
CPE 460 Operating System Design
Chapter 7: Main Memory

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

What is a memory?

0

Cell “Word”

0123n
Data Bits

1
2
3
4
5
6
7
8
9

2" − 1

0123m

PhysicalAddress

2" − 2
2" − 3
2" − 4
2" − 5

Address Bits

Memory unit only sees a
stream of addresses + read
requests, or address + data

and write requests

Hardware used for storing and
retrieving stored data

Main memory can take many CPU
cycles, causing a Memory Stall

Fetch – Execute Cycle

Arithmetic Logic Unit

Main Memory

Control Unit

1. Fetch Instruction
2. Decode Instruction

3. Get Data
4. Execute Instruction

STORE

FETCH

EXECUTE

Main memory and registers
are only storage CPU can

access directly CPUs can decode instructions and
perform simple operations on

register contents at the rate of one
or more operations per clock tick.

Registers

Cache sits between
main memory and

CPU registers

Consistency

Any program to run must be loaded in memory

ةروــــــــنم ةــعمــش ةـــــلف

// File: test.c
#include <stdio.h>

int main() {
int x = 3000;
x = x + 3;
return 0;

}

gcc –o test test.c

After linking, the OS loads
the program into a
process in memory

Object file

Pr
oc

es
s A

dd
re

ss
 S

pa
ce

Where should the OS load it?

Free

0

512KB

OS occupies the lower
set of addresses

Operating
System

Free

0

64KB

512KB

OS occupies the lower
set of addresses

Operating
System

Free

0

64KB

512KB

OS occupies the lower
set of addresses

Operating
System

Free

Find the first free portion in the
memory and put it there

0

64KB

512KB

OS occupies the lower
set of addresses

Operating
System

Free

0

64KB

512KB

100KB

There are many other strategies, we will discuss later

Find the first free portion in the
memory and put it there

Process does not know about the memory

Lower Address: 0

Higher Address: 36KB

Logical “virtual”
Address Space

Physical
Address Space

The set of all logical addresses
generated by a program

The set of all physical
addresses corresponding to

these logical addresses Operating
System

Free

0

64KB

512KB

100KB

// File: test.c
#include <stdio.h>

int main() {
int x = 3000;
x = x + 3;
return 0;

}

gcc –o test test.c

objdump -d test

http://www.thegeekstuff.com/2012/09/objdump-examples/?utm_source=feedburner
https://jvns.ca/blog/2014/09/06/how-to-read-an-executable/Object file

128: movl 0x0(%ebx), %eax ;load 0+ebx into eax
132: addl $0x03, %eax ;add 3 to eax register
135: movl %eax, 0x0(%ebx) ;store eax back to mem

Fetch – Execute Cycle

Arithmetic Logic Unit

Main Memory

Control Unit

1. Fetch Instruction
2. Decode Instruction

3. Get Data
4. Execute Instruction

STORE

FETCH

EXECUTE

Registers

Cache sits between
main memory and

CPU registers

Consistency

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

+ 64KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Fetch instruction at address 128 from memory

+ 64KB
Physical Address

=
Logical “Virtual” Address

+
Relocation Register

Memory Management Unit (MMU)
A hardware device to perform run-time

mapping from virtual to physical addresses

Fetch instruction at address
128 from memory

OS is the only one to modify and
set the relocation register

128 65664

64K

Operating
System

Free

0

64KB

512KB

100KB

65664

Address T
ransla

tio
n

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

0 33KB
ebxeax

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

0 33KB
ebxeax

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

0 33KB
ebxeax

MMU
+ 64KB

128

65664

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 33 KB)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

0 33KB
ebxeax

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 33 KB)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

3000 33KB
ebxeax

MMU
+ 64KB

33KB 96KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

3000 33KB
ebxeax

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

3000 33KB
ebxeax

MMU
+ 64KB

132
65668

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

Execute this instruction (no memory reference)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

3003 33KB
ebxeax

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

Execute this instruction (no memory reference)

Fetch the instruction at address 135

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Registers

3003 33KB
ebxeax

MMU
+ 64KB

135

65671

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 33 KB)

Fetch instruction at address 132

Execute this instruction (no memory reference)

Fetch the instruction at address 135

Execute this instruction (store to address 33 KB)

Registers

3003 33KB
ebxeax

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3003

M
M

U
+ 6

4K
B

33KB

96KB

The user program deals with logical addresses; it never
sees the real physical addresses about the memory

Lower Address: 0

Higher Address: 36KB

Logical “virtual”
Address Space

Physical
Address Space

The set of all logical addresses
generated by a program

The set of all physical
addresses corresponding to

these logical addresses Operating
System

Free

0

64KB

512KB

100KB

Memory Management Unit (MMU)
A hardware device to perform run-time

mapping from virtual to physical addresses

Fetch instruction at address
128 from memory

OS is the only one to modify and
set the relocation register

128 65664

64K

Operating
System

Free

0

64KB

512KB

100KB

65664

Address T
ransla

tio
n

The relocation register enables the OS to simply move the process anywhere in
the memory by changing the relocation register

Operating
System

Free

0

64KB

512KB

100KB

Relocation Register
64KB

Can then allow actions such as kernel code
being transient and kernel changing size

The relocation register enables the OS to simply move the process anywhere in
the memory by changing the relocation register

Operating
System

Free

0

200KB

512KB

300KB

Relocation Register
200KB

Free

Can then allow actions such as kernel code
being transient and kernel changing size

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Memory Protection
How to protect the operating system from access by user

processes and how to protect user processes from one another?

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Memory Protection
How to protect the operating system from access by user

processes and how to protect user processes from one another?

Reset value at memory
address -20K

64K

44K-20K

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Memory Protection
How to protect the operating system from access by user

processes and how to protect user processes from one another?

Reset value at memory
address 100K

64K

164K100K

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Memory Protection
How to protect the operating system from access by user

processes and how to protect user processes from one another?

Any attempt by a program executing in user mode to access
OS memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error

specifies the size
of the logical
address space

specifies the offset
where the OS placed

the process in memory

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Memory Protection
How to protect the operating system from access by user

processes and how to protect user processes from one another?

Any attempt by a program executing in user mode to access
OS memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error

Reset value at memory
address 100K

64K36K

The relocation and limit registers is loaded only by the OS
through a special privileged instruction only in kernel mode.
This scheme allows the operating system to change the value of the registers but prevents user

programs from changing the registers’ contents.

The OS is given unrestricted access to
both OS memory and users’ memory

This provision allows OS to load users’ programs into users’
memory, to dump out those programs in case of errors, to
access and modify parameters of system calls, to perform I/O
to and from user memory, and to provide many other services.

Swapping

Operating
System

What if the total physical address
space of all processes to exceed the

real physical memory?

Ready Queue

Operating
System

Swap Out:

Ready Queue

Operating
System

Swap Out:

Swap In:

Ready Queue

Swap Out:

Swap In:

Operating
System

Ready Queue

Swapping

A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows) but its normally disabled

Swap only when free memory extremely low

Swapping

Major part of swap time is transfer time;
total transfer time is directly proportional
to the amount of memory swapped

100MB

Transfer Rate: 50MB/second

2 Seconds + Context Switch Time

2 Seconds + Context Switch Time

Operating
System

is waiting for I/O Operation

What should the OS do?
(1) Don’t swap out a process with pending I/O as the

I/O would occur to wrong process

(2) Do the swapping, but perform double buffering
Execute I/O operations only into OS buffers instead of process
memory. After the process is swapped in, transfer between
OS buffers and process memory

Operating
System

Swapping
Issues

Operating
System

Free

The main memory must accommodate both the
operating system and the various user processes

We therefore need to allocate main memory in the most efficient way possible.
User Space

Lower Address

Higher Address

Input Queue
The collection of processes on the disk waiting to

be loaded into memory for execution

Operating
System

Free User Space

Lower Address

Higher Address

Input Queue
The collection of processes on the disk waiting to

be loaded into memory for execution

How does the OS allocate free space to
processes to be loaded in memory?

How does the OS allocate free space to
processes to be loaded in memory?

Contagious Segmentation Paging

“Memory-Management Schemes”

Contagious Memory Allocation
Each process like a brick cannot be segmented or broken into pieces and

must be allocated a single section of memory that is contiguous

Fixed-Size Partitioning Variable-Size Partitioning

Contagious	Memory	Allocation

Divide memory into fixed-size partitions “segments”.
Each segment contains only one process

Create partitions “segment” variable-sized to a given process’
needs

Operating
System

Free

0

512KB

64KB

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

Operating
System

Free

0

512KB

64KB

Operating
System

Free

0

512KB

64KB

100KB

150KB

200KB

230KB

350KB

Free

Free

Contagious	Memory	Allocation
Fixed-Size Partitioning

Operating
System

Free

0

512KB

64KB

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

Partitions don’t have to be the same size

Divide memory into fixed-size
partitions (segments) 50KB

50KB

50KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Operating system maintains information about
a) Allocated Partitions (Segments) b) Free Partitions (Holes or Segments)

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB

1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB

1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

70KB

80KB

Which Partition “Segment” to choose?

First-Fit Best-Fit Worst-Fit
Allocate the first segment

that is big enough
Allocate the smallest

segment that is big enough
Allocate the largest segment

search entire list, unless ordered by size
search entire list, unless ordered by size

https://www.youtube.com/watch?v=TnBQkzBsOe8

Process

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB

1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

70KB

80KB

First-Fit
Allocate the first segment that is big enough

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB 1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB 80KB

First-Fit
Allocate the first segment that is big enough

70KB

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB 1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB 80KB

First-Fit
Allocate the first segment that is big enough

70KB

Internal Fragmentation
Allocated memory may be slightly larger

than requested memory; this size
difference is memory internal to a

partition, but not being used

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB
1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

80KB

First-Fit
Allocate the first segment that is big enough

70KB

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB
1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

80KB

First-Fit
Allocate the first segment that is big enough

70KB

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB
1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

80KB

First-Fit
Allocate the first segment that is big enough

70KB

Internal Fragmentation
Allocated memory may be slightly larger

than requested memory; this size
difference is memory internal to a

partition, but not being used

Input Queue

Operating
System

0

512KB

64KB

Free

Free

Free

Free

Free

Free

Free

164KB

264KB

314KB

364KB

414KB

464KB

100KB

100KB

50KB

48KB

50KB

50KB

50KB

Segment 0

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Segment 6

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

0: 100KB
1: 100KB

2: 50KB

3: 50KB

4: 50KB

5: 50KB

6: 48KB

Contagious	Memory	Allocation
Fixed-Size Partitioning

60KB

80KB

First-Fit
Allocate the first segment that is big enough

70KB

External Fragmentation
Total memory space exists to satisfy a

request, but it is not contiguous

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

64KB 448KB

Allocated Space Free Space

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

134KB 378KB

Allocated Space Free Space

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

214KB 298KB

Allocated Space Free Space

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

274KB 238KB

Allocated Space Free Space

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

274KB 238KB

Allocated Space Free Space

300KB

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

Allocated Space Free Space

300KB

Operating
System

Free

0

512KB

64KB
70KB

60KB

External Fragmentation
Total memory space exists to satisfy a

request, but it is not contiguous

194KB 318KB

Contagious	Memory	Allocation
Variable-Size Partitioning

Operating
System

Free

0

512KB

64KB

Input Queue

60KB

70KB

80KB

Best-Fit
Allocate the smallest segment that is big enough

Allocated Space Free Space

300KB

Operating
System

Free

0

512KB

64KB
70KB

60KB

External Fragmentation
Total memory space exists to satisfy a

request, but it is not contiguous

194KB 318KB

Memory Compaction: Shuffle memory contents to place all free
memory together in one large block

Contagious	Memory	Allocation
Variable-Size Partitioning

Input Queue

Best-Fit
Allocate the smallest segment that is big enough

Allocated Space Free Space

300KB

Operating
System

Free

0

512KB

64KB
70KB

60KB

External Fragmentation
Total memory space exists to satisfy a

request, but it is not contiguous

194KB 318KB

Memory Compaction: Shuffle memory contents to place all free
memory together in one large block

Contagious	Memory	Allocation
Variable-Size Partitioning

Input Queue

Best-Fit
Allocate the smallest segment that is big enough

Allocated Space Free Space

Operating
System

Free

0

512KB

64KB
70KB

60KB

494KB 18KB

300KB

Al
lo

ca
te

d
Se

gm
en

ts Free Segm
ents

1: 50KB

2: 200KB

3: 70KB

4: 115KB

5: 15KB

Operating
System

0

512KB

62KB
Free

Free

Free

Free

Free

112KB

312KB

382KB

497KB

50KB

200KB

70KB

115KB

15KB

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

62KB Segment 0

1
3

100K

2
1

10K

3
2

35K

4
1

15K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

Example from: http://thumbsup2life.blogspot.com/2011/02/best-fit-first-fit-and-worst-fit-memory.html

1
3

100K

2
1

10K

4
1

15K

3
2

35K

5
2

23K

Input Queue

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

1: 50KB

2: 200KB

3: 70KB

4: 115KB

5: 15KB

Contagious	Memory	Allocation
Fixed-Size	Partitioning

Input Queue

1: 50KB

2: 200KB

3: 70KB

4: 115KB

5: 15KB

Best-Fit

1
3

100K

2
1

10K

1
3

100K

1
3

100K

3
2

35K

4
1

15K

3
2

35K

5
2

23K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

8
2

55K

9
3

88K

9
3

88K

9
3

88K

10
3

100K

10
3

100K

10
3

100K

Contagious	Memory	Allocation
Fixed-Size	Partitioning

Input Queue

1: 50KB

2: 200KB

3: 70KB

4: 115KB

5: 15KB

First-Fit

1
3

100K

2
1

10K

4
1

15K

3
2

35K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

1
3

100K

1
3

100K

3
2

35K

5
2

23K
8
2

55K

9
3

88K

9
3

88K

10
3

100K

10
3

100K

1
3

100K

2
1

10K

4
1

15K

3
2

35K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

Contagious	Memory	Allocation
Fixed-Size	Partitioning

Input Queue

1: 50KB

2: 200KB

3: 70KB

4: 115KB

5: 15KB

Worst-Fit

1
3

100K

2
1

10K

4
1

15K

3
2

35K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

1
3

100K

1
3

100K

3
2

35K

5
2

23K

8
2

55K

9
3

88K

9
3

88K

10
3

100K

10
3

100K

1
3

100K

2
1

10K

4
1

15K

3
2

35K

5
2

23K

6
1

6K

7
1

25K

8
2

55K

9
3

88K

10
3

100K

Contagious	Memory	Allocation
Fixed-Size	Partitioning

How does the OS allocate free space to
processes to be loaded in memory?

Contagious Segmentation Paging

“Memory-Management Schemes”

Segmentation “Discontiguous”
Divide a process into segments (i.e., Code segment, data segment, stack

segment, etc.) and place each segment into a partition of memory

Program

main
program

function

object

Local
Variables

Global
Variables

common
block

symbol
table

stack

Lo
gi

ca
l “

vi
rt

ua
l”

Ad
dr

es
s S

pa
ce

segmentsegment

se
gm

en
t

se
gm

en
tsegment

segmentsegment

segment

Divide process
into segments

Split into Segments
Place each segment
in available partition

3900

0

0

1000

0

400

0

0

0

1100

1000

400

We need to track segments of the segmented process!

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Without Segmentation A process is loaded in contiguous memory section

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Without Segmentation A process is loaded in contiguous memory section

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Registers

0 33KB
ebxeax

64K36K

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower	Address:	0

Higher	Address:	36KB

Operating
System

Free

0

64KB

512KB

100KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

33KB: 3000

Lo
gi
ca
l	“
vi
rt
ua
l”
	A
dd
re
ss
	S
pa
ce

Physical	Address	Space

Registers

0 33KB
ebxeax

33KB 97KB

Without Segmentation

Split into Segments
Place each segment
in available partition

3900

0

0

1000

0

400

0

0

0

1100

1000

400

With Segmentation A process is segmented and each segment is loaded in a separate partition

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

3300: 3000

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Registers

0 33K
ebxeax

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Registers

0 4200
ebxeax

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Registers

0 33K
ebxeax

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

10003

Segment
Number

Offset
Within Segment

New Logical address

10003

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

Need a new Hardware Support

Segmentation Hardware

Segment Table
Maps two-dimensional programmer-defined

addresses into one-dimensional physical address

Base “Relocation” Register
contains the starting physical
address where the segments

reside in memory

Limit Register
specifies the length of the

segment

With Segmentation

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

Limit
Register

Reocation
Register

Is the Memory protected from unintended accesses?

With Segmentation

0

1000

0

400

0

0

0

1100

1000

400
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

1000: 3000

Logical Address Space

Physical Address Space

Limit
Register

Reocation
Register

Can we have external fragmentation?
What is the solution?

Process 1

Logical
“Virtual”
Address

Memory
Content

0 a

1 b

2 c

3 d

4 e

5 f

6 g

7 h

8 i

9 j

10 k

11 l

12 m

13 n

14 o

15 p

Process 1

Segment
Logical

“Virtual”
Address

Memory
Content

0

0 a

1 b

2 c

3 d

1

4 e

5 f

6 g

7 h

2

8 i

9 j

10 k

11 l

3

12 m

13 n

14 o

15 p

Segment Limit
Register

Base
Register

0 4 4

1 4 0

2 4 28

3 4 12

Process 2

Logical
“Virtual”
Address

Memory
Content

0 A

1 B

2 C

3 D

4 E

5 F

6 G

7 H

8 I

9 J

10 K

11 L

Process 2

Segment
Logical

“Virtual”
Address

Memory
Content

0

0 A

1 B

2 C

3 D

1

4 E

5 F

6 G

7 H

2

8 I

9 J

10 K

11 L

Segment Limit
Register

Base
Register

0 4 16

1 4 8

2 4 20

MMU

0

4

8

12

16

20

24

28

Process	2

Segment
Logical
“Virtual”	
Address

Memory
Content

0

0 A

1 B

2 C

3 D

1

4 E

5 F

6 G

7 H

2

8 I

9 J

10 K

11 L

Segment Limit
Register

Base	
Register

0 4 16

1 4 8

2 4 20

Process	1

Segment
Logical
“Virtual”	
Address

Memory
Content

0

0 a

1 b

2 c

3 d

1

4 e

5 f

6 g

7 h

2

8 i

9 j

10 k

11 l

3

12 m

13 n

14 o

15 p

Segment Limit
Register

Base	
Register

0 4 4

1 4 0

2 4 28

3 4 12

MMU

e
f
g
h

a
b
c
d

E
F
G
H

m
n
o
p

A
B
C
D

I
J
K
L

j
k
l

0

4

8

12

16

20

24

28

Process	2

Segment
Logical
“Virtual”	
Address

Memory
Content

0

0 A

1 B

2 C

3 D

1

4 E

5 F

6 G

7 H

2

8 I

9 J

10 K

11 L

Segment Limit
Register

Base	
Register

0 4 16

1 4 8

2 4 20

Process	1

Segment
Logical
“Virtual”	
Address

Memory
Content

0

0 a

1 b

2 c

3 d

1

4 e

5 f

6 g

7 h

2

8 i

9 j

10 k

11 l

3

12 m

13 n

14 o

15 p

Segment Limit
Register

Base	
Register

0 4 4

1 4 0

2 4 28

3 4 12

How does the OS allocate free space to
processes to be loaded in memory?

Contagious Segmentation Paging

“Memory-Management Schemes”

