CPE 460 Operating System Design
Chapter 6: A Thread Story

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Any program to run must be loaded in memory

Unit of Work in Computer

OPERATING

Process Control Block (PCB)

N TR

SYSTEM KINGDOM

PROCESS STATE:

PROGRAM COUNTER:

CPU REGISTERS:

CPU SCHEDULING INFO:
MEMORY MANAGEMENT INFO:
ACCOUNTING INFO:

1/0 STATUS INFO: j

Process Creation

Each process has its own copy of address space

- Q
©
S ' S ' Q
(] ® . (%)
Q. . Q. v
v ! (s 8
a - NH Copy Address Space A - Mﬂ?eplace Address Space 5
5 5 . 3
3 = 3 === e
mane — m
- 2
fork() EXec
OPERATING SYSTEM KINGDOM creates new process replace l.“he process’s memory
_ P n 0 c Es s OPERATING SYSTEM KINGDOM space with a new program OPERATING SYSTEM KINGDOM
e | o aq | PROCESS | yaq |PROCESS
Q PROCESS STATE: H . 3 PROCESS STATE:
?E I I PROGRAM COUNTER: é |I -
g CPUREGISTERS: i o -
l CPUSCHEDULINGINFO: (IR voswose: (U ERALN vo steroso
MEMORY MANAGEMENT INFO:
ACCOUNTING INFO: H
NIRRT vosvarus weo: Y, Child Process

Cooperating processes need interprocess communication (IPC)

The operating system provides multiple mechanisms that allow processes to exchange data and information

write

Shared Memory

A region of memory that is shared by cooperating processes
is established. Processes can then exchange information by
reading and writing data to the shared region

Many
Implementations

send

IreceiveT

- Kernel
Message Passing

Communication takes place by means of messages
exchanged between the cooperating processes

| am writing a book using Microsoft Word

—— The are currently 600 pages worth of 1GB of data

|

Spelling &
Grammar

Spell and Grammar Check the 600 pages

If am bad in spelling, there will be tons
of errors and | need to review them

) Carem

forme: Sovet Union vabumes elatng 1o wow e and e gal marerah autitandng for Avwercan ord

Add a citation to first page

Adding citation will to first page will
affect the formatting of all pages

The are currently 600 pages

1.2GB for the
worth of 1GB of data

address space

« ® Oilabinied by At of Apet 24 1000 (29 20

of Congren

1.2GB for the 1.2GB for the

address space ABC J o T address space
v | pud =0
| Phte Capns o T Ndeeg
Spelling & e _
Grammar e — —

Torme: Sovet Union valumes relating 1o wow sie and gl marteruh outitandng fo Ame e and

Spell and Grammar Check the 600 pages Add a citation to first page

If | am bad in spelling, there will tons of Adding citation will to first page will
errors and | need to review them affect the formatting of all pages

1.2GB for the
address space

The are currently 600 pages
worth of 1GB of data

—

1.2GB for the
address space

1.2GB for the

address space :\B/C Add a citation to first page
Spelling &
Grammar
1.2GB for the
Spell and Grammar Check the 600 pages address space

If | am bad in spelling, there will tons of
errors and | need to review them Format the pages from 1 to end of document

uninitialized data

bss

Intialized data

data

foxt

Word Processor

Send the citation text to be appended to
text in the first page via IPC

Re-display by reading the file

stack
v
¢
Return all spelling and ...
grammar errors via IPC
heap

nintaized data

bss

nitialized data

data

fext

Spell & Grammar Checking

stack

....................

uninftialized data

bss

Intialized data

data

foxt

Add Citation

®

Formatting

This is not a feasible solution

It leads to substantial delays leading to unhappy user

ot ot

Word Processor Spell & Grammar Checking

Recall that there is a limit on the amount of data that
can be communicated via IPC

IPC is, in general, expensive due to the need for
system calls

ot

Add Citation Formatting

{0t 10

Context switching among large processes is costly and
time consuming

Forking and copying address spaces is time and space
consuming

We need a way to share the same
address space between all
cooperating processes so we can
work on parallel

€1

L\

\

OLORO;

We need a way to share the same
address space between all
cooperating processes so we can
work on parallel

ot ot {0t

Word Processor Spell & Grammar Checking Add Citation Formatting

What is similar in these cooperating processes?

Share the same code and data

Share the same privileges ot e s Share the same resources

What is not shared among them?

Each has its own execution state: PC, SP, and registers

from its execution state?

code

data

files

registers

stack

ot

separate

Why don’t we separate the concept of a process

privileges code data files
registers || |registers ||| registers ||| registers
stack stack stack stack

IThread '

IThreadsea

privileges code data files
(X comemem -1 - Aca S Eme o G)| I Sttt = o, |
. A A - + 3 & Former oa Tate ~
. ot = o
- ¢ S LI — - o) &) #- $ %0 __ 7 Ut Sy - -
s . fo
: registers || | registers ||| registers ||| registers
° ' ’ Y " . 1 ~) 0 ’
e Nl Mo (Mnmem (Cond Nt Pogr Tl Nar W™ Vi Wag™ On Sesrier By e wpwe Cosfasmr v
(w0 R VOG e Hix el i it WK o g Ao Ara Mavwy ow Sty
(o ba e $»oe nx “e S~ W Gaor e Aum Arm Acony Lo ot Sy
R > e XX anw - ax Ada Pty Wame Padh and
) Tt S ” SILNOGOR SI500000 Slaen N o - N B, et B, (o e StaCk StaCk StaCk StaCk
Cot Bt irmarand W e e x 15 x a0 - 252 B e T, Camg bt
Pu beve ey how bl P S % 00 iw 1M Glomx Avw Pony Sheny
Dt e g U » ELal LR 1500 e 42 awSuw Ade tary e
il > RIS s sn - BN R AR P L e o
k] " Ham urm e AT €00 Whe ATV Pats IO e e 1
e e rrp R T . oy et B G Comern Display Update Draw Input
Ll e 51500 e S M~ M0 medra® AT Pem § Gre Cotin
o m S10e e Sy Hem it 15 ow ANy Pama § Now A
ot i) an $a) 00 suw hw 200 B et T, Come Stan Nelen
e, 0 1308 [SE e S B0 TS Bt T G et s
W S n Jikx X X e LR X v WA L Wy
Con i sis0 33100 S L 138 B et W) Comg Cotmrvir O
et »a mn S » 190 00 i N 38 MArorcviw st MerAne
ot b ”»e SLO000E BLI00N0 SLEM Y) Rl AT T
L " et 90 00 e LAY W Mot en o Mo ivie ehrer et
tee m fime jiex uem L) IR ety Der M w s
ey e uex " x o T 213 ety Duv Meroviw ety
Wty Vet B "n oo rem " e o ey e oyiw (W (Nerge 00
‘ot " 101 o wn M- I e dan Y
g-v#] Slnm . Cowr oy Covemy
ﬂ 3:! ll' L m@ At . u.-omu e m—
[P — o Y e s T D e L S
" VAN MRS e (we loe " LR Haw e e P D Pt B A Ve g (Reaty
» 008 W11 PRID# M0toAT [V - e Him i ™ 17 S e Acien e | ey
. L bl R vt - base e Maer e I e s A e e
" CORORD IARRLLAN iy Bl m LI S - e (LA M AT Bt BT (g M b
" LI)) vy ter o e [o M~ e A e i
" L R N e o (O ~n e Hewm e i 1M ey S Aores Ve gt
" v - - v AW “" AP ONVSTALE B Porn Fumt Pumg Assy
" “a e n an (L8 san ™ 133 AN Lagee Mooy OF *e
" Aneay W e in e - I M s haren P
" erwre S MOGaste HAMS e MMM 1) 1N OV e Ase Parny Engmen
) NOVi4 WNE) s e, Srd gt as.] e A un e 1000 Awinst Sor Ate Porvs Sevpen

Modern OSes separate the concepts of processes and threads

code data files The process defines the privileges code data files
address space and general '
_ process attributes _ _ , _
registers stack registers ‘ registers ||| registers ||| registers
stack “ stack stack stack

\ The thread defines a sequential /
execution stream within a

process (PC, SP, registers)

A thread is bound to a single process

Each process has at least one thread Processes, however, can have multiple threads

Unit of Scheduling Processes are just fat, We
Each CPU runs one thread at a time are lightweight!

| code || data || files |

uninltialized data

bss

nitialized data

data

| code || data || files |

privileges code data files

registers || [registers ||| registers ||| registers

uninitialed data

bss

text

Process

Intialized dala

data

stack stack stack stack

toxt

Child Process

Multithreaded Process

uninltialized data

bss

Initialized data

data

foxt

Processes

Process is called heavyweight process
Process switching needs interface with the OS

Multiple processes can execute the same code
but each one has its own address space

If the process is blocked, nothing is executed
until the process is unblocked

Multiple redundant processes uses more
resources than multiple threads

In multiple process, each process separates
independently of the others

Threads

Threads are called lightweight processes

Threads switching is handled by the threading
library and does not need to notify the OS or
cause any interrupts

All threads share the same address space and see
the same code

While one thread within a process is blocked and
waiting, other threads in the same task can run

Multiple threaded processes uses fewer resources
than multiple redundant process

One thread can read, write or even completely
wipe out another threads stack

Thread Design Space

3 S35

One Thread per Process One Thread per Process
One Address Space Many Address Spaces
(MSDOS) (Early Unix)

Address

; 7 3 3113 3
T S ; ;

Many Threads per Process Many Threads per Process
One Address Space Many Address Spaces
(Java VM) (Solaris, Linux, NT, MacOS)

Why use thread?

Threads are economical

cheaper than process creation, thread switching
lower overhead than context switching

Threads enable Scalability

Process can take advantage of multiprocessor
architectures

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Processes are just fat, We Threads enables Responsiveness

' ight! . .

A MG Threads may allow continued execution if part

of process is blocked, especially important for
user interfaces

Threads share Resources

Threads share resources of process, easier than
shared memory or message passing

Threads have the same as Process states

o >

Java Threads: https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

How the operating system manages threads?

Each PCB will point to a list of Thread Control Blocks

OPERATING SYSTEM KINGDOM OPERATING SYSTEM KINGDOM

PROCESS | yg |PROCESS

|
]
wosmr

OPERATING SYSTEM KINGDOM
Head

PROCESS

Process Table List
Set of all processes in the system
Tail

<

OPERATING SYSTEM KINGDOM

Threaa

PROGRAM COUNTER:
CPU REGISTERS:
STACK REGISTERS:

Thread Control Block (TCB)

THREAD STATE:

CRUTRTAITHTRTR Y

Kernel-Level Threads User-Level Threads

Managed directly by the operating system. Management done by user-level threads library
: ’ - Thread library ;
'* A Thread Libraries /

—— e ———
- - —— - ———] -

(POSIX Pthreads,
Windows threads,

|} ,'
| '}
\ ’ / ’,’
| 7 ’/ e
+ t ’ 7 =
\ 1 J ’ - L
; ; ; :) Java threads) —

ready queue ready queue

User-Level Threads

Management done by user-level threads library

3

5

Thread library ;

’
/
4
/
T
/
/
/
’
7

-
-
-
-
-
-
-
-
-
-
-
-
-
-

ready queue

Further Reading: https://books.google.com/books?id=4nxg-Ab6J-EC&pg=SA2-PA23

Invisible to Kernel

Q

All thread management is done by the thread library and the
kernel is not aware of the existence of the user-level threads

A thread represented inside process by a PC, registers, stack,
and small thread control block (TCB)

The thread library contains code for creating and destroying,
for passing messages and data between threads.

The thread library contains code for scheduling execution and
for saving and restoring thread contexts “Context Switching”

The process begins with one threads and begins running on
that threads. Then, it starts spawning new threads as needed

User-level threads are fast to create and manage as there is no
kernel involvement

Thread switching does not require kernel mode privileges

User-level thread can run on any operating system

Scheduling can be application specific
User-level threads are fast to create and manage

User-Level Threads

Management done by user-level threads library

533

Thread library ; Blocking a process whose thread initiated an I/O, even
, though the process has other threads that can execute

Creating a new thread, switching, and synchronizing
threads are done via user-level procedure call

Most system calls are blocking

Multithreaded application cannot take advantage of
multiprocessing as these threads are invisible to kernel

There should be communication between the
L kernel and the user-level thread manager

Kernel-Level Threads

Managed directly by the operating system.

17

1
|
|

- e - - - -
S S TR

ready queue

Further Reading: https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html

OS-managed threads are called kernel-level threads or
lightweight processes (LWP)

Thread management is done by the kernel and are supported
directly by the operating system

The kernel maintains context information for the process as a
whole and for the individual threads within the process

No longer scheduling processes, but scheduling in kernel is now
on thread basis. (Scheduler deals in threads)

The kernel performs thread creation, scheduling, and
management in kernel space

Kernel-level threads are generally slower to create and manage
than the user-level threads; Full Context Switching

PCB PCB PCB
\’ TCB TCB

TCB

TCB TCB TCB

Kernel-Level Threads

Managed directly by the operating system.

IBE

- e - - - -
S S TR
-~

ready queue

Further Reading: https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html

Kernel can simultaneously schedule multiple threads
from the same process on multiple processors

If one thread is blocked, the Kernel can schedule another
thread in the same process

Kernel threads are generally slower to create and manage
than user-level threads

Transfer of control from one thread to another thread
within the same process requires a mode switch to the
kernel

Kernel-Level Threads

Managed directly by the operating system.

Slower to create and manage
Directly supported by operating system
Specific to the operating system

Kernel routines can be multithreaded

User-Level Threads

Management done by user-level threads library

100x Faster to create and manage
Implemented by a thread library at the user level
Can run on any operating system

Multithreaded applications cannot take advantage
of multiprocessing

Combining user and kernel-level threads

it’s possible to have a program use both user-level and kernel-level threads

An example of why this might be desirable is to have the thread library create
several kernel threads to ensure that the operating system can take advantage
of hyperthreading or multiprocessing while using more efficient user-level
threads when a very large number of threads is needed.

Several user level threads can be run over a single kernel-level thread

33 3] 3] 2\?? IRERVIIE

A

\

LR \ 7 N\
$33 3 5 311333
A A MR

One-to-One Many-to-One Many-to-Many

“Hybrid Threading”

Threads Libraries

provides programmer with API for creating and managing threads

User-Level Thread Library
All code and data structures for the library exist
in user space. This means that invoking a
function in the library results in a local function
call in user space and not a system call.

Kernel-Level Thread Library
All code and data structures for the library exist
in kernel space. Invoking a function in the API
for the library typically results in a system call to
the kernel.

POSIX Pthreads

Pthreads are IEEE Unix standard library calls “Specification not Implementation”

Linux Implementation: https://www.gnu.org/software/hurd/libpthread.html
Windows Implementation: https://sourceforge.net/projects/pthreads4w/

$ locate libpthread.so

https://www.gnu.org/software/hurd/libpthread.html
https://sourceforge.net/projects/pthreads4w/

There are around 100 Pthreads procedures, all prefixed pthread

Thread call

Description

Pthread_create

Create a new thread

Pthread_exit

Terminate the calling thread

Pthread_join

Wait for a specific thread to exit

Pthread_vyield

Release the CPU to let another thread run

Pthread_attr_init

Create and initialize a thread’s attribute structure

Pthread_attr_destroy

Remove a thread’s attribute structure

| code H data H fles

fFinclude pthread h

#include stdio h
#inc lude

stdlib h
Finclude h

#define

perform_work(void argument){
t passed_in_value;
passed_in_value i | t+ Jargument);
printf(“Hello wWorld! It's me, thread with argument %d

", passed_in value);

t main(int argc, char+ argv){ pthread_create
pthread_t threads| | H
int thread_argsl| | H [
int result_code; cod datd W
unsigned index;
' | |
Iregistersl Iregistersj Ireg#tersl egiste regisgrs registers
{ index ; index 3 index){ f I N
thread_args| index) index; | stack H stac/l | slack l tack \stack \stack
printf(*In main: creating thread sd\n", index); { ; { “ “
result_code - pthread_create(threads - index, , perform_work, thread_args - index);
(result_code);
{ index ; index : index){
result_code pthread_join(threads| index],
(result_code);
printf(“In main: thread N has completed i ¥ A 4 v
[C C [[
) o o) o o
= = = = =
=y | | | I |
el E £ E £ £
exitl(o o o o o)
Y- Y- Y- Y Y-
[C C (& C
o [J] (] (] J] (]
Synchronous Threading = s s s ®

https://en.wikipedia.org/wiki/POSIX_Threads#Example

Linux Kernel Threads

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://github.com/torvalds/linux/blob/master/kernel/kthread.c

Further Reading: http://www.crashcourse.ca/wiki/index.php/Kernel_threads

- —

Ivm- ' r' ﬁv m'

'w'ﬂc \Q

“.‘.

