
CPE 460 Operating System Design
Hey Process, Can we chat?

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Hey Process! Can we communicate?

A process is independent if it cannot
affect or be affected by the other

processes executing in the system.
Any process that does not share data with any

other process is independent

A process is cooperating if it can affect or
be affected by the other processes

executing in the system.
Any process that shares data with other

processes is a cooperating process

Processes executing concurrently in the operating system may be either independent processes or cooperating processes

Why do we need cooperating processes?
• Information sharing
• Computation speedup
• Modularity
• Convenience

Cooperating processes need interprocess communication (IPC)
The operating system provides multiple mechanisms that allow processes to exchange data and information

Shared Memory Message Passing
A region of memory that is shared by cooperating processes
is established. Processes can then exchange information by

reading and writing data to the shared region

Communication takes place by means of messages
exchanged between the cooperating processes

Shared Memory
Greetings! How are
you today?

wr
it

e

re
ad

Kernel

Message Queuese
nd

re
ce

iv
e

Kernel

Speed

Many
Implementations

Kernel

Shared Memory
An area of memory shared among the processes that wish to communicate

Shared Memory
Greetings! How are
you today?

wr
it

e

re
ad

Kernel

Shared Memory
creates

Typically, a shared-memory region resides in the address
space of the process creating the shared-memory segment.

Shared Memory

Kernel
OS prevents one process from

accessing another process’s memory

Shared Memory

Kernel

Shared Memorywr
it

e

re
ad

Kernel

Bounded-Buffer
assumes that there is a fixed buffer size

char* buffer[10]

The consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Shared Memory
An area of memory shared among the processes that wish to communicate

G r e e t i n g s ! \0

Major issues is to provide mechanism that will allow the user processes to
synchronize their actions when they access shared memory

G r e e t i n g s ! \0

while(1){
if(buffer[0] == ‘\0’){

sprintf(buffer, “Greetings!”);
}else{

// do nothing
}

}

while(1){
if(buffer[0] == ‘\0’){

// do nothing
}else{

printf(buffer);
}

}

Shared Memorywr
it

e

re
ad

Kernel

Unbounded-Buffer
places no practical limit on the size of the buffer

List<char*> list;
int in = 0;
int out = 0;

The consumer may have to wait for new items,
but the producer can always produce new items.

Shared Memory
An area of memory shared among the processes that wish to communicate
Major issues is to provide mechanism that will allow the user processes to

synchronize their actions when they access shared memory

while(1){
/* produce new entry */
char * newEntry = ...;
list.add(newEntry);
in++;

}

while(1){
if(in == out){

// do nothing
}else{

char *entry = list.get(out);
out++;
printf(entry);

}
}

Welcome

\t

to

\t

CPE460

in

out

POSIX Shared Memory

Shared Memory

https://www.safaribooksonline.com/library/view/linux-system-programming/0596009585/ch04s03.html

Welcome
to
CPE460!

Welcome to CPE460!

OS syncs between the
memory-mapped file and

actual file

POSIX shared memory is organized using memory-mapped files, which associate the region
of shared memory with a file

int shm_open(const char *name, int oflag, mode_t mode);

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

Create/Open shared-memory object

Map files into memory
Kernel

https://github.com/torvalds/linux/blob/master/ipc/shm.c

POSIX Shared Memory

Producer
Consumer

Shared Memory “OS”wr
it

e

re
ad

Kernel

Hello World!

Hello
World!

Message Passing
Communication takes place by means of messages exchanged between the cooperating processes

Message Queuese
nd

re
ce

iv
e

Kernel

1. Establish a communication link between them
2. Exchange messages via send/receive

Implementation issues:
• How are communication links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of

communicating processes?
• What is the capacity of a link?
• Is a link unidirectional or bi-directional?

Message Queuese
nd

re
ce

iv
e

Kernel

Direct Communication

Communication Link

Indirect Communication

Processes must name each other explicitly
send(,) OR receive(,)

Properties of communication link
• Links are established automatically
• A link is associated with exactly one pair of

communicating processes
• Between each pair there exists exactly one link
• The link may be unidirectional, but is usually bi-

directional

Hard-Coding & Less Desirable

Messages are directed and received from
mailboxes (ports)

Mailbox510

Properties of communication link
• Link are established only if processes share a

common mailbox
• A link may be associated with many processes
• Each pair of processes may share several

communication links
• Link may be unidirectional or bi-directional

Flexible & More Desirable

Mailbox330

Message Passing Communication

Kernel

Message Passing Operations
creates

Kernel

Mailbox
1234

Mailbox1234 Mailbox

se
nd

(1
23

4,

)

re
ce

iv
e(

12
34

,

)

Kernel

1234

Message Passing Synchronization

send - the sender is blocked until the message is received
receive - the receiver is blocked until a message is available

send - the sender sends the message and continue
receive - the receiver receives: a valid message, or Null message

Blocking (Synchronous) Message Passing Non-blocking (Asynchronous) Message Passing

If both send and receive are blocking, we
have a rendezvous

Message Queuese
nd

re
ce

iv
e

Kernel

Zero Capacity
no messages are queued on a link. Sender

must wait for receiver (rendezvous)

Message Passing Buffering

Unbounded capacity
infinite length. Sender never waits

Bounded Capacity
Finite length messages Sender must wait if

link full

POSIX Message Queues

https://github.com/torvalds/linux/blob/master/ipc/mqueue.c

POSIX message queues is organized using virtual file system, and each message queue is
pointed to by an mqueue_inode_info data structure

Message Queue 1

Kernel

/proc/sys/fs/mqueue/

Virtual File System

Message Queue 2

Message Queue 1

Message Queue 2
Virtual File for

”Message Queue 2”

Virtual File for
”Message Queue 1”

Producer Consumer

POSIX Message Queues

“cpe460-server”

se
nd

(”
cl

ie
nt

1”
)

re
ce

iv
e

Kernel

client1

https://www.softprayog.in/programming/interprocess-communication-using-posix-message-queues-in-linux

“client2”

“client1”

se
nd

(”
1”

)

1

send(”client2”)

2

se
nd

(”
2”

)
re

ce
iv

e

$ ls | wc -l
Counts the number of files in a directory

ls wc

fork(), then exec(“wc –l”)

Pipestdout stdin

w
rit

e
en

d
of

 p
ip

e read end of pipe

Pipes
A pipe acts as a conduit allowing related processes to communicate

Pipe

fork()

fork()

fork()

fork()

Pipes
A conduit allowing related processes to communicate

Pipe

parent childint fd[2]

fd[1] fd[1] fd[0]

write end of pipe read end of pipe

fd[0]

Pipes are unidirectional
There are bidirectional implementation but not standardized

Pipes are byte stream
No concept of a message, the writing/reading
process write/reads block of data of any size

Pipes have a limited capacity

“Half Duplex”

“Full Duplex”

Kernel

Pipes

Kernel
For synchronization, one process

reads and the other writes

Pipe

Pipe

fork()

Kernel

Pipe

int fd[2];
pipe(fd);

fd[1] fd[0] fd[1] fd[0]

fd[1] fd[0]

Kernel

Pipe

fd[1] fd[0]

fd[1] fd[0]

Pipes

https://github.com/torvalds/linux/blob/master/include/linux/fs.h#L553

https://github.com/torvalds/linux/blob/master/fs/pipe.c

https://books.google.com/books?id=LhQ7BAAAQBAJ&printsec=frontcover#v=onepage&q&f=true

Ordinary pipes is organized using special file system ”not visible to user”, and each pipe is
pointed to by a pipe_inode_info data structure

pipefs

Special File System

Data Frame for pipe

Kernel

Pipe

fd[1] fd[0]

fd[1] fd[0]

struct inode
fd[0]

struct inode
fd[1]

Hello!

pipe_inode_info
Hello!

https://github.com/torvalds/linux/blob/master/fs/pipe.c

Child

Parent

Pipes

https://www.softprayog.in/programming/interprocess-communication-using-posix-message-queues-in-linux

Kernel

fd[0] fd[1]

fd[0] fd[1]

Hello, world!

Named Pipes “FIFO”
A named pipe acts as a bidirectional conduit allowing processes to communicate

FIFO

http://en.wikipedia.org/wiki/Named_pipe

http://stackoverflow.com/questions/2784500/how-to-send-a-

simple-string-between-two-programs-using-pipes

No parent-child relationship required

It is not deleted after communicating processes terminate

