CPE 460 Operating System Design
Lecture 3: Once Upon a Process

Ahmed Tamrawi

February 15, 2017

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Any program to run must be loaded in memory

Unit of Work in Computer

L_» // File: test.c
#include <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

gcc -0 test test.c

L_‘ // File: test.c
#tinclude <stdio.h>

int main() {
printf(“I love Mansaf!\n”);
return 0;

gcc -0 test test.c

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-

Program becomes process
when executable file
loaded into memory

L__ // File: test.c
#tinclude <stdio.h>

. . Disassenbly of section _ YEXT, _text:
int main() { _text:
. & | o 100000 150! 55 pvithg \rop
. 100000151 M e sove Nsp, Vi
pr‘lntf(I 1ove Mansa-F' \n)J 100000 154: & B ec 0 e $16, Wwsp
. 1e0000158: MMM MNN lese SSiNris), wai
return 0; 100000151 €745 TC 00 00 00 00 mevl 38, ~&iwie
100000146 bt N sevd 0, wal
} 100000 168: ef 04 00 00 00 cally 13
100000 180: 39 wer) e, Sedx
100000141 8% 45 18 sovl Sean, ~Bivwrte
100000102 8 8 sevl Sedn, Sear
100000174 LR LS AL a0ae $16, Wwsp
1000001)8: 5¢ peoe \rop
10000019 (3 rete
Mmaint
100000 150: 55 pvithg NP
100000151 4 M e sove Nrsp, Ve
gcc -0 test test.c 100000154 a8 83 ec 10 side 316, Wrsp
1e0000158: 4 MMBMNMMN®N lese SSinris), Wi
100000151 cTAsS fcoamb e sovl 0, ~tive
100000146 LR sevd 0, Wl
100000 148: el MW elle 13
100000 180! 31 9 wer) Sedn, Sedx
100000141 8% 45 18 sevl Sean, ~Biwrte
100000172 8% 8 sevl Sedn, Sean
100000174 LR LS e 0de $16, Wwsp
1e00001)8: 5¢ peoe \rdp
100000109: (3} rete
Disasseably of section __YEXT, _stubs
Studs:
1000001)0 frSsmmememnm L] slétivie

Disasseably of section __YEXT, _stub_helper

Stub relper

100000140 dMisiMNe N Lese 1Mivig), w2
100000147 41 53 pwsdg Wl

100000149 ff3ISsT 1o n j.oe «113(wiy
100000141 e nep

100000190 68 00 00 0 00 Pt W

100000195 eh eb 11 11 11w 6 «__stud_helgers .

objdump -d test

http://www.thegeekstuff.com/2012/09/objdump-examples/?utm_source=feedburner
https://jvns.ca/blog/2014/09/06/how-to-read-an-executable/

——— o~

3

&

e
)
P

P & e

Process Memory Layout

Higher Address

uninitialized data

bss

initialized data

data

text

Lower Address

https://en.wikipedia.org/wiki/Data segment

Stack Area contains the program stack, a LIFO structure. A “stack pointer”
register tracks the top of the stack; it is adjusted each time a value is
“pushed” onto the stack. The stack area contains temporary data: function
parameters, return addresses, and local variables.

Heap Area is the memory that is dynamically allocated during process run
time. The heap area is managed by malloc, calloc, realloc, and free,
which may use the brk and sbrk system calls to adjust its size

BSS Data Segment contains all global variables and static variables that are
initialized to zero or do not have explicit initialization in source code.

Initialized Data Segment contains any global or static variables which have
a pre-defined value and can be modified

Text (Code) Segment is one of the sections of a program in an object file or
in memory, which contains executable instructions

Process execution
must progress in
sequential fashion

https://en.wikipedia.org/wiki/Data_segment

#include <stdio.h>
int main(void) {
return 0;

#include <stdio.h>

int global;

int main(void) {
return 0;

}

#include <stdio.h>

int global;

int main(void) {
static int i;
return 0;

#include <stdio.h>

i
i

}

nt global = 10;

nt main(void) {
static int i = 100;
return 0;

#include <stdio.h>

int main(void) {
printf(“hello\n”)’
return 0;

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 8 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 248 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout

text data bss dec
960 1216

$ gcc memory-layout.c -o memory-layout
$ size memory-layout
text data bss dec

960 248 8 1216

filename
memory-layout

filename
memory-layout

filename
memory-layout

filename
memory-layout

filename
memory-layout

http://www.geeksforgeeks.org/
memory-layout-of-c-program/

One program can be several processes

(4] (-] 3 < [+] o]). | ’
cH Opeca “© Ov o 9N -3
o o ° = - -
., a
"; e t—— | Task Manager
\\L'lxll{'i;);.'\ Weicome to Wikipedia, : ® uo Processes Performance | App history | Startup | Users | Detaits | Services
Chrome Browser is multiprocess with 3 different types of processes: '
1. Browser Process manages user interface, disk and network 1/0 ; AL 1 ' :E :E
gle Ch ba SM
2. Renderer Process renders web pages, deals with HTML, @ Google Choomne (3250)s v ome
Javascript. A new renderer created for each website opened © Google Choome (32 b NS oM
. 0 @ Google Cheome (32 bit % 67,1 M8 0 MB/s
3. Plug-in Process for each type of plug-in P —— S ——
e N On i iy ‘ @ Google Cheome (32 bit % 1H9EME 0 ME/s

Ovd you bnow

an
'y

D Mbps
0 Mbps
D Mbps
0 Mbps
0 Mbps
0 Mbps

0 Mbps

End tash

Process State

7\

admitted interrupt exit terminated

The process is being created The process has finished execution

The process is waiting to be running
assigned to a processor

Instructions are being executed

scheduler dispatch /0 or event wait

- . ,,"/

The process is waiting for some event to occur

I/O or event completion

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:
ACCOUNTING INFO:

CRUHTATHTRRTR vosmaros weo Y

Process Control Block (PCB)

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:
CPU REGISTERS:
CPU SCHEDULING INFO:

Process Control Block (PCB)

MEMORY MANAGEMENT INFO:

ACCOUNTINGINFO:

Process Number: a unique identification number
for each process in the operating system.

CTTTLHEIRY vosmmrustweo Y

Process State: new, ready, running, waiting, terminated.

Program Counter: A pointer to the address of the next
instruction to be executed for this process

CPU Registers: Contents of all process-centric registers.
Tis state information must be saved when an interrupt
occurs, to allow the process to be continued correctly
afterward.

CPU Scheduling Info: Priorities, scheduling queue
pointers and other scheduling parameters (Chapter 6)

Memory Management Info: Memory allocated to the

process such as: base/limit registers and page/segment
tables (Chapter 7)

Accounting Info: Amount of CPU and real time used,
time limits, account numbers, job or process numbers.

I/0 Status Info: The list of I/O devices allocated to
process, list of open files

Operating Systems differ in Process Representation

OPERATING SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:
ACCOUNTINGINFO:

MR vostaros weo

Process Control Block (PCB)

/

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L1501
http://www.tldp.org/LDP/tlk/ds/ds.html

state
thread_nb

uage
flags

un_ig

s

mm

red parent

parent

Ty

thread

o

pending

Lask_strut

YYyvyy

thread _info

ity _strot

g 0020 descriptons

fs_struct

fles_swuct

Ty

ugral_struct

Low-lewe! iformation
for the process

& Ponters o memdry

-
—
LR

Iy associoled with the process

Current direciory

Poirters to file
descriplars

Sepaas recened

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
http://www.tldp.org/LDP/tlk/ds/ds.html

Multiprogramming (Batch System)

1/0

/
Processes Pool

|
H

IR RELR vosrwosn

OPERATING SYSTEM KINGDOM

H
§
£

OPERATING SYSTEM KINGDOM

PROCESS

AR ALY vosrarseo

Maximize CPU use, quickly switch processes
onto CPU for time sharing

Maximize throughput by increasing the number
of processes that are completed per time unit

Maximize response time by decreasing the time
from the submission of a request until the first
response is produced

1/0

Process Scheduler

Process scheduler selects among available processes for next execution on CPU

3

Head

OPERATING SYSTEM KINGDOM OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

)

OPERATING SYSTEM KINGDOM

3 [ohg | PROCESS
Job Queue :@:

Set of all processes in the system O

Ta"ﬂ

Frocess Control loc

@ PHOFESS

-
HIARRRERIRIRIY vostarosie

Head

Ready Queue ! ; f
Set of all processes residing in

main memory, ready and

OPERATING SYSTEM KINGDOM

Tail
waiting to execute
Head
Maintains scheduling Disk 1 Queue

ueues of processes Device queue — Set of processes O——
. > waiting for an 1/0 on Disk 1 Tail

Processes migrate among
the various queues

Head

OPERATING SYSTEM KINGDOM

Qo— @ !’III]I:ESS

H

OPERATING SYSTEM KINGDOM

ock (78]

OPERATING SYSTEM KINGDOM

1/0 Queue

Device queue — Set of processes g
waiting for an 1/0 device

i

o o
LRI T

Medium-Term Scheduling
swaps out process from memory,

QO@ Representation of Process Scheduling . then swapsitin ready queue

process swapping Reduces the degree

P scheduler of multiprogramming
Long-Term Scheduling Blocked/Suspended Queues ,/
- Swap In /7
selects which processes should be P : < L2 Swap Out
brought into the ready queue
Invoked controls the Time Slice Expired
. May be slow
infrequently degree of
(secs, mins) multiprogramming
-~ Ready Queue
T~o Release
- = ~ -~ — I >
Incoming Processes < \ 4 >]
1/0
~ o
CPU-Bound Process ? /0 Queue Jor ~] Short-Term (CPU) Scheduling
spends more time doing computations; | ¢ = ‘ l I < equest I's selects which process should be
few very long CPU bursts &7 3 executed next and allocates CPU
o Invoked Must be fast Sometimes the
1/0-Bound Process < ((‘»4 Wait for Interrupt (n::ﬁgt;ig:gs) JESiiuD 0?:1yaszcsiil:1:er
spends more time doing I/O than -
computations (short CPU time)
< Fork a child process

Long-Term Scheduler

It is a job scheduler

Speed Is lesser than
short term scheduler

It controls the degree of
multiprogramming

It Is almost absent or
minimal in time sharing
system

It selects processes
from pool and loads
them into memory for
execution

Comparison among Scheduler

Short-Term
Scheduler

Itis a CPU
scheduler

Speed Is fastest
among other two

It provides lesser
control over degree
of
multiprogramming

It Is also minimal In
time sharing
system

It selects those
processes which
are ready to
execute

Medium-Term
Scheduler

It is a process swapping
scheduler.

Speed Is In between both
short and long term
scheduler,

It reduces the degree of
multiprogramming.

It is a part of Time
sharing systems.

It can re-introduce the
process into memory and
execution can be
continued.

https://www.tutorialspoint.com/operating system/os process scheduling.htm

https://www.tutorialspoint.com/operating_system/os_process_scheduling.htm

OPERATING SYSTEM KINGDOM

PROCESS
s pRocEssSTATE:

Context Switching

enables multiple processes to share a single CPU

The mechanism to store and restore the state or context of a
CPU in Process Control Block so that a process execution can
be resumed from the same point at a later time

When the scheduler switches, the CPU switches from
executing one process to another process, the system must

save the state “Context” of the old process and load the
saved state “Context” for the new process a g
IVIERARER AR o srersine: ‘9"0(6/
OPERATING SYSTEM KINGDOM le /
T IPROCESS| 7
PROCESS =,

PROCESS STATE:
O n e X PROGRAM COUNTER:
CPU REGISTERS:

CPU SCHEDULING INFO:

ocess Control Block (PCB)

L
<
MEMORY MANAGEMENT INFO:

ACCOUNTING INFO:
\NIRHENTIARIE vosmars weo J

g
g
H
H
H

TR

OPERATING SYSTEM KINGDOM

PROCESS
s pRocEssSTATE:

Context Switching g

enables multiple processes to share a single CPU

Context switches are computationally intensive since register
and memory state must be saved and restored

The more complex the OS and the PCB; the longer the context
switching

To avoid the amount of context switching time, some hardware
systems employ two or more sets of processor registers so that
multiple contexts loaded at once.

(NINEHA R wosowuso Qﬁed,

&y
OPERATING SYSTEM KINGDOM

H /
3 p—

§ w :

N NT

g

3

b

:

H

o
TR

https://github.com/torvalds/linux/blob/master/kernel/sched/core.c#L2862

Create, Delete Communication Connection Create/Terminate/Load/Execute Process

Message Passing Model Host/Process Name Get/Set Process Attributes
Shared-Memory Model Wait for Time/Event

Transfer Status Information wait event, signal event
Attach/Detach Remote Devices Allocate/Free/Dump Memory

Locks for Process Synchronization

Create/Delete/Open/Close/Read/Write File

@ Get/Set File Attributes

Control access to resources
Get and set permissions
Allow and deny user access

System CaII“"k *

\.

Request/Release/Read/Write Device
Get/Set Device Attributes
Logically Attach/Detach devices

Get/Set Time or Date
Get/Set System Data

Process Creation

=

—

Parent process creates children processes, which, in turn create other
processes, forming a tree of processes

howtogeek@ubuntu: ~

. oo . op 03:48:40 up 19 min,
Process identified and managed via a process asks: 143 total,

. ONUS , 0.7\sy,

identifier (PID) — Unique ID cota,
PROCESS 2ne3 hovtopm

g

x

s PROCESS STATE: 36 root

T;i PROGRAM COUNTER: root

g CPU REGISTERS: howtogee

é CPU SCHEDULING INFO: .‘ A 53 howtogee

s MEMORY MANAGEMENT INFO: 2313 howtogee
ACCOUNTING INFO: y howtogee

TN o stros wee:) 1 root

4 root

3 root

[root@linoxide ~]# pstree
systemd—y—Networ kamqeerh(Lient
3* [{NetworkManager))
2% [agetty]
—auditd—-{auditd)}
—avahi -daemon—avahi-daemon

- First process to run is the “systemd” process
chronyd y

C rond

e dacmon that is started at system boot. This is the grand
Ciorints parent of all processes in the whole system
—~1prupdate

—polkitd—>5*[{polkitd})

—rsyslogd—2*[{rsyslogd}) 1 1 1 -

[cshd_—sshd—bash—pstree If a process dies, then its orphan children are re
[Sshd—sshd “« ”

| ystend-journal parented to the “systemd” process

—systemd-logind
~systemd-network
~systemd-udevd
—tuned—4*[{tuned}]
[root@linoxide ~)# [

?1) ?(n)

Parent and children share all resources
Children share subset of parent’s resources

Parent and child share no resources

Address Space

M
N\

Parent and children execute concurrently

Parent waits until children terminate

Child duplicate of parent

Child has a program loaded into it

Process Creation

MH Copy Address Space

exec()
replace the process’s memory
space with a new program

Address Space

Address Space

New Address Space

cre;Fte? IE\E§IJ(FO)C€$S
P n 0 c Es s OPERATING SYSTEM KINGDOM

PROCESS STATE: H pSS—
H PROGRAM COUNTER:
3

OPERATING SYSTEM KINGDOM

PR
PR TER:
cp

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
(NI AIRELR v saroswe:

MEMORY MANAGEMENT INFO:

Process Control Block (PCB)
—
—

(AR EERNRELN vo srarstur:

ACCOUNTINGINFO:

\HTETIROR vosraros e Y, Child Process

Process Creation

OPERATING SYSTEM KINGDOM

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
Pﬂﬂﬂgigg int main()
{
id_t pid;
- —R-t_ —I— - Return value p1 Pt
eturn value .
L4 of fork(): 0 of fork(): 980 /* fork a child process */
pid = fork();
execlp()
if (pid < 0) { /* error occurred */
| fprintf(stderr, "Fork Failed");
| return 1;
v }
. else if (pid == 0) { /* child process */
ex1t() } execlp("/bin/1s","1s" ,NULL);
\ - o = == else { /* parent process */
- /* parent will wait for the child to complete */
. wait (NULL);
walt () printf ("Child Complete");
}
8 OPERATING SYSTEM KINGDOM
sl PROCESS return O;
@] .
QL
<

T R

C"1 Tube) 2

=. .l=.= ..E.'.

T3 x 7
TUX T

~40o X
e \lelg/

https://www.youtube.com/watch?v=WcsZvdILkPw

int x =5, y =2, z = 30;

x = fork();

y = fork();

if(x = 0){
printf(“Type 1\n”);

}

if(y !'= 0){
printf(“Type 2\n”);

}

z = fork();

if((x >0) [[(y>@) || (z>0)){
printf(“Type 3\n”);
}

if((x == 0) && (y == @) && (z != 0)){
printf(“Type 4\n”);
}

if((x 1=0) && (y !'=0) && (z != 0)){
printf(“Type 5\n”);
}

R VRTIN vo s

OPERATING SYSTEM KINGDOM

{| o | PROCESS
?(:}?MEloo

30

Process Termination

Process executes last
statement and then asks the
OS to delete it using the
exit() system call

The parent process may wait
for termination of a child
process by using wait()

Parent may terminate the
execution of children
processes using the abort()

r v
system call NN "’ah.\\ (VU i m,\\ A\

Returns status data from
child to parent via
id = wait(&status);

©

Process’ resources are

Child has exceeded allocated deallocated by OS

resources OR Task assigned
to child is no longer required

Lot e daaed 000000
SCORE

Orphan Process

A child process whose parent process has finished or terminated, though it remains running itself

OPERATING SYSTEM KINGDOM

PROCESS

501
IR o

OPERATING SYSTEM KINGDOM

pnufiss o)

Return value OPERATING SYSTEM KINGDOM

-—
7 Return value of fork(): 980 |:
of fork(): 0

-
IR vostarsno

exit()

OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

i o |PROCESS
E{:} -1
H

OPERATING SYSTEM KINGDOM

PROCESS
-1

%
i

OPERATING SYSTEM KINGDOM IR vosrarosee

| yag | PROCESS .

OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM

i o ae | PROCESS
;{:}W”pm)

(RN HORAL vosvwosteo

Some operating systems do not allow “Orphan”

processes to exists. If a process terminates, then all

its children must also be terminated

Some operating systems re-parent (adopt) all
orphan processes to the init or systemd process

/ombie Process

A child process that has completed execution but has not yet been reaped

OPERATING SYSTEM KINGDOM

PROCESS

OPERATING SYSTEM KINGDOM

{| oag | PROCESS

The entry for child process is still needed to allow the parent

M == ™ turn value process to read its child's exit status: once the exit status is
v Return value of fork(): 980 read via the wait (), the zombie's entry is removed from the

of fork(): 0
process table and it is said to be "reaped"

A child process always first becomes a zombie before being
removed from the resource table.

It requires a system re-boot

Process 1

QO@ Representation of Process Scheduling .

Medium-Term Scheduling
swaps out process from memory,
then swaps it in ready queue

process swapping Reduces the degree

P scheduler of multiprogramming
Long-Term Scheduling Blocked/Suspended Queues ,/
. Swap In /
selects which processes should be P : < L2 Swap Out
brought into the ready queue
Invoked Mav be slow _cOntrols the Time Slice Expired
infrequently y degree of
(secs, mins) multiprogramming
~ <o Ready Queue
S~ el I Release
Incoming Processes‘-? \ 4 >] >
1/0
? /0 Queue RS Short-Term (CPU) Scheduling
. I/0 Request ¥ ~ .
: N ‘éﬁ | I < selects which process should be
< executed next and allocates CPU
frI:;/z::cjly Must be fast ionrlr;estci:eedsut(:
< ‘{(")4 Wait for Interrupt (milliseconds) JESiiuD in a system
L
< Fork a child process

)

’ : .
.
[
.

|l g1 RIuIes

CPU Schedulin

CPU scheduler selects among available processes for next execution on CPU

Process Execution Cycle

load store
add store ~ CPU burst

read from file

OPERATING SYSTEM KINGDOM

wait for I/O 1 I/O burst

CPU

store increment

index CPU burst
write to file
1L L L
wait for I/O I/O burst
CPU Burst |/O Burst
load store
add store CPU burst

read from file
Terminate Process

wait for I/O I/O burst

CPU burst distribution is of main concern

CPU burst distribution is of main concern to select
appropriate CPU-scheduling algorithm

A
160 |-
CPU-Bound Process 140 3 . .
spends more time doing computations; 120 b Exponentlal OR Hyperexponentlal
few very long CPU bursts
o S 100 -
©
S
3 80
I/0-Bound Process = Small number of long CPU bursts
’ spends more time doing I/0 than 60 |
computations (short CPU bursts)
40 k Large number of short CPU bursts
20 I
I 1 1 1 I >
0 8 16 24 32 40

burst duration (milliseconds)

Nonpreemptive Scheduling

Preemptive Scheduling

The act of temporarily interrupting a process being Once the CPU has been allocated to a process, the process
allocated to the CPU, without requiring its cooperation, and keeps the CPU until it releases the CPU either by
with the intention of resuming the process at a later time. terminating or by switching to the waiting state

Consider access to shared data
Consider preemption while in kernel mode
Consider interrupts occurring during crucial OS activities

Process Dispatcher

Gives control of the CPU to the process selected by the short-term scheduler

Ready Queue

o}

The dispatcher should be as fast as possible, since
it is invoked during every process switch

Dispatch latency — time it takes for the dispatcher
to stop one process and start another running

Process
Dispatcher

Receives control in Kernel Mode via
interrupt.

Context Switching

Switching to User Mode

Jumping to the proper location in the
user program to restart that program

2

CPU Utilization
keep the CPU as busy as possible

Throughput
Number of processes that complete
their execution per time unit

Turnaround Time
amount of time to execute a particular
process

CPU Scheduling

There are many CPU scheduling algorithm, what
are the criteria to compare among them?

Waiting Time
amount of time a process has been
waiting in the ready queue

Response Time
amount of time it takes from when a
request was submitted until the first
response is produced (not output)

CPU Scheduling
Optimization

FCE@

o

First Come, First Serve Scheduling

https://youtu.be/w9UId56AsKE?t=11s
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/fcfs.htm

The process that requests the CPU

Gha B3 s
FCFSQ 1 : 3
O first is allocated the CPU first

Q Waiting Time
amount of time a process has been
waiting in the ready queue

& Q Gantt Chart
A ROTE0 - - e

Ready Queue X A
e

ARG

Ready Queue Z
G

S
HO
D1
3
S
D1
49#
wN
~Nl
DA
Z
()
=
~d

<0p W

"o
>
32
No
>
1or
ww
]
2
(9]
w

Nonpreemptive Scheduling FCFS is troublesome for time-sharing systems, where it is
important that each user get a share of the CPU at regular

intervals. It would be disastrous to allow one process to keep
the CPU for an extended period.

FCFS

Once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by
terminating or requesting 1/0

Occurs when short process behind long process. All the short
processes wait for the one big process to get off the CPU

Convoy Effect results in lower CPU and device utilization than
might be possible if the shorter processes were allowed to go first.

SJFoQ

o

Shortest Job First Scheduling

https://youtu.be/w9UId56AsKE?t=38s
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/sjf.htm

The CPU is allocated to the process with the least CPU burst

s $8 Shortest Job First Scheduling
o2

Optimal by giving min. avg. waiting Time.
The difficulty is knowing the length of the
next CPU request

Associate with each process the length of its Use these lengths to schedule the process
next CPU burst with the shortest time

Preemptive SJF Nonpreemptive SJF

Interrupt the process being allocated to the CPU, if there Once the CPU has been allocated to a process with the
is another process has arrived with lesser CPU time than highest priority, the process keeps the CPU until it releases
the remaining CPU time for the running process the CPU either by terminating or requesting I/0

SJF

2

O

The CPU is allocated to the process
with the least CPU burst

CANRCARC AR OA
SJFQ 5 & 5 &

9 16 24

Z@-3 Kire Koo Ko Zmve7

SJFQ | @ < &
3o

9 16 24

0 3
Rers Eero Fers géno Zaver

Preemptive SJF

Interrupt the process being allocated to the CPU, if there
is another process has arrived with lesser CPU time than
the remaining CPU time for the running process

CANRCR AR A

7 13 12
o Jof <of
1 LA w2

D
2
(0))]
~
(0e]
[HRY
N
[HEY
w
(B
B
[HY
2
(WY
(@)

<O) | 4OF | {OF | W

DY
Job

N Y

o

52 XAVG 6.5ms

4

Priority@

o

Priority Scheduling

https://www.youtube.com/watch?v=rcOBx752m-Q
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/priority.htm

The CPU is allocated to the process with the highest
priority (smallest integer =highest priority)

Q Priority Scheduling
Qo

SIF @ A priority number (integer) is associated
with each process
Qo
SJF is a priority scheduling where priority is H 2
the inverse of predicted next CPU burst time @
1 2 3 4
Preemptive Priority Nonpreemptive Priority
Interrupt the process being allocated to the CPU, if there Once the CPU has been allocated to a process with the
is another process has arrived with higher priority than highest priority, the process keeps the CPU until it releases

the priority of the running process the CPU either by terminating or requesting I/O

Prioritvg The CPU is allocated to the process with the
O highest priority (smallest integer = highest priority)

24 3 @ 3

FEE - ® s
Ready Queue 0 3 ‘) ‘ 27 30
X°:3 E‘?; 27 X*e; 0 XAVG 10
H@E@@ Priorité '@1 {é}z Q
ready Queue : Z«‘)r 0 B«‘)r 24 Z<6> 27 ZAV:LU ¥ »
1 2 3

"“‘3@ b0 581 56k 2 581 50t s
3 1 2 3 4 5

pre

emP"i"e

&

kS;
k)

‘: 15 Z{é}; 0 EAVG 5.2ms

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)

4% Priority Scheduling
o

Problem Starvation Aging — as time progresses increase the
low priority processes may never execute priority of the process

-,.,‘./‘v_ 1‘_"7:;

™y, D
"

IBM 7094

When they shut it down in 1973, they found a low-priority process http://research.microsoft.com/en-

that had been submitted in 1967 and had not yet been run us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.htm|

RR
RO

o

Round Robin Scheduling

https://youtu.be/w9UId56AsKE?t=1m31s
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/rr.htm

Typically, higher average turnaround than SJF, but better response

RRQ Round Robin Scheduling
Qo

Each process gets a quantum time (usually 10-100 milliseconds) of
CPU time. After this time has elapsed, the process is preempted and
added to the end of the ready queue

..~

Timer interrupts every quantum
to schedule next process

REOQ {@;14 {2:)}23 {{)};3

TIMER 4
RR
g (e lelelala[s[s
|
0 4 7 10 14 16 20
Ready Queue
Xore Fora KBr7 Eavess
1 3 2 0 3 6 9 12 15 18 20
Ready Queue 2@,2 6 249.2 0 Z«:); 3 xAVG 3

ot

ZAVG 5.5ms

Rgg Quantum Time and Context Switching Time

Context
process time = 10 Switching
O Time quantum should be large compared with the
context switch time, it should not be too large.

If the time quantum is too large, RR scheduling

1 degenerates to an FCFS scheduling
If the time quantum is too large, RR scheduling suffer
0 . L
from high overhead due to context switching

o 1

R
Quantum %
TIMER ;
5 % /

\ ’h--—"

Quantum Time is usually 10ms to 100ms, Context Switching Time < 10 usec

average turnaround time

Rg@ Turnaround Time Varies With The Time Quantum
ol

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

Turnaround Time
amount of time to execute a particular

process | time ehteiless
P 6 Response Time
P, 3 . .
P, 1 amount of time it takes from when a
P, 7 request was submitted until the first

response is produced (not output)

Typically, higher average turnaround than SJF, but
better response

A rule of thumb is that 80 percent of the CPU
bursts should be shorter than the time quantum

| 1 1 |

4 5 6 7
time quantum

Queue Schedul

ing

ey F BRI msmTEIN TS
RN

RTECEIRIEIEINTE

IR

QO@ Representation of Process Scheduling .

Medium-Term Scheduling
swaps out process from memory,
then swaps it in ready queue

process swapping Reduces the degree

P scheduler of multiprogramming
Long-Term Scheduling Blocked/Suspended Queues ,/
. Swap In /
selects which processes should be P : < L2 Swap Out
brought into the ready queue
Invoked Mav be slow _cOntrols the Time Slice Expired
infrequently y degree of
(secs, mins) multiprogramming
~ <o Ready Queue
S~ el I Release
Incoming Processes‘-? \ 4 >] >
1/0
? /0 Queue RS Short-Term (CPU) Scheduling
. I/0 Request ¥ ~ .
: N ‘éﬁ | I < selects which process should be
< executed next and allocates CPU
frI:;/z::cjly Must be fast ionrlr;estci:eedsut(:
< ‘{(")4 Wait for Interrupt (milliseconds) JESiiuD in a system
L
< Fork a child process

Ready Queue

Foreground Ready Queue

More interactive processes RR Q
N 0 O
2o
m Priority Fixed Priority Scheduling
0 Possibility of starvation
o

Time Slice
Each queue gets a certain amount of CPU time
80%: Foreground Queue, 20%: Background Queue

Background Ready Queue
Batch and Less interactive processes

Multilevel Ready Queue

Multilevel Queue Scheduling

highest priority

> interactive editing processes —_—
m— batch processes m—
— student processes E—

lowest priority

Ready Queue .
Incoming
Processes

A process can move between the various

M U ItiIE\IEI Feed baCk Queue queues; aging can be implemented this way

-~

add_random
discard granularity
discard max bytes

discard max hw bytes

discard zeroes datas
hw sector s\ze

o poll

Losched/

c S cat
noop [deadiine) cfq

ahmed@ahmed

https://github.com/torvalds/linux/blob/master/include/uapi/li

nux/sched.h

ahmed®@ahmed: ~

ahmed@ahmed:~S cat /sys/bl«

fays J

Q Completely Fair Scheduler

[sda/queue/

)gilcal_block_size
x hw sectors kb phys
X integrity segments

max_segnents 9
X segnent size

nomerges

nr requests

block/sda/que

https://en.wikipedia.org/wiki/Completely Fair_Scheduler

https://github.com/torvalds/linux/blob/master/kernel/sched/fair.c
https://github.com/torvalds/linux/blob/master/include/linux/init_task.h#L200

tional

affinity
scheduler
mintimun 10 size write

S a™e

-

optimal 1o _siz
sical block
read ahead kb
X sectors kb rota

e

Nodes represent

sched_entity(s)

Indexed by thew
virtual runtime

me

-

virtual runtime

[NIL}

(NIL] [NiL (NIL

Most need of CPU

Least need of CPU

http://www.cs.montana.edu/~chandrima.sa
rkar/AdvancedOS/CSCI560_Proj _main/

