user interface, disk and network 1/0 ; AL 1 ' :E :E
gle Ch ba SM
2. Renderer Process renders web pages, deals with HTML, @ Google Choomne (3250)s v ome
Javascript. A new renderer created for each website opened © Google Choome (32 b NS oM
. 0 @ Google Cheome (32 bit % 67,1 M8 0 MB/s
3. Plug-in Process for each type of plug-in P —— S ——
e N On i iy ‘ @ Google Cheome (32 bit % 1H9EME 0 ME/s

Ovd you bnow

an
'y

D Mbps
0 Mbps
D Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

End tash

Process State | |
«‘» M

admitted interrupt exit terminated

The process is being created The process has finished execution

The process is waiting to be running
assigned to a processor

Instructions are being executed

scheduler dispatch /0 or event wait

o’ . ,,'/

The process is waiting for some event to occur

I/O or event completion

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:
ACCOUNTING INFO:

CRUHTATHTRRTR vosmaros weo Y

Process Control Block (PCB)

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:
CPU REGISTERS:
CPU SCHEDULING INFO:

Process Control Block (PCB)

MEMORY MANAGEMENT INFO:

ACCOUNTINGINFO:

Process Number: a unique identification number
for each process in the operating system.

CTTTLHEIRY vosmmrustweo Y

Process State: new, ready, running, waiting, terminated.

Program Counter: A pointer to the address of the next
instruction to be executed for this process

CPU Registers: Contents of all process-centric registers.
Tis state information must be saved when an interrupt
occurs, to allow the process to be continued correctly
afterward.

CPU Scheduling Info: Priorities, scheduling queue
pointers and other scheduling parameters (Chapter 6)

Memory Management Info: Memory allocated to the

process such as: base/limit registers and page/segment
tables (Chapter 7)

Accounting Info: Amount of CPU and real time used,
time limits, account numbers, job or process numbers.

I/0 Status Info: The list of I/O devices allocated to
process, list of open files

Operating Systems differ in Process Representation

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:
ACCOUNTINGINFO:

MR vostaros weo

Process Control Block (PCB)

/

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1501
http://www.tldp.org/LDP/tlk/ds/ds.html

state
thread_nb

uage
flags

un_ig

s

mm

red parent

parent

Ty

thread

o

pending

Lask_strut

YYyvyy

thread _info

ity _strot

g 0020 descriptons

fs_struct

fles_swuct

Ty

ugral_struct

Low-lewe! iformation
for the process

& Ponters o memdry

-
—
LR

Iy associoled with the process

Current direciory

Poirters to file
descriplars

Sepaas recened

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://www.tldp.org/LDP/tlk/ds/ds.html

Multiprogramming (Batch System)

1/0

/
Processes Pool

|
H

IR RELR vosrwosn

OPERATING SYSTEM KINGDOM

H
§
£

OPERATING SYSTEM KINGDOM

PROCESS

AR ALY vosrarseo

Maximize CPU use, quickly switch processes
onto CPU for time sharing

Maximize throughput by increasing the number
of processes that are completed per time unit

Maximize response time by decreasing the time
from the submission of a request until the first
response is produced

1/0

Process Scheduler

Process scheduler selects among available processes for next execution on CPU

3

Head

OPERATING SYSTEM KINGDOM OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

)

OPERATING SYSTEM KINGDOM

3 [ohg | PROCESS
Job Queue :@:

Set of all processes in the system O

Ta"ﬂ

Frocess Control loc

@ PHOFESS

-
HIARRRERIRIRIY vostarosie

Head

Ready Queue ! ; f
Set of all processes residing in

main memory, ready and

OPERATING SYSTEM KINGDOM

Tail
waiting to execute
Head
Maintains scheduling Disk 1 Queue

ueues of processes Device queue — Set of processes O——
. > waiting for an 1/0 on Disk 1 Tail

Processes migrate among
the various queues

Head

OPERATING SYSTEM KINGDOM

Qo— @ !’III]I:ESS

H

OPERATING SYSTEM KINGDOM

ock (78]

OPERATING SYSTEM KINGDOM

1/0 Queue

Device queue — Set of processes g
waiting for an 1/0 device

i

o o
LRI T

Medium-Term Scheduling
swaps out process from memory,

QO@ Representation of Process Scheduling . then swapsitin ready queue

process swapping Reduces the degree

P scheduler of multiprogramming
Long-Term Scheduling Blocked/Suspended Queues ,/
- Swap In /7
selects which processes should be P : < L2 Swap Out
brought into the ready queue
Invoked controls the Time Slice Expired
. May be slow
infrequently degree of
(secs, mins) multiprogramming
-~ Ready Queue
T~o Release
- = ~ -~ — I >
Incoming Processes < \ 4 >]
1/0
~ o
CPU-Bound Process ? /0 Queue Jor ~] Short-Term (CPU) Scheduling
spends more time doing computations; | ¢ = ‘ l I < equest I's selects which process should be
few very long CPU bursts &7 3 executed next and allocates CPU
o Invoked Must be fast Sometimes the
1/0-Bound Process < ((‘»4 Wait for Interrupt (n::ﬁgt;ig:gs) JESiiuD 0?:1yaszcsiil:1:er
spends more time doing I/O than -
computations (short CPU time)
< Fork a child process

Long-Term Scheduler

It is a job scheduler

Speed Is lesser than
short term scheduler

It controls the degree of
multiprogramming

It Is almost absent or
minimal in time sharing
system

It selects processes
from pool and loads
them into memory for
execution

Comparison among Scheduler

Short-Term
Scheduler

Itis a CPU
scheduler

Speed Is fastest
among other two

It provides lesser
control over degree
of
multiprogramming

It Is also minimal In
time sharing
system

It selects those
processes which
are ready to
execute

Medium-Term
Scheduler

It is a process swapping
scheduler.

Speed Is In between both
short and long term
scheduler,

It reduces the degree of
multiprogramming.

It is a part of Time
sharing systems.

It can re-introduce the
process into memory and
execution can be
continued.

https://www.tutorialspoint.com/operating system/os process scheduling.htm

https://www.tutorialspoint.com/operating_system/os_process_scheduling.htm

OPERATING SYSTEM KINGDOM

PROCESS
s pRocEssSTATE:

Context Switching

enables multiple processes to share a single CPU

The mechanism to store and restore the state or context of a
CPU in Process Control Block so that a process execution can
be resumed from the same point at a later time

When the scheduler switches the CPU switches from
executing one process to another process, the system must

save the state “Context” of the old process and load the
saved state “Context” for the new process a g
IVIERARER AR o srersine: ‘9"0(6/
OPERATING SYSTEM KINGDOM le /
T IPROCESS| 7
PROCESS =,

PROCESS STATE:
O n e X PROGRAM COUNTER:
CPU REGISTERS:

CPU SCHEDULING INFO:

ocess Control Block (PCB)

L
<
MEMORY MANAGEMENT INFO:

ACCOUNTING INFO:
\NIRHENTIARIE vosmars weo J

g
g
H
H
H

TR

OPERATING SYSTEM KINGDOM

PROCESS
s pRocEssSTATE:

Context Switching g

enables multiple processes to share a single CPU

Context switches are computationally intensive since register
and memory state must be saved and restored

The more complex the OS and the PCB; the longer the context
switching

To avoid the amount of context switching time, some hardware
systems employ two or more sets of processor registers so that
multiple contexts loaded at once.

(NINEHA R wosowuso Qﬁed,

&y
OPERATING SYSTEM KINGDOM

H /
3 p—

§ w :

N NT

g

3

b

:

H

o
TR

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L2862

Create, Delete Communication Connection Create/Terminate/Load/Execute Process

Message Passing Model Host/Process Name Get/Set Process Attributes
Shared-Memory Model Wait for Time/Event

Transfer Status Information wait event, signal event
Attach/Detach Remote Devices Allocate/Free/Dump Memory

Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File

@ Get/Set File Attributes

Control access to resources
Get and set permissions
Allow and deny user access

System CaII“"k *

\.

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Process Creation

=

—

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

howtogeek@ubuntu: ~

. oo . op 03:48:40 up 19 min,
Process identified and managed via a process asks: 143 total,

. ONUS , 0.7\sy,

identifier (PID) — Unique ID cota,
PROCESS 2ne3 hovtopm

g

x

s PROCESS STATE: 36 root

T;i PROGRAM COUNTER: root

g CPU REGISTERS: howtogee

é CPU SCHEDULING INFO: .‘ A 53 howtogee

s MEMORY MANAGEMENT INFO: 2313 howtogee
ACCOUNTING INFO: y howtogee

TN o stros wee:) 1 root

4 root

3 root

[root@linoxide ~]# pstree
systemd—y—Networ kamqeerh(Lient
3* [{NetworkManager))
2% [agetty]
—auditd—-{auditd)}
—avahi -daemon—avahi-daemon

- First process to run is the “systemd” process
chronyd y

C rond

e dacmon that is started at system boot. This is the grand
Ciorints parent of all processes in the whole system
—~1prupdate

—polkitd—>5*[{polkitd})

—rsyslogd—2*[{rsyslogd}) 1 1 1 -

[cshd_—sshd—bash—pstree If a process dies, then its orphan children are re
[Sshd—sshd “« ”

| ystend-journal parented to the “systemd” process

—systemd-logind
~systemd-network
~systemd-udevd
—tuned—4*[{tuned}]
[root@linoxide ~)# [

?1) ?(n)

Parent and children share all resources
Children share subset of parent’s resources

Parent and child share no resources

Address Space

M
N\

Parent and children execute concurrently

Parent waits until children terminate

Child duplicate of parent

Child has a program loaded into it

Process Creation

MH Copy Address Space

exec()
replace the process’s memory
space with a new program

Address Space

Address Space

New Address Space

cre;Fte? IE\E§IJ(FO)C€$S
P n 0 c Es s OPERATING SYSTEM KINGDOM

PROCESS STATE: H pSS—
H PROGRAM COUNTER:
3

OPERATING SYSTEM KINGDOM

PR
PR TER:
cp

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
(NI AIRELR v saroswe:

MEMORY MANAGEMENT INFO:

Process Control Block (PCB)
—
—

(AR EERNRELN vo srarstur:

ACCOUNTINGINFO:

\HTETIROR vosraros e Y, Child Process

Process Creation

OPERATING SYSTEM KINGDOM

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
Pﬂﬂﬂgigg int main()
{
id_t pid;
- —R-t_ —I— - Return value p1 Pt
eturn value .
L4 of fork(): 0 of fork(): 980 /* fork a child process */
pid = fork();
execlp()
if (pid < 0) { /* error occurred */
| fprintf(stderr, "Fork Failed");
| return 1;
v }
. else if (pid == 0) { /* child process */
ex1t() } execlp("/bin/1s","1s" ,NULL);
\ - o = == else { /* parent process */
- /* parent will wait for the child to complete */
. wait (NULL);
walt () printf ("Child Complete");
}
8 OPERATING SYSTEM KINGDOM
sl PROCESS return O;
@] .
QL
<

T R

C"1 Tube) 2

=. .l=.= ..E.'.

T3 x 7
TUX T

~40o X
e \lelg/

https://www.youtube.com/watch?v=WcsZvdILkPw

int x =5, y =2, z = 30;

x = fork();

y = fork();

if(x = 0){
printf(“Type 1\n”);

}

if(y !'= 0){
printf(“Type 2\n”);

}

z = fork();

if((x >0) [[(y>@) || (z>0)){
printf(“Type 3\n”);
}

if((x == 0) && (y == @) && (z != 0)){
printf(“Type 4\n”);
}

if((x 1=0) && (y !'=0) && (z != 0)){
printf(“Type 5\n”);
}

R VRTIN vo s

OPERATING SYSTEM KINGDOM

{| o | PROCESS
?(:}?MEOOO

30

Process Termination

Process executes last
statement and then asks the
OS to delete it using the
exit() system call

The parent process may wait
for termination of a child
process by using wait()

Parent may terminate the
execution of children
processes using the abort()

r v
system call NN "’ah.\\ (VU i m,\\ A\

Returns status data from
child to parent via
id = wait(&status);

©

Process’ resources are

Child has exceeded allocated deallocated by OS

resources OR Task assigned
to child is no longer required

Lot e daaed 000000
SCORE

Orphan Process

A child process whose parent process has finished or terminated, though it remains running itself.

OPERATING SYSTEM KINGDOM

PROCESS

501
IR o

OPERATING SYSTEM KINGDOM

pnufiss o)

Return value OPERATING SYSTEM KINGDOM

-—
7 Return value of fork(): 980 |:
of fork(): 0

-
IR vostarsno

exit()

OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

i o |PROCESS
E{:} -1
H

OPERATING SYSTEM KINGDOM

PROCESS
-1

%
i

OPERATING SYSTEM KINGDOM IR vosrarosee

| yag | PROCESS .

OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

i o ae | PROCESS
;{:}W”pm)

(RN HORAL vosvwosteo

Some operating systems do not allow “Orphan”

processes to exists. If a process terminates, then all

its children must also be terminated

Some operating systems re-parent (adopt) all
orphan processes to the init or systemd process

/ombie Process

A child process that has completed execution but has not yet been reaped

OPERATING SYSTEM KINGDOM

PROCESS

OPERATING SYSTEM KINGDOM

{| oag | PROCESS

The entry for child process is still needed to allow the parent

M == ™ turn value process to read its child's exit status: once the exit status is
v Return value of fork(): 980 read via the wait (), the zombie's entry is removed from the

of fork(): 0
process table and it is said to be "reaped"

A child process always first becomes a zombie before being
removed from the resource table.

It requires a system re-boot

Process 1

