CPE 460 Operating System Design
Chapter 5: Process Synchronization

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

OPERATING SYSTEM KINGDOM

T
OPERATING SYSTEM KINGDOM
g PROCESS
: :::::::“:";;:::.P 1
AL e ”’
=’
OPERATING SYSTEM KINGDOM
2
H

PROCESS

CPU Scheduling

TIMER 4]

RRQ
Read Queue 0 4 7 10 14 16 20 ‘ I R ;E:é%%,?MZVPZ
d AL U S { 4 R T

Processes can execute COI’\CUFFGI’\M ConteXt SWItChIng

May be interrupted at any time, partially completing execution

write

— @ — fd[1] fd[0] <=
|

Ly OPEETINGS. HOW . aFe. . G —fd[1] fd[0]
""""""""" Synchronization Problems

Concurrent access to shared data may result in
data inconsistency

Shared Memory

Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

How to get free money?

balance s

withdraw(int amount){
(amount)

(balance - amount) {

{
balance balance amount;

deposit(int amount){
(amount) {

}
balance balance amount;

Esxitiran

(.

e balance

withdraw(int amount){
(amount M

(balance - amount) {

{

balance balance amount;

deposit(int amount)({
(amount H
)

balance balance

(amount (amount

‘m"mmMWS{ammﬁ{ balance = 1@@6@JD balance 1@@@@JD : "umMW%(ammﬂ{

(balance - amount) { (balance - amount) {

{

balance balance amount ;

{

balance balance amount ;

balance = 90001D balance 90001D

withdraw(10001D)

ot

amount = 10003J1D
balance = 100003D

registerl = balance

registerl = registerl - amount

balance = registerl

balance = 9000J0D

0

double balance 10000;

boolean withdraw(int amount){
(amount - 8){

}

(balance - amount) {

} {

balance - balance - amount;

}
}

boolean deposit(int amount){
(amount - 0){

’

}
balance balance amount;

balance

register2

withdraw(10003D)

@

amount = 100031D

100001D

balance

register2 = register2 - amount

balance = register2

balance = 9000J0D

ot

@ | o

double balance 000;

boolean withdraw(int amount){
(amount - 0){

’

(balance - amount) {

{
balance - balance - amount;

balance - balance - amount;

r-qr-, }
}
N
boolean deposit(int amount){
(amount < 8){
AR }
ae

Why did this trick work?

We allowed both processes to manipulate the balance counter concurrently.

Race Condition
Several processes access and manipulate the same data
concurrently and the outcome of the execution depends on
the particular order in which the access takes place

To guard against the race condition above, we need to
ensure that only one process at a time can be
manipulating the balance

double balance 0000;

withdraw(10003D) s withdraw(10003D)
} S
@1‘““‘- (balance a@ount) {

section {

balance balance amount;

%W LE

boolean deposit(int amount){

}(amount -'i){; C |0Al

balance - balance - amount; section

’

When one process in critical section, Each process must ask permission to
no other may be in its critical section enter critical section

@ Mwtom When one process in critical section,
no other may be in its critical section

Each process must ask permission to
enter critical section

double balance 0000;

withdraw(10003D) peclese ulthcemel At et withdraw(10003D)
CRITICAL) I
Sectlon (balance‘ amount) { :
amount = 100031D } { ' amount = 100031D
balance = 100003D b S IC L), balance = 90003D
}
}
registerl = balance boolean deposit(int amount){ register2 = balance
(amount < 8){
registerl = registerl - amount) doo register2 = register2- amount

balance - balance - amount;

balance = registerl balance = register2

balance = 90001D balance = 80001D

% I

Concurrent accesses to shared resources/variables must be protected in such a way that
it cannot be executed by more than one process.

J PROBLEM

A code segment that accesses shared variables or The problem of how to ensure that at most one
resources and has to be executed as an atomic action process is executing its critical section at a given time.

that does not allow multiple concurrent accesses

do{

Entry Section

CRITICAL

section

It controls the entry into critical section and gets a LOCK on required resources.
Each process must ask permission to enter critical section

A code segment that accesses shared variables or resources and has to be
executed as an atomic action that does not allow multiple concurrent accesses

Exit Section

Removes the LOCK from the resources and let the other processes know that its
critical section is over

Remainder
Section

} while(true};

@n

section

PQ@:%

do{

Entry Section

section

Exit Section

Remainder
Section

} while(true};

Any solution to the critical-section problem must satisfy:

1
2

Mutual Exclusion - If a process is executing in its critical section,
then no other processes can be executing in their critical sections.

Progress - If no process is executing in its critical section, and if
there are some processes that wish to enter their critical sections,
then one of these processes will get into the critical section.

Bounded Waiting - After a process makes a request to enter its
critical section, there is a bound on the number of times that other
processes are allowed to enter their critical sections, before the
request is granted.

Critical Section Handling in OS

Two general approaches are used to handle critical

opens sections in operating systems:

Preemptive Non-preemptive
allows preemption of process runs until exits kernel mode,
when running in kernel mode blocks, or voluntarily yields CPU

opens

Concurrent modification to the list may
result in race condition

Non-preemptive is essentially free of race
It is up to kernel developers to ensure that the OS is conditions in kernel mode
free from such race conditions.

Pl WP P P | | |

Why, then would anyone
favor a preemptive kernel
List of Open Files over a nonpreemptive one? g

@m’nﬂl\f PROBLEM SOLUTIONS

section

Peterson’s Algorithm Synchronization Hardware Mutex Locks Semaphores

ITICAL PROBLEM SOLUTIONS

section Peterson’s Algorithm

https://en.wikipedia.org/wiki/Peterson's_algorithm

LOosORCCAL SOLNTIONS rom Tmx °
CRITICAL SLCTION FPROSLE™ IN A DISTAINRTID STSTEN

extesded adatract
Cary L. Peterson and Michael J. Fischer
Departnsat of Computer Sclieace

University of Sashington
feattle, Washington WY

I« Aniceduciion A tead scontring shantanessnly with & write
retures slther e bl o s el ‘
A solution to the critical section probles, tate valew 0 setomatioally sot 10 & prespecifiee
flest posad By Dijdstrs (1), s » Tundeseminl value o0 process Tallare. s & process later
roquirensnt [or comcurrent program costrel. The restarte, At Deglias o & specifted comtrel poist
problon Ls to ensure that mo two processes are is & aad 1te state remaion dead.
speciitod ares of their programs (the critiesl
SREAEW) AL A e T Tovenent » e e provesssrs rer teaally samehressusly, i
Plibkatea’s s lutien wie sade My ey 10D, v sahe e et i shawt 1he el ative speads of
Sebrniie 13, and Linesharg and Muluire (4], e B T ts A0 ey tiee. Dhas Id s
shination Tor o diatnibuted spnton was o ilder for o0 prssssr 5 sssasis Dssands »
by Lanpart 150 Riwest and Poatt (8] pressnind » VRALe anathar snsiian Jat 4 Tew, o thm e
solviion for a0 CIdnied srsion Viere processes Spenia sy seldenly tevares. S aamane aaly
ey repestadly fanl. Ne alponitime ‘e ‘e —ach ST plow wan ' always aRecuting
presentied will b further isgrovesestis, vhate e Innirwctions, although posaibly wveary slowiy.
tomparisone will e sade Meerding te three
SAAANERA L mestage slae == 1he mnber of valess e A Torsalisstion of s wsadel would
variable for laterprocess commmication can take sssentially = swple of Tendon sccess machises,
ong fatrosss *= 1% sequence in Which waining sugeented wiih e visibhie states ad Lastrections
procestes eater thelr critical sections; and tine tor sasipaioting thew e -t len ol .
we 1he anownt of tine & process spends altespting conpetation, Nowmver, et b comideradly msore

O sater 158 arictdeal section. conglicated, for It s Secessary e canaides

Peterson’s original formulation worked with only two processes, the algorithm can be

o} 10

Information common to both processes:

boolean flag[2] = {false, false};

int turn;

A flag[n] value of true indicates that the
process n wants to enter the critical section

The variable turn indicates whose turn it is to

enter the critical section

generalized for more than two.

do{

flag[i] = true;

int j =1 - 1i;

turn = j;

while(flag[j] && turn ==
// busy wait

}

i

CRITICAL

section

flag[i] = false;

Remainder Section

} while(true};

flag[@] false
flag[1l] false

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] false

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] false

turn 1
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] false

turn 1
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1

Running to Ready

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn 1
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1

Running to Ready

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1

Running to Ready

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1

Running to Ready

Ready to Running

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1

Running to Ready

Ready to Running

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true

flag[1] true 1=20 t=1
turn 0 Ready to Running

Switch Context to P1

do{

flag[i] = true

turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Running to Ready

Ready to Running

Ready to Running

Switch Context to PO

Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true

flag[1] true 1=20 t=1
turn 0 Ready to Running

Switch Context to P1

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Running to Ready

Ready to Running

Ready to Running

Switch Context to PO

Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to PO

Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true
flag[1l] true

turn %)
do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] false
flag[1l] true

turn %)
do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] false

flag[1l] true

turn 0

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] false

flag[1l] true

turn 0

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] false

flag[1l] true

turn 0

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

do{

flag[i] = true
turn = j

flag[j] && turn == j

X
CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] false

flag[1l] true

turn 0

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true

flag[1l] true

turn 1

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true

flag[1l] true

turn 1

do{

flag[i] = true
turn = j

flag[j] && turn == j

X
CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

flag[@] true

flag[1l] true

turn 1

do{

flag[i] = true
turn = j

flag[j] && turn == j

X
CRITICAL

section

flag[i] = false;

// Remainder Section

twhile(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P@
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

do{

flag[i] = true
turn = j

flag[j] && turn == j

X

GBmiCAL

section

flag[i] = false;

// Remainder Section

twhile(true);

L PROBLEM SOLUTIONS
c““‘.!g;ﬁon Peterson’s Algorithm

Any solution to the critical-section problem must satisfy:

do{
Mutual Exclusion - If a process is executing in its critical (flag[j] && turn == j) = false -
1 section, then no other processes can be executing in e . EUSTTER flag[i] = true;
their critical sections. ag[_l = e ag[_l —o e int 3 =1-1;
turn == 0 || turn == 1 || turn = q:
flag[1] == false || flag[@] == false . 15 . .
while(flag[j] && turn == j){

// process busy wait

}

Progress - If no process is executing in its critical section, 4 process cannot immediately re-enter the

2 and if there are some processes that wish to enter their critical section if the other process has set its

critical sections, then one of these processes will get flag to say that it would like to enter its critical “‘Tlcn‘-
section. G

into the critical section. section
fh flag[i] = false;
Bounded Waiting - After a process makes a request to Remainder Section
3 enter its critical section, there is a bound on the number A process will never wait longer than one
of times that other processes are allowed to enter their turn for entrance to the critical section: } while (‘t r‘ue} ;

critical sections, before the request is granted.

CRITICAL PROBLEM SOLUTIONS

section Peterson’s Algorithm

Peterson’s original formulation worked with only two processes, the algorithm can be

generalized for more than two.

Because of the way modern computer architectures perform basic
machine-language instructions, such as 1oad and store, there
are no guarantees that Peterson’s solution will work correctly on
such architectures.

Assume that the 1oad and store machine-language instructions
are atomic; that is, cannot be interrupted

However, it provides a good algorithmic description of solving the
critical-section problem and illustrates some of the complexities
involved in designing software that addresses the requirements of
mutual exclusion, progress, and bounded waiting.

do{

flag[i] = true;

int j =1 - i,
atur‘n=j;
while(flag[j] && turn ==

// process busy wait

3

}
——i |
[CRITICAL
— gection
rh flag[i] = false;
Remainder Section

} while(true};

——

[CRITICAL PROBLEM SOLUTIONS
section Synchronization Hardware

Hardware support for implementing the critical section code

All solutions below based on idea of locking Uninterruptible Operations

protecting critical regions via locks a rh
do{

// acquire lock; a

fﬁéﬁi | Uniprocessors Architecture

@W Could simply disable interrupts so that running
rb code would execute without preemption

// release lock;

Remainder Section Multiprocessors Architecture
Generally too inefficient making the OS not
broadly scalable

} while(true};

Atomic (Uninterruptible) hardware instructions

test and set compare_and swap

——

PROBLEM SOLUTION
mm’l‘lﬁﬁ}% tes?_and_se%o UTIONS

secC

Information common to processes:

boolean lock = false;

r
e
C‘(/feo,
s,
boolean test _and_set (boolean *target){ -2,
boolean rv = *target; Co//k dot
*taproet = t;‘ . BET> while(test_and_set(&lock)){
arget = ue, // busy waiting
return rv: }
test_and_set Instruction e““!?cﬁon
lock = false;
*target = true *target = false]]
test_and_set(&target) = true test_and_set(&target) = false Remainder Section
*target = true *target = true } while(true};

https://github.com/torvalds/linux/blob/master/arch/sparc/lib/bitops.S

Information common to processes:
int lock = 0;

int compare_and swap(int *value, int expected, int new_value){ CbZ§,
int temp = *value;
if (*value == expected){ do{
*value = new_value;
} while(compare_and_swap(&lock, 9, 1)){
return temp; // busy waiting
} }

compare_and_swap Instruction

GRITICAL

section
value = © value = 1 lock = 6;
compare_and_swap(&value, 0, 1) = 0 compare_and_swap(&value, 0, 0) = 1] }
value = 1 value = 1 Remainder Section
value = 0 value = 1 } wh11e(tr'ue};
compare_and_swap(&value, 1, 1) = 0 compare_and_swap(&value, 1, 0) = 1

value = 0 value = 0

Any solution to the critical-section problem must satisfy:

1

Mutual Exclusion - If a process is executing in its critical
section, then no other processes can be executing in
their critical sections.

Progress - If no process is executing in its critical section,
and if there are some processes that wish to enter their
critical sections, then one of these processes will get
into the critical section.

Bounded Waiting - After a process makes a request to
enter its critical section, there is a bound on the number
of times that other processes are allowed to enter their
critical sections, before the request is granted.

do{

while(test_and_set(&lock)){
// do nothing a
}

CRITICAL

section

|lock = false; | rh

| Remainder Section |
} while(true};

&
X
X

do{

while(compare_and_swap(&lock, 0, 1)){
// do nothing
}

CRIICAY

section

|10ck = 0;

| Remainder Section

} while(true};

%
X
X

do{

waiting[i] = true;

while(waiting[i] && test_and_set(&lock)){
// busy waiting

}

waiting[i] = false;

,___,_
| [CRITICAL
Information common to processes: =

section
boolean waiting[n]; riI

j = (i 1) % n;
boolean lock = false j=(1+1)%n

while((j !'= i) && !waiting[j]){
j=(+1) % n;

}
if (J == 1){

lock = false;
telse{

waiting[j] = false;
}

Remainder Section

} while(true};

Nice Explanation: http://stackoverflow.com/questions/31084724/bounded-waiting-mutual-exclusion-with-test-and-set

waiting[@] false
waiting[1] false
waiting[1] false

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

while(true);

H.
]

Ready to Running

waiting[@] true
waiting[1] false
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

Jo%

X

waiting[i] = false;

secC

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

while(true);

H.
]

Ready to Running

waiting[@] false
waiting[1] false
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

ot

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false
waiting[1] false
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

o

rF N
ot
v

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

=
!
=

Ready to Running

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

ot

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

=
!
=

Ready to Running

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

ot

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

=
!
=

Ready to Running

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

{0}

ot

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

=
!
=

Ready to Running

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

secC

J0%

{0}

j=(1+1) %n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

=
!
=

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

J0%

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(+1) % n;

lock = false;

waiting[j] = false;

}while(true);

{0}

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

rF .
{O)
4

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

[
]
Q)

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

=
!
=

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false
waiting[1] true
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

Ready to Running
Switch Context to P1

{(:)} Running to Ready

Ready to Running

'Qé} Switch Context to P2
Running to Ready

rF .
{O)
4

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

@.

rF .
{O)
4

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

{or {0t

rF .
{O)
4

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

A

ot {0

rF .
{O)
4

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

oF 3¢t

rF .
o}
4

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

oF 3¢t

rF .
o}
4

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(G+1) %n;

lock = false;

waiting[j] = false;

}while(true);

rF .
<O)
A 4
1
=

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

oF 3¢t

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] true
waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

oF 3¢t

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready .
Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

waiting[@] false

waiting[1] false

1 =20 i=1 1 =2
waiting[2] true
lock true Ready to Running
Switch Context to P1
Running to Ready
et Ready to Running

waiting[i] = true; Switch Context to PO

Running to Ready
waiting[i] &&

test_and_set(&lock) Ready to Running

Z Switch Context to P2

Running to Ready .
waiting[i] = false; Ready to Running

Switch Context to PO
@'“cl“- Running to Ready

section

j=(i+1)%n; Ready to Running

Switch Context to P2

while((j != i) && !lwaiting[j]){ {é} =2 Running to Ready .
j=(@G+1) %n; Ready to Running

} .

Switch Context to P1
if (j == 1) Running to Ready
lock = false; Ready to Running

i
waiting[j] = false; 0Or j=1
.

}while(true);

waiting[@] false

waiting[1] false

waiting[2] true
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false
waiting[1] false
waiting[2] false
lock true
do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

A
{0}

Ready to Running

Switch Context to P1

Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P2

Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

waiting[@] false
waiting[1] false
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

A
{0}

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P2
Running to Ready

Ready to Running

waiting[@] false
waiting[1] false
waiting[2] false

lock true

do{

waiting[i] = true;

waiting[i] &&
test_and_set(&lock)

X

waiting[i] = false;

section

j=(i+1) % n;

while((j != i) && !waiting[j]){
j=(3+1)%n;
)i

if (j == i)

lock = false;

waiting[j] = false;

}while(true);

A
{0}

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to P2
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to PO
Running to Ready

Ready to Running

Switch Context to P1
Running to Ready

Ready to Running
Switch Context to P2
Running to Ready

Ready to Running

Any solution to the critical-section problem must satisfy:

1

Mutual Exclusion - If a process is executing in its critical
section, then no other processes can be executing in
their critical sections.

Progress - If no process is executing in its critical section,
and if there are some processes that wish to enter their
critical sections, then one of these processes will get
into the critical section.

Bounded Waiting - After a process makes a request to
enter its critical section, there is a bound on the number
of times that other processes are allowed to enter their
critical sections, before the request is granted.

do{

waiting[i] = true;
while(waiting[i] && test_and_set(&lock)){
// do nothing

}
waiting[i] = false;
—a)
CRITICAL
section

j=(1+1)%n;
while((j != i) && !waiting[j]){

j=(0+1)%n;
}
if (3 == 1){

lock = false;
}else{

waiting[j] = false; ri:
}

Remainder Section

} while(true};

R QK

boolean lock = false;

do{

while(test_and_set(&lock)){
busy wait();

n‘-]' operation_1();
~bction operation_2();

lock = false;

Remainder Section

} while(true};

*lock= true

test_and_set(&lock) = true
*lock = true

*lock= false

test and set(&lock) = false

*lock= true

1 Context-switching to Py (Ready to Running)

2 test_and_set(&lock) = false

3 operation_1();

4 Context-switching to P; (Ready to Running)

5 test_and_set(&lock) = true
6 busy_wait();

7 test_and_set(&lock) = true
8 busy_wait();

9 Context-switching to Py (Ready to Running)

10 operation_2();

11 Context-switching to P; (Ready to Running)

12 test_and_set(&lock) = true
13 Context-switching to Py (Ready to Running)

14 lock = false;

15 Context-switching to P; (Ready to Running)

16 busy_wait();

17 test_and_set(&lock) = false
18 operation_1();

19 Context-switching to P, (Ready to Running)

20 test_and_set(&lock) = true

21 busy_wait();

[CR

Previous solutions are complicated and generally
inaccessible to application programmers

OS designers provide developers with mechanism to
build software tools to solve critical section problem

do{

a acquire_lock();

CRITICAL

section

acquire_lock() {
while (l'available){
// busy wait
}

available = false;

}

fh release lock();

Remainder Section

release_lock() {
available = true;

}

} while(true};

iTICAL PROBLEM SOLUTIONS

section Mutex Locks

(Atomic) Uninterruptible Operations

8 b

Usually implemented via hardware atomic instructions

do{

o

‘b

acquire_lock();

CRITICAL

section

acquire_lock() {
while (l!available){
// busy wait
}

available = false;

}

release lock();

Remainder Section

release_lock() {
available = true;

}

} while(true};

Running Critical Section

The main disadvantage of the implementation
given here is that it requires busy waiting

We call it spinlock because the process “spins”
while waiting for the lock to become available.

Busy waiting wastes valuable CPU time, let the
waiting “spinning” happen on different processor

Spinning “Busy Waiting”

Examples from the Linux kernel for mutex and spin locks

http://kcsl.ece.iastate.edu/linux-results/linux-kernel-3.19-rc1/

[ERITICAL PROBLEM SOLUTIONS

section

Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to
synchronize their activities

The Semaphore S is an integer variable and can only
be accessed via two indivisible (atomic) operations
wait() and signal()

wait(S){
while (S <= 0){
// busy wait

}
S--; }

signal(S) {
S++;

The Semaphore S is an integer variable and can only
be accessed via two indivisible (atomic) operations
wait() and signal()

wait(S){

while (S <= 0){

S--;

// busy wait

signal(S) {
S++;

}

Binary Semaphore
Semaphore S can be either 0 or 1 (Similar to mutex locks)

Counting Semaphore
Semaphore S can range over some domain values. For
example: number of available resources to a set of processes

wait(S){
while (S <= 0){
// busy wait

S--;

signal(S) {
S++;

}

semaphore_synch = 0

O3

wait(semaphore_synch)
statement 1A;

statement 2A;

i,

statement 1B;

statement 2B;

signal(semaphore_synch)

statement 1B;

statement 2B;

statement 1A;

statement 2A;

wait(S){
while (S <= 0){

S--;

// busy wait

signal(S) {

S++;

}

This is very naive implementation that requires busy waiting
Wasting CPU Time

Can we implement a solution that blocks “switches the process from running
to waiting” when its waiting for acquire the resource?

struct semaphore{
int value;
struct process *list;

¥ : . -
list — A waiting queue of processes waiting for the semaphore
wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list; .))
block(); block() —places the process invoking the operation on the

} appropriate waiting queue

}

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->1list;
wakeup(P); wakeup () —remove one of processes in the waiting queue

} and place it in the ready queue

https://github.com/torvalds/linux/blob/master/include/linux/semaphore.h

struct semaphore{
int value; 1
struct process *1list; o |

wait(semaphore *S) {
S->value--;
if (S->value < 0) {
add this process to S->list;
block();

}

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->1list;
wakeup(P);

Can we have negative value for semaphore? and What
does that represent?

The list should represent a queue that ensures bounded-
waiting such as FIFO

struct semaphore{
int value;
struct process *list;

}s

wait(semaphore *S) {
S->value--;
if (S->value < 9) {
add this process to S->list;
block();

}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->1list;
wakeup(P);

Starvation

A process may never be removed from the semaphore queue in

Tail

which it is suspended

OPERATING SYSTEM KINGDOM

OPERATING SYSTEM KINGDOM OPERATING SYSTEM KINGDOM

PROCESS

LIFO Queue

Classical Problems of Synchronization

test newly-proposed synchronization schemes

Bounded-Buffer Problem Readers and Writers Problem Dining-Philosophers Problem

Bounded-Buffer Problem

Producer

mutex

1, full = 0, empty = n

do{

/* produce an item in next_produced */
wait(empty);
wait(mutex);

/* add next produced to the buffer */

signal(mutex);
signal(full);
} while (true);

n-buffers

Consumer

do{
wait(full);
wait(mutex);

/* remove an item from buffer to next_consumed */

signal(mutex);
signal(empty);

/* consume the item in next consumed */
} while (true);

mutex 1

full 0
empty 3
do{

/* produce an item in
next_produced */

wait(empty);

wait(mutex);

/* add next produced to the
buffer */

signal(mutex);

signal(full);

} while (true);

Producer

Consumer

do{

wait(full);

wait(mutex);

/* remove an item from buffer to
next_ consumed */

signal(mutex);

signal(empty);

/* consume the item in next
consumed */

twhile(true);

Readers-Writers Problem

(4
Read and writes to the database; they

do perform updates

Only one single writer can access the
database at the same time

do {
wait(rw_mutex);

/* writing is performed */

signal(rw_mutex);
} while (true);

Shared Dataset

rw_mutex =1
mutex =1
read _count = 0

Information shared among processes

e
2 1 g

Only read the database; they do not
perform any updates

allow multiple readers to read at the same time

do {
wait(mutex);
read_count++;
if (read_count == 1){
wait(rw_mutex);
}

signal(mutex);
/* reading is performed */

wait(mutex);
read count--;
if (read_count == 0)
signal(rw_mutex);
¥
signal(mutex);
} while (true);

rw_mutex 1

mutex 1
read_count 5}
do{

wait(rw_mutex);

/* writing is performed */

signal(rw_mutex);

} while (true);

s

@
-

@
g

do{

wait(mutex);

read count++;

if (read_count == 1){

wait(rw_mutex);

signal(mutex);

/* reading is performed */

wait(mutex);

read count--;

if (read_count == 9)

signal(rw_mutex);

signal(mutex);

twhile(true);

Dining-Philosophers Problem

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Philosophers spend their lives alternating

Tl 20 et Need 2 forks (one at a time) to eat from bowl

Dining-Philosophers Problem

int fork[5] = {1, 1, 1, 1, 1}

o

Philosopher-i

do{
wait(fork[i]);
wait(fork[(i + 1) % 5]);
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher 1

: " Philosopher 0

Philosopher 2

Philosopher 4

Philosopher 3

Suppose that all five philosophers become hungry at the same
time and each grabs her left chopstick. All the elements of
chopstick will now be equal to 0.

When each philosopher tries to grab her right chopstick, she
will be delayed forever

Dining-Philosophers Problem

Allow at most 4 philosophers to be sitting simultaneously at the table

int fork[5] = {1, 1, 1, 1, 1}

o

Philosopher-i

do{
wait(fork[i]);
wait(fork[(i + 1) % 5]);
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

: " Philosopher 0

Philosopher 1

Philosopher 2 Philosopher 3

Dining-Philosophers Problem

Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section)

int fork[5] {1, 1, 1, 1, 1}

int mutex

1;

o

Philosopher-i

“ " Philosopher 0

do{
wait(mutex);
// Start Critical Section
wait(fork[i]); Philosopher 1
wait(fork[(i + 1) % 5]);
signal(mutex);
// End Critical Section
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

Philosopher 4

Philosopher 2 Philosopher 3

Dining-Philosophers Problem

Odd-numbered picks up left then right chopstick. Even-numbered picks up right then left chopstick

int fork[5] = {1, 1, 1, 1, 1}
: Philosopher-i
do{

if(i % 2 == 0){
wait(fork[(i + 1) % 5]);
wait(fork[i]);
telse{
wait(fork[i]);
wait(fork[(i + 1) % 5]);
}
eat();
signal(fork[i]);
signal(fork[(i + 1) % 5]);
think();

} while(true);

: "3 Philosopher 0

Philosopher 1 Philosopher 4

Philosopher 2 Philosopher 3

You release the lock first
Once | have finished
my task, you can continue.

Deadlock

Deadlock

two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes

co_printer = 1, bw_printer =1

it i,

wait(co printer);

wait(bw printer);

wait(bw printer);

wait(co _printer);

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

Mutual exclusion: only one process at a time can use a
resource

Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

Circular wait: there exists a set {Py, P, ..., P,} of waiting
processes such that Py is waiting for a resource that is held by
P;, P; is waiting for a resource that is held by P;, ..., P,_1 is
waiting for a resource that is held by P,, and P, is waiting for a
resource that is held by P;.

Resource Allocation Graph

R, R,

\ \
Request Edge —— Assignment Edge
Process £ e e

/

\e

Resource

° ®
e | — Resource with 3 Instances
R, / -
Ry

Resource Instance

No Cycles = No Deadlock

If graph contains a cycle and one instance per resource = Deadlock

[O
®

R, o
a

If graph contains a cycle with many instances per resource = Deadlock possibility

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state via Allow the system to enter a
Deadlock prevention and Deadlock avoidance deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

- —

Ivm- ' r' ﬁv m'

'w'ﬂc \Q

“.‘.

