
CPE 460 Operating System Design
Lecture 3: Once Upon a Process

Ahmed Tamrawi

February 15, 2017

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Any program to run must be loaded in memory

Unit of Work in Computer

PROCESS

ةروــــــــنم ةــعمــش ةـــــلف

A Program In Execution

PROCESS

// File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

}

gcc –o test test.c

// File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

}

gcc –o test test.c

Program becomes process
when executable file
loaded into memory

// File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

}

gcc –o test test.c

objdump -d test

http://www.thegeekstuff.com/2012/09/objdump-examples/?utm_source=feedburner
https://jvns.ca/blog/2014/09/06/how-to-read-an-executable/

Process Memory Layout

Text (Code) Segment is one of the sections of a program in an object file or
in memory, which contains executable instructions

Initialized Data Segment contains any global or static variables which have
a pre-defined value and can be modified

BSS Data Segment contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in source code.

Heap Area is the memory that is dynamically allocated during process run
time. The heap area is managed by malloc, calloc, realloc, and free,
which may use the brk and sbrk system calls to adjust its size

Stack Area contains the program stack, a LIFO structure. A “stack pointer”
register tracks the top of the stack; it is adjusted each time a value is
“pushed” onto the stack. The stack area contains temporary data: function
parameters, return addresses, and local variables.

https://en.wikipedia.org/wiki/Data_segment

Lower Address

Higher Address

Process execution
must progress in
sequential fashion

https://en.wikipedia.org/wiki/Data_segment

#include <stdio.h>
int main(void) {

return 0;
}

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 248 8 1216 4c0 memory-layout

#include <stdio.h>
int global;
int main(void) {

return 0;
}

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 248 12 1216 4c0 memory-layout

#include <stdio.h>
int global;
int main(void) {

static int i;
return 0;

}

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 248 16 1216 4c0 memory-layout

#include <stdio.h>
int global = 10;
int main(void) {

static int i = 100;
return 0;

}

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 256 8 1216 4c0 memory-layout

#include <stdio.h>
int main(void) {

printf(“hello\n”)’
return 0;

}

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec hex filename
960 248 8 1216 4c0 memory-layout

http://www.geeksforgeeks.org/
memory-layout-of-c-program/

One program can be several processes

Chrome Browser is multiprocess with 3 different types of processes:
1. Browser Process manages user interface, disk and network I/O
2. Renderer Process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
3. Plug-in Process for each type of plug-in

Process State

The process is being created

Instructions are being executed

The process is waiting for some event to occur

The process is waiting to be
assigned to a processor

The process has finished execution

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc

es
s C

on
tr

ol
 B

lo
ck

 (P
CB

)

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:

MEMORY MANAGEMENT INFO:

ACCOUNTING INFO:

I/O STATUS INFO:

Process State: new, ready, running, waiting, terminated.

Program Counter: A pointer to the address of the next
instruction to be executed for this process

Process Number: a unique identification number
for each process in the operating system.

CPU Registers: Contents of all process-centric registers.
Tis state information must be saved when an interrupt
occurs, to allow the process to be continued correctly
afterward.

CPU Scheduling Info: Priorities, scheduling queue
pointers and other scheduling parameters (Chapter 6)

Memory Management Info: Memory allocated to the
process such as: base/limit registers and page/segment
tables (Chapter 7)

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Accounting Info: Amount of CPU and real time used,
time limits, account numbers, job or process numbers.

I/O Status Info: The list of I/O devices allocated to
process, list of open files

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Operating Systems differ in Process Representation

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1501
http://www.tldp.org/LDP/tlk/ds/ds.html

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://www.tldp.org/LDP/tlk/ds/ds.html

Multiprogramming	(Batch	System)

I/O

Timesharing	(Multitasking)

I/O

Maximize CPU use, quickly switch processes
onto CPU for time sharing

Maximize throughput by increasing the number
of processes that are completed per time unit

Maximize response time by decreasing the time
from the submission of a request until the first
response is produced

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Processes Pool

Which one to run next?

Process Scheduler
Process scheduler selects among available processes for next execution on CPU

Ready Queue
PROCESS

OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

Disk 1 Queue

Head

Tail

I/O Queue
PROCESS

OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Job Queue
PROCESS

OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Maintains scheduling
queues of processes

Set of all processes in the system

Set of all processes residing in
main memory, ready and
waiting to execute

Device queue – Set of processes
waiting for an I/O on Disk 1

Device queue – Set of processes
waiting for an I/O device

Processes migrate among
the various queues

Representation of Process Scheduling

Incoming Processes

Ready Queue
Release

Time Slice Expired

I/O Queue
I/O Request

I/O

Wait for Interrupt

Fork a child process

Blocked/Suspended Queues
Swap OutSwap In

Short-Term (CPU) Scheduling
selects which process should be
executed next and allocates CPU

Sometimes the
only scheduler

in a system

Invoked
frequently

(milliseconds)

Must be fast
algorithm

Long-Term Scheduling
selects which processes should be

brought into the ready queue
controls the

degree of
multiprogramming

Invoked
infrequently
(secs, mins)

May be slow

Medium-Term Scheduling
swaps out process from memory,

then swaps it in ready queue
Reduces the degree

of multiprogramming
process swapping

scheduler

I/O-Bound Process
spends more time doing I/O than
computations (short CPU time)

CPU-Bound Process
spends more time doing computations;
few very long CPU bursts

https://www.tutorialspoint.com/operating_system/os_process_scheduling.htm

https://www.tutorialspoint.com/operating_system/os_process_scheduling.htm

Context Switching

When the scheduler switches, the CPU switches from
executing one process to another process, the system must
save the state “Context” of the old process and load the
saved state “Context” for the new process

The mechanism to store and restore the state or context of a
CPU in Process Control Block so that a process execution can
be resumed from the same point at a later time

enables multiple processes to share a single CPU

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Context

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Save P1 State

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Resto
re P2 State

Save P2 State

Restore P1 State

Resto
re P2 St

ate

Context Switching
Context switches are computationally intensive since register

and memory state must be saved and restored

enables multiple processes to share a single CPU PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Save P1 State

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

Resto
re P2 State

Save P2 State

Restore P1 State

Resto
re P2 St

ate

The more complex the OS and the PCB; the longer the context
switching

To avoid the amount of context switching time, some hardware
systems employ two or more sets of processor registers so that

multiple contexts loaded at once.

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L2862

Create/Terminate/Load/Execute Process
Get/Set Process Attributes
Wait for Time/Event
wait event, signal event
Allocate/Free/Dump Memory
Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File
Get/Set File Attributes

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Create, Delete Communication Connection
Message Passing Model Host/Process Name
Shared-Memory Model
Transfer Status Information
Attach/Detach Remote Devices

Control access to resources
Get and set permissions
Allow and deny user access

System	Call

Provide Abstractions

Process Creation

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

First process to run is the “systemd” process
that is started at system boot. This is the grand

parent of all processes in the whole system

If a process dies, then its orphan children are re-
parented to the “systemd” process

Process identified and managed via a process
identifier (PID) – Unique ID

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Parent and children share all resources

Execution

Children share subset of parent’s resources

Parent and child share no resources

Parent and children execute concurrently

Parent waits until children terminate

Child duplicate of parent

Child has a program loaded into it

Ad
dr

es
s S

pa
ce

Process Creation

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

fork()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

Copy Address Space

Child Process

exec()

Ne
w

 A
dd

re
ss

 S
pa

ce

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

creates new process

replace the process’s memory
space with a new program

Process Creation

fork()

wait()

execlp()

exit()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

Re
su
m
es

Return value
of fork(): 0

Return value
of fork(): 980

https://www.youtube.com/watch?v=WcsZvdlLkPw

int x = 5, y = 2, z = 30;

x = fork();

y = fork();

if(x != 0){
printf(“Type 1\n”);

}

if(y != 0){
printf(“Type 2\n”);

}

z = fork();

if((x > 0) || (y > 0) || (z > 0)){
printf(“Type 3\n”);

}

if((x == 0) && (y == 0) && (z != 0)){
printf(“Type 4\n”);

}

if((x != 0) && (y != 0) && (z != 0)){
printf(“Type 5\n”);

}

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

100

5 2 30

! " #

Process Termination
Process executes last

statement and then asks the
OS to delete it using the

exit() system call

Returns status data from
child to parent via

pid = wait(&status);

Process’ resources are
deallocated by OS

Parent may terminate the
execution of children

processes using the abort()
system call

Child has exceeded allocated
resources OR Task assigned

to child is no longer required

The parent process may wait
for termination of a child
process by using wait()

fork()

exit()

work()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

Orphan
Process

Return value
of fork(): 0

Return value
of fork(): 980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

exit()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

Orphan Process

Some operating systems do not allow ”Orphan”
processes to exists. If a process terminates, then all

its children must also be terminated

Some operating systems re-parent (adopt) all
orphan processes to the init or systemd process

A child process whose parent process has finished or terminated, though it remains running itself

Zombie Process
A child process that has completed execution but has not yet been reaped

A child process always first becomes a zombie before being
removed from the resource table.

fork()

exit()

exit()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

501

Return value
of fork(): 0

Return value
of fork(): 980

work()
Zombie
Process

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

980

The entry for child process is still needed to allow the parent
process to read its child's exit status: once the exit status is

read via the wait(), the zombie's entry is removed from the
process table and it is said to be "reaped"

It requires a system re-boot

Representation of Process Scheduling

Incoming Processes

Ready Queue
Release

Time Slice Expired

I/O Queue
I/O Request

I/O

Wait for Interrupt

Fork a child process

Blocked/Suspended Queues
Swap OutSwap In

Short-Term (CPU) Scheduling
selects which process should be
executed next and allocates CPU

Sometimes the
only scheduler

in a system

Invoked
frequently

(milliseconds)

Must be fast
algorithm

Long-Term Scheduling
selects which processes should be

brought into the ready queue
controls the

degree of
multiprogramming

Invoked
infrequently
(secs, mins)

May be slow

Medium-Term Scheduling
swaps out process from memory,

then swaps it in ready queue
Reduces the degree

of multiprogramming
process swapping

scheduler

CPU Scheduling
CPU scheduler selects among available processes for next execution on CPU

Process Execution Cycle

I/O BurstCPU Burst

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Terminate Process

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

CPU burst distribution is of main concern

CPU burst distribution is of main concern to select
appropriate CPU-scheduling algorithm

Small number of long CPU bursts

Exponential OR Hyperexponential

Large number of short CPU bursts

I/O-Bound Process
spends more time doing I/O than
computations (short CPU bursts)

CPU-Bound Process
spends more time doing computations;
few very long CPU bursts

Nonpreemptive SchedulingPreemptive Scheduling

Once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by
terminating or by switching to the waiting state

The act of temporarily interrupting a process being
allocated to the CPU, without requiring its cooperation, and
with the intention of resuming the process at a later time.

Consider access to shared data
Consider preemption while in kernel mode

Consider interrupts occurring during crucial OS activities

Process Dispatcher
Gives control of the CPU to the process selected by the short-term scheduler

Ready Queue Process
Dispatcher

• Receives control in Kernel Mode via
interrupt.

• Context Switching
• Switching to User Mode
• Jumping to the proper location in the

user program to restart that program

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

The dispatcher should be as fast as possible, since
it is invoked during every process switch

Dispatch latency – time it takes for the dispatcher
to stop one process and start another running

CPU Scheduling
There are many CPU scheduling algorithm, what

are the criteria to compare among them?

CPU Utilization
keep the CPU as busy as possible

Throughput
Number of processes that complete

their execution per time unit

Turnaround Time
amount of time to execute a particular

process

Waiting Time
amount of time a process has been

waiting in the ready queue

Response Time
amount of time it takes from when a
request was submitted until the first

response is produced (not output)

CPU Scheduling
Optimization

CPU utilization

Throughput

Waiting Time

Turnaround Time

Response Time

First Come, First Serve Scheduling

FCFS

https://youtu.be/w9Uld56AsKE?t=11s

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fcfs.htm

FCFS

The process that requests the CPU
first is allocated the CPU first

FCFS

1
Ready Queue

23

1 2 3
24 3 3

1 2 3

0 24 27 30

Gantt Chart

Waiting Time
amount of time a process has been

waiting in the ready queue

1
0

2
24

3
27 AVG 17

FCFS

2
Ready Queue

31
12 3

60 3 30

1
6

2
0

3
3 AVG 3

FCFS

Occurs when short process behind long process. All the short
processes wait for the one big process to get off the CPU

Convoy Effect

Convoy Effect results in lower CPU and device utilization than
might be possible if the shorter processes were allowed to go first.

FCFS is troublesome for time-sharing systems, where it is
important that each user get a share of the CPU at regular

intervals. It would be disastrous to allow one process to keep
the CPU for an extended period.

Nonpreemptive Scheduling
Once the CPU has been allocated to a process, the process

keeps the CPU until it releases the CPU either by
terminating or requesting I/O

Shortest Job First Scheduling

SJF

https://youtu.be/w9Uld56AsKE?t=38s

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/sjf.htm

Shortest Job First Scheduling
The CPU is allocated to the process with the least CPU burst

Nonpreemptive SJF
Interrupt the process being allocated to the CPU, if there
is another process has arrived with lesser CPU time than

the remaining CPU time for the running process

Preemptive SJF

Associate with each process the length of its
next CPU burst

Use these lengths to schedule the process
with the shortest time

Optimal by giving min. avg. waiting Time.
The difficulty is knowing the length of the

next CPU request

SJF

Once the CPU has been allocated to a process with the
highest priority, the process keeps the CPU until it releases

the CPU either by terminating or requesting I/O

SJF

SJF

1
Ready Queue

23

1 2 3
6 8 7

1 2

0 24

1
3

2
16

3
9 AVG 7

4
3

3 9 16

4 1 3

0
4

4

SJF

1
Ready Queue

23
1

0 24

1
3

2
9

3
16 AVG 7

3 9 16

4 1 3

0
4

4

3
8

2

The CPU is allocated to the process
with the least CPU burst

Shortest Remaining Time First

SJF

1 2 3
8 4 9

4
5

Preemptive

Preemptive SJF
Interrupt the process being allocated to the CPU, if there
is another process has arrived with lesser CPU time than

the remaining CPU time for the running process

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2

1

4

1

7

1

8

2

1

7

3

9

2

3

1

7

3

9

2

4
5

2

2

1

7

3

9

4
5

3

4

1

7

3

9

1

26…

3

3

9

1
9

2
0

3
15 AVG 6.5ms2

4

Priority Scheduling

Priority

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/priority.htm

https://www.youtube.com/watch?v=rcOBx752m-Q

Priority SchedulingPriority

A priority number (integer) is associated
with each process

1 2 3 4

3

The CPU is allocated to the process with the highest
priority (smallest integer º highest priority)

Nonpreemptive Priority
Once the CPU has been allocated to a process with the

highest priority, the process keeps the CPU until it releases
the CPU either by terminating or requesting I/O

Preemptive Priority
Interrupt the process being allocated to the CPU, if there
is another process has arrived with higher priority than

the priority of the running process

1 4 2SJF is a priority scheduling where priority is
the inverse of predicted next CPU burst time

SJF

The CPU is allocated to the process with the
highest priority (smallest integer º highest priority)

1
Ready Queue

23

1 2 3
24 3 3

1 2

3 27 30

1
3

2
27

3
0 AVG 10

3 12

1 3 2
3

0

Priority

Priority

1
Ready Queue

23
1 2 3

0 24 27 30

1
0

2
24

3
27 AVG 17

123 Priority

1 2 3
10 1 2

4
1

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

1

9

2

2 3

1
7

2
0

3
14 AVG 5.2ms15

4

Priority

5
53 1 4 5 2

10
1

3

2

1

1

3

9
1

3

3

4

1

2
4

5 1
3

4 2

8
1

3

4

5 1
3

4 2

5

2 5

7
1

3

3 45

4

5 1
3

4 2

7
1

3

1

4

5 1
3

4 2
4

5 1

0
5

Preemptive

Priority SchedulingPriority

Aging – as time progresses increase the
priority of the process

The CPU is allocated to the process with the highest
priority (smallest integer º highest priority)

Problem Starvation
low priority processes may never execute

IBM 7094
When they shut it down in 1973, they found a low-priority process

that had been submitted in 1967 and had not yet been run
http://research.microsoft.com/en-

us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html

Mars Pathfinder 1997

Round Robin Scheduling

RR

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/rr.htm
https://youtu.be/w9Uld56AsKE?t=1m31s

Round Robin Scheduling

Each process gets a quantum time (usually 10-100 milliseconds) of
CPU time. After this time has elapsed, the process is preempted and

added to the end of the ready queue

RR

Timer interrupts every quantum
to schedule next process

Quantum

Typically, higher average turnaround than SJF, but better response

1
Ready Queue

23

1 2 3
14 3 3

1
6

2
4

3
7 AVG 5.7

0

1
Ready Queue

23

RR

RR

RR

Quantum 4

4 7 1614 20

1 2 3

10

1

1
6

2
0

3
3 AVG 3

1 1 1 1

0 3 6 1512 18

2 3

9

11 1 1 1

Quantum 3

20

1

3

1 2 3
10 1 2

4
5

0 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192

1
8

2
3

3
3 AVG 5.5ms8

4

RR Quantum 4

20

Quantum Quantum

1
10

1

2
1

2
1

3
2

2
1

3
2

4
5

3
2

4
5

2

1
6

3

3
2

4
5

1
6

4
5

1
6

4

2
1

Quantum

4
1
1
6

4
1

1
2

1 4

1
2

1

Quantum Time and Context Switching TimeRR

Quantum

Quantum

0

1

9

Context
Switching

Quantum

Quantum Quantum Quantum Quantum Quantum Quantum Quantum Quantum

Time quantum should be large compared with the
context switch time, it should not be too large.

If the time quantum is too large, RR scheduling
degenerates to an FCFS scheduling

If the time quantum is too large, RR scheduling suffer
from high overhead due to context switching

Quantum Time is usually 10ms to 100ms, Context Switching Time < 10 !sec

Turnaround Time Varies With The Time QuantumRR

A rule of thumb is that 80 percent of the CPU
bursts should be shorter than the time quantum

Typically, higher average turnaround than SJF, but
better response

Turnaround Time
amount of time to execute a particular

process

Response Time
amount of time it takes from when a
request was submitted until the first

response is produced (not output)

Queue Scheduling

Representation of Process Scheduling

Incoming Processes

Ready Queue
Release

Time Slice Expired

I/O Queue
I/O Request

I/O

Wait for Interrupt

Fork a child process

Blocked/Suspended Queues
Swap OutSwap In

Short-Term (CPU) Scheduling
selects which process should be
executed next and allocates CPU

Sometimes the
only scheduler

in a system

Invoked
frequently

(milliseconds)

Must be fast
algorithm

Long-Term Scheduling
selects which processes should be

brought into the ready queue
controls the

degree of
multiprogramming

Invoked
infrequently
(secs, mins)

May be slow

Medium-Term Scheduling
swaps out process from memory,

then swaps it in ready queue
Reduces the degree

of multiprogramming
process swapping

scheduler

Foreground Ready Queue

Background Ready Queue

Ready Queue

More interactive processes

Batch and Less interactive processes

RR

Priority Fixed Priority Scheduling
Possibility of starvation

Time Slice
Each queue gets a certain amount of CPU time

80%: Foreground Queue, 20%: Background QueueM
ul

til
ev

el
 R

ea
dy

 Q
ue

ue

Multilevel Queue Scheduling

Ready Queue

RR

A process can move between the various
queues; aging can be implemented this wayMultilevel Feedback Queue

RR

FCFS

Quantum 16

Quantum 8

Incoming
Processes

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
Completely Fair Scheduler

http://www.cs.montana.edu/~chandrima.sa
rkar/AdvancedOS/CSCI560_Proj_main/

https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c
https://github.com/torvalds/linux/blob/master/include/linux/init_task.h#L200

https://github.com/torvalds/linux/blob/master/include/uapi/li
nux/sched.h

