
CPE 460 Operating System Design
Chapter 6: A Thread Story

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Any program to run must be loaded in memory

Unit of Work in Computer

PROCESS

ةروــــــــنم ةــعمــش ةـــــلف

A Program In Execution

PROCESS

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Process Creation

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

fork()

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Ad
dr

es
s S

pa
ce

Copy Address Space

Child Process

exec()

Ne
w

 A
dd

re
ss

 S
pa

ce

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

creates new process replace the process’s memory
space with a new program

Each process has its own copy of address space

Replace Address Space

Cooperating processes need interprocess communication (IPC)
The operating system provides multiple mechanisms that allow processes to exchange data and information

Shared Memory Message Passing
A region of memory that is shared by cooperating processes
is established. Processes can then exchange information by

reading and writing data to the shared region

Communication takes place by means of messages
exchanged between the cooperating processes

Shared Memory
Greetings! How are
you today?

wr
it

e

re
ad

Kernel

Message Queuese
nd

re
ce

iv
e

Kernel

Speed

Many
Implementations

I am writing a book using Microsoft Word
The are currently 600 pages worth of 1GB of data

Add a citation to first page

Spell and Grammar Check the 600 pages

Adding citation will to first page will
affect the formatting of all pages

If I am bad in spelling, there will be tons
of errors and I need to review them

The are currently 600 pages
worth of 1GB of data

Add a citation to first pageSpell and Grammar Check the 600 pages
Adding citation will to first page will

affect the formatting of all pages
If I am bad in spelling, there will tons of

errors and I need to review them

for
k()

fork()

1.2GB for the
address space

1.2GB for the
address space

1.2GB for the
address space

The are currently 600 pages
worth of 1GB of data

Add a citation to first page

Spell and Grammar Check the 600 pages
If I am bad in spelling, there will tons of

errors and I need to review them

for
k()

fork()

1.2GB for the
address space

1.2GB for the
address space

1.2GB for the
address space

fork()

Format the pages from 1 to end of document

1.2GB for the
address space

Spell & Grammar CheckingWord Processor Add Citation Formatting

Return all spelling and
grammar errors via IPC

Send the citation text to be appended to
text in the first page via IPC Re-display by reading the file

Spell & Grammar CheckingWord Processor Add Citation Formatting

Recall that there is a limit on the amount of data that
can be communicated via IPC

This is not a feasible solution
It leads to substantial delays leading to unhappy user

Context switching among large processes is costly and
time consuming

IPC is, in general, expensive due to the need for
system calls

Forking and copying address spaces is time and space
consuming

We need a way to share the same
address space between all

cooperating processes so we can
work on parallel

We need a way to share the same
address space between all

cooperating processes so we can
work on parallel

What is similar in these cooperating processes?

Spell & Grammar CheckingWord Processor Add Citation Formatting

Share the same code and data
(address space)Share the same privileges Share the same resources

What is not shared among them?
Each has its own execution state: PC, SP, and registers

Why don’t we separate the concept of a process
from its execution state?

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

privileges

separate

!Thread اذھ

Threads!هذھ

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

privileges

Display Update Draw Input

The thread defines a sequential
execution stream within a
process (PC, SP, registers)

The process defines the
address space and general

process attributes

Modern OSes separate the concepts of processes and threads

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

privileges

Each process has at least one thread Processes, however, can have multiple threads

A thread is bound to a single process

Unit of Scheduling

ةروــــــــنم ةــعمــش ةـــــلف

Processes are just fat, We
are lightweight!Each CPU runs one thread at a time

stack

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

privileges

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded processProcess Child Process Multithreaded Process

Processes Threads
Process is called heavyweight process

Process switching needs interface with the OS

All threads share the same address space and see
the same code

Threads are called lightweight processes

Threads switching is handled by the threading
library and does not need to notify the OS or

cause any interrupts

Multiple processes can execute the same code
but each one has its own address space

If the process is blocked, nothing is executed
until the process is unblocked

While one thread within a process is blocked and
waiting, other threads in the same task can run

Multiple redundant processes uses more
resources than multiple threads

Multiple threaded processes uses fewer resources
than multiple redundant process

In multiple process, each process separates
independently of the others

One thread can read, write or even completely
wipe out another threads stack

Thread Design Space

Processes	are	just	fat,	We	
are	lightweight!

Why use thread?
Threads are economical

cheaper than process creation, thread switching
lower overhead than context switching

Threads enable Scalability
Process can take advantage of multiprocessor

architectures

Threads share Resources
Threads share resources of process, easier than

shared memory or message passing

Threads enables Responsiveness
Threads may allow continued execution if part
of process is blocked, especially important for

user interfaces

Threads have the same as Process states

Java Threads: https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

Each PCB will point to a list of Thread Control Blocks

How the operating system manages threads?

Process Table List
PROCESS

OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Head

Tail

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

PROCESS
OPERATING SYSTEM KINGDOM

Pr
oc
es
s	
Co
nt
ro
l	B

lo
ck
	(P

CB
)

PROCESS	STATE:

PROGRAM	COUNTER:

CPU	REGISTERS:

CPU	SCHEDULING	INFO:

MEMORY	MANAGEMENT	INFO:

ACCOUNTING	INFO:

I/O	STATUS	INFO:

Set of all processes in the system

Head

Tail

Head

Tail

Head

Tail

Thread
OPERATING SYSTEM KINGDOM

Th
re

ad
 C

on
tr

ol
 B

lo
ck

 (T
CB

)

PROGRAM COUNTER:

CPU REGISTERS:

STACK REGISTERS:

THREAD STATE:

Kernel-Level Threads User-Level Threads
Management done by user-level threads libraryManaged directly by the operating system.

(POSIX Pthreads,
Windows threads,

Java threads)

Thread Libraries

All thread management is done by the thread library and the
kernel is not aware of the existence of the user-level threads

The thread library contains code for creating and destroying,
for passing messages and data between threads.

User-Level Threads
Management done by user-level threads library

The thread library contains code for scheduling execution and
for saving and restoring thread contexts “Context Switching”

User-level threads are fast to create and manage as there is no
kernel involvement

Invisible to Kernel

The process begins with one threads and begins running on
that threads. Then, it starts spawning new threads as needed

Further Reading: https://books.google.com/books?id=4nxq-Ab6J-EC&pg=SA2-PA23

A thread represented inside process by a PC, registers, stack,
and small thread control block (TCB)

Thread switching does not require kernel mode privileges

User-level thread can run on any operating system

User-Level Threads
Management done by user-level threads library

Scheduling can be application specific

User-level threads are fast to create and manage

Blocking a process whose thread initiated an I/O, even
though the process has other threads that can execute

Multithreaded application cannot take advantage of
multiprocessing as these threads are invisible to kernel

Creating a new thread, switching, and synchronizing
threads are done via user-level procedure call

Most system calls are blocking

There should be communication between the
kernel and the user-level thread manager

Thread management is done by the kernel and are supported
directly by the operating system

No longer scheduling processes, but scheduling in kernel is now
on thread basis. (Scheduler deals in threads)

Kernel-Level Threads

The kernel performs thread creation, scheduling, and
management in kernel space

OS-managed threads are called kernel-level threads or
lightweight processes (LWP)

Kernel-level threads are generally slower to create and manage
than the user-level threads; Full Context Switching

Further Reading: https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html

The kernel maintains context information for the process as a
whole and for the individual threads within the process Managed directly by the operating system.

Kernel-Level Threads

Further Reading: https://www.cs.rutgers.edu/~pxk/416/notes/05-threads.html

Managed directly by the operating system.

Kernel can simultaneously schedule multiple threads
from the same process on multiple processors

If one thread is blocked, the Kernel can schedule another
thread in the same process

Transfer of control from one thread to another thread
within the same process requires a mode switch to the

kernel

Kernel threads are generally slower to create and manage
than user-level threads

Kernel-Level Threads User-Level Threads
Management done by user-level threads libraryManaged directly by the operating system.

Slower to create and manage

Directly supported by operating system

Can run on any operating system

Kernel routines can be multithreaded

100x Faster to create and manage

Implemented by a thread library at the user level

Specific to the operating system

Multithreaded applications cannot take advantage
of multiprocessing

Combining user and kernel-level threads
it’s possible to have a program use both user-level and kernel-level threads

An example of why this might be desirable is to have the thread library create
several kernel threads to ensure that the operating system can take advantage

of hyperthreading or multiprocessing while using more efficient user-level
threads when a very large number of threads is needed.

Several user level threads can be run over a single kernel-level thread

One-to-One Many-to-One Many-to-Many
“Hybrid Threading”

Threads Libraries
provides programmer with API for creating and managing threads

User-Level Thread Library
All code and data structures for the library exist

in user space. This means that invoking a
function in the library results in a local function

call in user space and not a system call.

Kernel-Level Thread Library
All code and data structures for the library exist
in kernel space. Invoking a function in the API

for the library typically results in a system call to
the kernel.

Pthreads are IEEE Unix standard library calls “Specification not Implementation”
POSIX Pthreads

$ locate libpthread.so

Linux Implementation: https://www.gnu.org/software/hurd/libpthread.html
Windows Implementation: https://sourceforge.net/projects/pthreads4w/

https://www.gnu.org/software/hurd/libpthread.html
https://sourceforge.net/projects/pthreads4w/

There are around 100 Pthreads procedures, all prefixed pthread_

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

https://en.wikipedia.org/wiki/POSIX_Threads#Example

pthread_create

pe
rf

or
m_

wo
rk

pe
rf

or
m_

wo
rk

pe
rf

or
m_

wo
rk

pe
rf

or
m_

wo
rk

pe
rf

or
m_

wo
rk

Synchronous Threading

Further Reading: http://www.crashcourse.ca/wiki/index.php/Kernel_threads

https://github.com/torvalds/linux/blob/master/kernel/kthread.c

Linux Kernel Threads
https://github.com/torvalds/linux/blob/master/include/linux/sched.h

