
CPE 460 Operating System Design
Chapter 5: Process Synchronization

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Processes can execute concurrently
May be interrupted at any time, partially completing execution

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P3

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P1

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:
P2

CPU Scheduling

Context Switching

1
Ready	Queue

23
0

RR

Quantum 4

4 7 1614 20

1 2 3

10

11 1 1 1

Shared Memory
Greetings! How are
you today?

wr
it

e

re
ad

Kernel

Shared Memory

Synchronization Problems

Kernel

Pipe

fd[1] fd[0]

fd[1] fd[0]

Pipe

Concurrent access to shared data may result in
data inconsistency

Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

How to get free money?

withdraw(1000JD) withdraw(1000JD)
balance = 10000JD

balance = 9000JD

balance = 10000JD

balance = 9000JD

withdraw(1000JD) withdraw(1000JD)

amount = 1000JD

register1 = balance

balance = 10000JD

register1 = register1 - amount

balance = 9000JOD

balance = register1

amount = 1000JD

register2 = balance

balance = 10000JD

register2 = register2 - amount

balance = 9000JOD

balance = register2

Why did this trick work?

Race Condition
Several processes access and manipulate the same data

concurrently and the outcome of the execution depends on
the particular order in which the access takes place

We allowed both processes to manipulate the balance counter concurrently.

withdraw(1000JD) withdraw(1000JD)

To guard against the race condition above, we need to
ensure that only one process at a time can be

manipulating the balance

Each process must ask permission to
enter critical section

When one process in critical section,
no other may be in its critical section

withdraw(1000JD) withdraw(1000JD)

Each process must ask permission to
enter critical section

When one process in critical section,
no other may be in its critical section

amount = 1000JD

register1 = balance

balance = 10000JD

balance = 9000JD

balance = register1

amount = 1000JD

register2 = balance

balance = 9000JD

register2 = register2- amount

balance = 8000JD

balance = register2

register1 = register1 - amount

Concurrent accesses to shared resources/variables must be protected in such a way that
it cannot be executed by more than one process.

The problem of how to ensure that at most one
process is executing its critical section at a given time.

A code segment that accesses shared variables or
resources and has to be executed as an atomic action

that does not allow multiple concurrent accesses

PROBLEM

It controls the entry into critical section and gets a LOCK on required resources.
Each process must ask permission to enter critical section

Removes the LOCK from the resources and let the other processes know that its
critical section is over

A code segment that accesses shared variables or resources and has to be
executed as an atomic action that does not allow multiple concurrent accesses

do{

} while(true};

Entry Section

Exit Section

Remainder
Section

Mutual Exclusion - If a process is executing in its critical section,
then no other processes can be executing in their critical sections.

Progress - If no process is executing in its critical section, and if
there are some processes that wish to enter their critical sections,
then one of these processes will get into the critical section.

Bounded Waiting - After a process makes a request to enter its
critical section, there is a bound on the number of times that other
processes are allowed to enter their critical sections, before the
request is granted.

Any solution to the critical-section problem must satisfy:

1
2

3

do{

} while(true};

Entry Section

Exit Section

Remainder
Section

Critical Section Handling in OS

List of Open Files

opens

opens

Concurrent modification to the list may
result in race condition

It is up to kernel developers to ensure that the OS is
free from such race conditions.

Preemptive
allows preemption of process
when running in kernel mode

Non-preemptive
runs until exits kernel mode,
blocks, or voluntarily yields CPU

Non-preemptive is essentially free of race
conditions in kernel mode

Two general approaches are used to handle critical
sections in operating systems:

Why, then would anyone
favor a preemptive kernel
over a nonpreemptive one?

PROBLEM SOLUTIONS

Peterson’s Algorithm Synchronization Hardware Mutex Locks Semaphores

PROBLEM SOLUTIONS
Peterson’s Algorithm

https://en.wikipedia.org/wiki/Peterson's_algorithm

PROBLEM SOLUTIONS
Peterson’s Algorithm

boolean flag[2] = {false, false};
int turn;

A flag[n] value of true indicates that the
process n wants to enter the critical section

The variable turn indicates whose turn it is to
enter the critical section

Peterson’s original formulation worked with only two processes, the algorithm can be
generalized for more than two.

do{

} while(true};

flag[i] = true;
int j = 1 - i;
turn = j;
while(flag[j] && turn == j){

// busy wait
}

flag[i] = false;

Remainder Section

Information common to both processes:

i = 0 i = 1

falseflag[0]

flag[1] false

turn 0

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] false

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

i = 0 i = 1

trueflag[0]

flag[1] false

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

i = 0 i = 1

trueflag[0]

flag[1] false

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

falseflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

falseflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

i = 0 i = 1

falseflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

falseflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

falseflag[0]

flag[1] true

turn 0 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

i = 0 i = 1

trueflag[0]

flag[1] true

turn 1 Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

do{

flag[i] = true

turn = j

flag[j] && turn == j

flag[i] = false;

// Remainder Section

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Switch Context to P1
Running to Ready

Mutual Exclusion - If a process is executing in its critical
section, then no other processes can be executing in
their critical sections.

Progress - If no process is executing in its critical section,
and if there are some processes that wish to enter their
critical sections, then one of these processes will get
into the critical section.

Bounded Waiting - After a process makes a request to
enter its critical section, there is a bound on the number
of times that other processes are allowed to enter their
critical sections, before the request is granted.

Any solution to the critical-section problem must satisfy:

1

2

3

PROBLEM SOLUTIONS
Peterson’s	Algorithm

do{

} while(true};

flag[i] = true;
int j = 1 - i;
turn = j;
while(flag[j] && turn == j){

// process busy wait
}

flag[i] = false;

Remainder Section

(flag[j] && turn == j) = false

flag[1] == true
turn == 1 ||
flag[0] == false

flag[0] == true
turn == 0 ||
flag[1] == false

A process cannot immediately re-enter the
critical section if the other process has set its
flag to say that it would like to enter its critical
section.

A process will never wait longer than one
turn for entrance to the critical section:

PROBLEM SOLUTIONS
Peterson’s Algorithm

Peterson’s original formulation worked with only two processes, the algorithm can be
generalized for more than two.

do{

} while(true};

flag[i] = true;
int j = 1 - i;
turn = j;
while(flag[j] && turn == j){

// process busy wait
}

flag[i] = false;

Remainder Section

However, it provides a good algorithmic description of solving the
critical-section problem and illustrates some of the complexities

involved in designing software that addresses the requirements of
mutual exclusion, progress, and bounded waiting.

Because of the way modern computer architectures perform basic
machine-language instructions, such as load and store, there

are no guarantees that Peterson’s solution will work correctly on
such architectures.

Assume that the load and store machine-language instructions
are atomic; that is, cannot be interrupted

PROBLEM SOLUTIONS
Synchronization Hardware

Hardware support for implementing the critical section code

All solutions below based on idea of locking
protecting critical regions via locks

do{

} while(true};

// acquire lock;

// release lock;

Remainder Section

Uninterruptible Operations

Uniprocessors Architecture
Could simply disable interrupts so that running
code would execute without preemption

Multiprocessors Architecture
Generally too inefficient making the OS not
broadly scalable

Atomic (Uninterruptible) hardware instructions
test_and_set compare_and_swap

*target = true
test_and_set(&target) = true
*target = true

PROBLEM SOLUTIONS
test_and_set

boolean test_and_set (boolean *target){
boolean rv = *target;
*target = true;
return rv:

}

test_and_set Instruction

executed atomically do{

} while(true};

while(test_and_set(&lock)){
// busy waiting

}

lock = false;

Remainder Section

boolean lock = false;
Information common to processes:

*target = false
test_and_set(&target) = false
*target = true

https://github.com/torvalds/linux/blob/master/arch/sparc/lib/bitops.S

PROBLEM SOLUTIONS
compare_and_swap

value = 0
compare_and_swap(&value, 0, 1) = 0
value = 1

int compare_and_swap(int *value, int expected, int new_value){
int temp = *value;
if (*value == expected){

*value = new_value;
}
return temp;

}

compare_and_swap Instruction

do{

} while(true};

while(compare_and_swap(&lock, 0, 1)){
// busy waiting

}

lock = 0;

Remainder Section

int lock = 0;
Information common to processes:

value = 0
compare_and_swap(&value, 1, 1) = 0
value = 0

value = 1
compare_and_swap(&value, 0, 0) = 1
value = 1

value = 1
compare_and_swap(&value, 1, 0) = 1
value = 0

executed atomically

Mutual Exclusion - If a process is executing in its critical
section, then no other processes can be executing in
their critical sections.

Progress - If no process is executing in its critical section,
and if there are some processes that wish to enter their
critical sections, then one of these processes will get
into the critical section.

Bounded Waiting - After a process makes a request to
enter its critical section, there is a bound on the number
of times that other processes are allowed to enter their
critical sections, before the request is granted.

Any solution to the critical-section problem must satisfy:

1

2

3

do{

} while(true};

while(compare_and_swap(&lock, 0, 1)){
// do nothing

}

lock = 0;

Remainder	Section

do{

} while(true};

while(test_and_set(&lock)){
// do nothing

}

lock = false;

Remainder	Section

waiting[i] = true;
while(waiting[i] && test_and_set(&lock)){

// busy waiting
}
waiting[i] = false;

do{

} while(true};

j = (i + 1) % n;
while((j != i) && !waiting[j]){

j = (j + 1) % n;
}
if (j == i){

lock = false;
}else{

waiting[j] = false;
}

Remainder Section

boolean waiting[n];
boolean lock = false

Information common to processes:

Nice Explanation: http://stackoverflow.com/questions/31084724/bounded-waiting-mutual-exclusion-with-test-and-set

i = 0 i = 1

falsewaiting[0]

lock Ready to Running

i = 2falsewaiting[1]

falsewaiting[1]

false

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

i = 0 i = 1

truewaiting[0]

lock Ready to Running

i = 2falsewaiting[1]

falsewaiting[2]

true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

i = 0 i = 1

falsewaiting[0]

lock Ready to Running

i = 2falsewaiting[1]

falsewaiting[2]

true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

false

false

false

true

i = 0 i = 1

falsewaiting[0]

lock Ready to Running

i = 2truewaiting[1]

falsewaiting[2]

true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

false

true

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

(j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Runningj = 1

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

false

true

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2

false

false

true

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2
Switch Context to P2

Running to Ready

false

false

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2
Switch Context to P2

Running to Ready

Ready to Running

false

false

false

true

i = 0 i = 1

waiting[0]

lock Ready to Running

i = 2waiting[1]

waiting[2]

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

waiting[i] = false;

j = (i + 1) % n;

while((j != i) && !waiting[j]){
j = (j + 1) % n;

}

waiting[j] = false;

lock = false;

if (j == i)

}while(true);

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P0

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P0
Running to Ready

Ready to Running

j = 1

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

j = 2
Switch Context to P2

Running to Ready

Ready to Running

false

false

false

true

Mutual Exclusion - If a process is executing in its critical
section, then no other processes can be executing in
their critical sections.

Progress - If no process is executing in its critical section,
and if there are some processes that wish to enter their
critical sections, then one of these processes will get
into the critical section.

Bounded Waiting - After a process makes a request to
enter its critical section, there is a bound on the number
of times that other processes are allowed to enter their
critical sections, before the request is granted.

Any solution to the critical-section problem must satisfy:

1

2

3

waiting[i] = true;
while(waiting[i] && test_and_set(&lock)){

// do nothing
}
waiting[i] = false;

do{

} while(true};

j = (i + 1) % n;
while((j != i) && !waiting[j]){

j = (j + 1) % n;
}
if (j == i){

lock = false;
}else{

waiting[j] = false;
}

Remainder	Section

Time !" ($ = &) !(($ = ()

1 Context-switching to !" (Ready to Running)

2 test_and_set(&lock) = false

3 operation_1();

4 Context-switching to !) (Ready to Running)

5 test_and_set(&lock) = true

6 busy_wait();

7 test_and_set(&lock) = true

8 busy_wait();

9 Context-switching to !" (Ready to Running)

10 operation_2();

11 Context-switching to !) (Ready to Running)

12 test_and_set(&lock) = true

13 Context-switching to !" (Ready to Running)

14 lock = false;

15 Context-switching to !) (Ready to Running)

16 busy_wait();

17 test_and_set(&lock) = false

18 operation_1();

19 Context-switching to !" (Ready to Running)

20 test_and_set(&lock) = true

21 busy_wait();

do{

} while(true};

while(test_and_set(&lock)){
busy_wait();

}

lock = false;

Remainder Section

operation_1();
operation_2();

boolean lock = false;

*lock= false
test_and_set(&lock) = false
*lock= true

*lock= true
test_and_set(&lock) = true
*lock = true

PROBLEM SOLUTIONS
Mutex Locks

Previous solutions are complicated and generally
inaccessible to application programmers

OS designers provide developers with mechanism to
build software tools to solve critical section problem

do{

} while(true};

acquire_lock();

release_lock();

Remainder Section

acquire_lock() {
while (!available){

// busy wait
}
available = false;

}

release_lock() {
available = true;

}

(Atomic) Uninterruptible Operations

Usually implemented via hardware atomic instructions

do{

} while(true};

acquire_lock();

release_lock();

Remainder Section

acquire_lock() {
while (!available){

// busy wait
}
available = false;

}

release_lock() {
available = true;

}

The main disadvantage of the implementation
given here is that it requires busy waiting

We call it spinlock because the process “spins”
while waiting for the lock to become available.

Busy waiting wastes valuable CPU time, let the
waiting “spinning” happen on different processorRunning Critical Section

Spinning “Busy Waiting”

http://kcsl.ece.iastate.edu/linux-results/linux-kernel-3.19-rc1/

Examples from the Linux kernel for mutex and spin locks

PROBLEM SOLUTIONS
Semaphores

The Semaphore S is an integer variable and can only
be accessed via two indivisible (atomic) operations

wait() and signal()

Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to
synchronize their activities

wait(S){
while (S <= 0){

// busy wait
}
S--;

}

signal(S) {
S++;

}

The Semaphore S is an integer variable and can only
be accessed via two indivisible (atomic) operations

wait() and signal()

wait(S){
while (S <= 0){

// busy wait
}
S--;

}

signal(S) {
S++;

}

Binary Semaphore
Semaphore S can be either 0 or 1 (Similar to mutex locks)

Counting Semaphore
Semaphore S can range over some domain values. For
example: number of available resources to a set of processes

wait(S){
while (S <= 0){

// busy wait
}
S--;

}

signal(S) {
S++;

}

statement 1A;

statement 2A;

statement 1B;

statement 2B;

A B

statement 1B;

statement 2B;

statement 1A;

statement 2A;

wait(semaphore_synch)

semaphore_synch = 0

signal(semaphore_synch)

wait(S){
while (S <= 0){

// busy wait
}
S--;

}

signal(S) {
S++;

}

This is very naive implementation that requires busy waiting
Wasting CPU Time

Can we implement a solution that blocks “switches the process from running
to waiting” when its waiting for acquire the resource?

struct semaphore{
int value;
struct process *list;

};

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

block() – places the process invoking the operation on the
appropriate waiting queue

wakeup() – remove one of processes in the waiting queue
and place it in the ready queue

list – A waiting queue of processes waiting for the semaphore

https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

struct semaphore{
int value;
struct process *list;

};

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

Can we have negative value for semaphore? and What
does that represent?

The list should represent a queue that ensures bounded-
waiting such as FIFO

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Starvation
A process may never be removed from the semaphore queue in

which it is suspended

struct semaphore{
int value;
struct process *list;

};

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

LIFO Queue

Classical Problems of Synchronization
test newly-proposed synchronization schemes

Bounded-Buffer Problem Readers and Writers Problem Dining-Philosophers Problem

Bounded-Buffer Problem

ConsumerProducer

n-buffers

mutex = 1, full = 0, empty = n

do{
...
/* produce an item in next_produced */
wait(empty);
wait(mutex);
...
/* add next produced to the buffer */
...
signal(mutex);
signal(full);

} while (true);

do{
wait(full);
wait(mutex);
...
/* remove an item from buffer to next_consumed */
...
signal(mutex);
signal(empty);
...
/* consume the item in next consumed */

} while (true);

1mutex

0full

3empty

do{

/* produce an item in
next_produced */

wait(empty);

wait(mutex);

} while (true);

do{

wait(full);

wait(mutex);

/* remove an item from buffer to
next_consumed */

signal(mutex);

signal(empty);

/* consume the item in next
consumed */

}while(true);

Producer Consumer

signal(mutex);

signal(full);

/* add next produced to the
buffer */

Readers-Writers Problem

Only read the database; they do not
perform any updates

Read and writes to the database; they
do perform updates

allow multiple readers to read at the same timeOnly one single writer can access the
database at the same time

Shared Dataset

do {
wait(rw_mutex);
...
/* writing is performed */
...
signal(rw_mutex);

} while (true);

do {
wait(mutex);
read_count++;
if (read_count == 1){

wait(rw_mutex);
}
signal(mutex);
...
/* reading is performed */
...
wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);
}
signal(mutex);

} while (true);

rw_mutex = 1
mutex = 1

read_count = 0
Information shared among processes

1rw_mutex

1mutex

0read_count

do{

wait(rw_mutex);

/* writing is performed */

signal(rw_mutex);

} while (true);

do{

wait(mutex);

read_count++;

if (read_count == 1){

wait(rw_mutex);

signal(mutex);

/* reading is performed */

wait(mutex);

signal(rw_mutex);

if (read_count == 0)

read count--;

}while(true);

signal(mutex);

Dining-Philosophers Problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem

Philosophers spend their lives alternating
thinking and eating Need 2 forks (one at a time) to eat from bowl

Dining-Philosophers Problem

do{
wait(fork[i]);
wait(fork[(i + 1) % 5]);
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher-i

int fork[5] = {1, 1, 1, 1, 1}

1

2

3
4

0

Philosopher 0

Philosopher 1

Philosopher 2 Philosopher 3

Philosopher 4

Suppose that all five philosophers become hungry at the same
time and each grabs her left chopstick. All the elements of

chopstick will now be equal to 0.
When each philosopher tries to grab her right chopstick, she

will be delayed forever

Dining-Philosophers Problem

do{
wait(fork[i]);
wait(fork[(i + 1) % 5]);
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher-i

int fork[5] = {1, 1, 1, 1, 1}

1

2

3
4

0

Philosopher 0

Philosopher 1

Philosopher 2 Philosopher 3

Allow at most 4 philosophers to be sitting simultaneously at the table

Dining-Philosophers Problem

do{
wait(mutex);
// Start Critical Section
wait(fork[i]);
wait(fork[(i + 1) % 5]);
signal(mutex);
// End Critical Section
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher-i

int fork[5] = {1, 1, 1, 1, 1}
int mutex = 1;

1

2

3
4

0

Philosopher 0

Philosopher 1

Philosopher 2 Philosopher 3

Philosopher 4

Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section)

Dining-Philosophers Problem

do{
if(i % 2 == 0){

wait(fork[(i + 1) % 5]);
wait(fork[i]);

}else{
wait(fork[i]);
wait(fork[(i + 1) % 5]);

}
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher-i

int fork[5] = {1, 1, 1, 1, 1}

1

2

3
4

0

Philosopher 0

Philosopher 1

Philosopher 2 Philosopher 3

Philosopher 4

Odd-numbered picks up left then right chopstick. Even-numbered picks up right then left chopstick

Deadlock

Deadlock
two or more processes are waiting indefinitely for an event

that can be caused by only one of the waiting processes

wait(co_printer);

wait(bw_printer);

wait(bw_printer);

wait(co_printer);

A B

co_printer = 1, bw_printer = 1

Deadlock Characterization

Circular wait: there exists a set {P", P#, …, P$} of waiting
processes such that P" is waiting for a resource that is held by
P#, P# is waiting for a resource that is held by P%, …, P$&# is
waiting for a resource that is held by P$, and P$ is waiting for a
resource that is held by P".

Deadlock can arise if four conditions hold simultaneously.

Mutual exclusion: only one process at a time can use a
resource

Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

Resource Allocation Graph

Process

Resource

Resource Instance

Request Edge Assignment Edge

Resource with 3 Instances

No Cycles Þ No Deadlock

If graph contains a cycle and one instance per resource Þ Deadlock

If graph contains a cycle with many instances per resource Þ Deadlock possibility

Methods for Handling Deadlocks
Ensure that the system will never enter a deadlock state via

Deadlock prevention and Deadlock avoidance
Allow the system to enter a

deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

