CPE 460 Operating System Design
Chapter 7: Main Memory

Ahmed Tamrawi

Copyright notice: care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

What i
hat is a memory?

y - 2
4883 !

o

.. ;‘\- “

2m — 1
2m — 2
2m -3
2m — 4
2m -5

Hardware used for storing and
retrieving stored data

Memory unit only sees a
stream of addresses + read
requests, or address + data

and write requests

Cell “Word”

PhysicalAddress

n 3 21 0

Data Bits

3 21 0

Address Bits

© B N W A UT OO N 00O VO

Main memory can take many CPU
cycles, causing a Memory Stall

Fetch — Execute Cycle

Main memory and registers
are only storage CPU can

access directly CPUs can decode instructions and

perform simple operations on
Control Unit register contents at the rate of one

EXECUTE or more operations per clock tick.

1. Fetch Instruction
2. Decode Instruction

Arithmetic Logic Unit

3. GetData
4. Execute Instruction

Cache sits between
main memory and /
CPU registers R

Main Memory
W CWIves ws

Any program to run must be loaded in memory

L // File: test.c .
#tinclude <stdio.h> O =TT
8 v
int main() { &
int x = 3000; N A
X = X + 3; § lr———
return 0; o
} < b
(%)
(%)
8 unint@ired data
o bss
gcc -o test test.c a- nlisfized dute
das
toxt

1 o 1 ZEEES After linking, the OS loads
______ the program into a

o 11 :::: process in memory

Object file EEEEEEE

Where should the OS load it?

512KB

512KB

64KB

Operating
System

OS occupies the lower
set of addresses

....................

512KB

64KB

Operating : OS occupies the lower
System set of addresses

512KB

64KB

Operating |— OS occupies the lower
System S— set of addresses

....................

There are many other strategies, we will discuss later

512KB

100KB

64KB

Operating
System

OS occupies the lower
set of addresses

Process does not know about the memory

Physical
Address Space
The set of all physical

addresses corresponding to
these logical addresses

512KB

100KB = =ik

Operating
System

Higher Address: 36KB

.....................

uninitialized data

bss

initialized data

data

text

>

Lower Address: 0

Logical “virtual”
Address Space

The set of all logical addresses
generated by a program

| // File: test.c
#include <stdio.h>

int main() { K:::::e‘bv of secties _ TEXT, _teat
int X = 3@@@; :mu':: ;-O " c&h‘ N :;:: NP, VY
X = X + 3; 128: movl ox0(%ebx), %eax ;load @+ebx into eax
return 0; 132: addl $0x03, %eax ;add 3 to eax register
} 135: movl %eax, 0x0(%ebx) ;store eax back to mem
100000178 % pswa O
0000y) rete
E::;o'so s susha Vedp
gcc -o test test.c 100000754 @8 o1t e 3160 w9
Leerer MMM Leae S9iNrip), wal
100000151 tfeS 't e sovl 80, ~4iNry)
L L AR R "tvd e, sl
eerer i et NN e 13
10000040 no sorl Seln, el
100000141 MmN sovl Sean, ~Bivrtp)
M2 ”» o vl Selx, Sear
0000102 & ae a0 $16, Wy
......... 100000108 S xoe N3P
10000019) rete
_____ D.::n:‘b.v of secties _ TEXT, _stubs
100000"'0 frIsTmaEemenm L] sl44(Nr 1)

Disassenbly of secties _ TEXT, _stub_Melper:

__Stud_helper

ieererte Mg N Leag 1N i), Y12
iee0001er 4 3 e] Wil

100001y frsTimmenmn | ®0Q o113(8rip)
100000181 e ~o

ieerer e SN s

100000195 k. RAR L LT I8 «__stud helpers .

=+ objdump -d test

101 |F

ONMF

http://www.thegeekstuff.com/2012/09/objdump-examples/?utm_source=feedburner
https://jvns.ca/blog/2014/09/06/how-to-read-an-executable/

Object file

Fetch — Execute Cycle

Control Unit

EXECUTE

1. Fetch Instruction
2. Decode Instruction

Arithmetic Logic Unit

3. GetData
4. Execute Instruction

Cache sits between
_______ 3 main memory and /7
CPU registers R

128: movl 0x0(%ebx),%eax >12KB

132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Higher Address: 36KB

33KB: 3000
stack

L L

Fetch instruction at address 128 from memory

uninitialized data

bss

6AKB= ==l == initialized data

data

Ope rat ing 128: movl Ox@(%ebx),%eax
132: addl $0x03, %eax
Sy S t em 135: movl %eax,0x0(%ebx)

92eds ssalppy |edisAyd

0 Lower Address: 0

Logical “virtual” Address Space

128: movl 0x0(%ebx),%eax >12KB

132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Higher Address: 36KB

33KB: 3000 |
stack

L L

Fetch instruction at address 128 from memory

b, ————————————

uninitialized data

bss

6AKB= ==l == initialized data

data

Logical “virtual” Address Space

Operating 128: movl exe(%ebx),%eax
132: addl $exe3, %eax
Sy stem 135: movl %eax,@x@(%ebx)

92eds ssalppy |edisAyd

0 Lower Address: 0

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128 from memory

512KB

92eds ssalppy |edisAyd

[100KB- -
\ saxom
64KBm mlm
Operating
System
el

Higher Address: 36KB

33KB: 3000 |
stack

L L

b, ————————————

uninitialized data

bss

initialized data

data

128: movl Ox0(%ebx),%eax
132: addl $exe3, %eax
135: movl %eax,0x0(%ebx)

Lower Address: 0

Logical “virtual” Address Space

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128 from memory

512KB

92eds ssalppy |edisAyd

[100KB- -
\ saxom
64KBm mlm
Operating
System
el

Higher Address: 36KB

33KB: 3000 |
stack

L L

b, ————————————

uninitialized data

bss

initialized data

data

128: movl Ox0(%ebx),%eax
132: addl $exe3, %eax
135: movl %eax,0x0(%ebx)

Lower Address: 0

Logical “virtual” Address Space

128: movl 0x0(%ebx),%eax >12KB

132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Higher Address: 36KB

33KB: 3000 |
stack

L L

Fetch instruction at address 128 from memory

b, ————————————

uninitialized data

bss
—)
64KB initialized data

data

Logical “virtual” Address Space

Operating 128: movl exe(%ebx),%eax
132: addl $exe3, %eax
Sy stem 135: movl %eax,@x@(%ebx)

92eds ssalppy |edisAyd

Lower Address: 0

128: movl 0x0(%ebx),%eax >12KB

132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Higher Address: 36KB

33KB: 3000
stack

L L

Fetch instruction at address 128 from memory

uninitialized data

bss
—)
64KB initialized data

Physical Address

Logical “Virtual” Address
+

Relocation Register

data

Ope rat ing 128: movl Ox@(%ebx),%eax
132: addl $0x03, %eax
S y S t em 135: movl %eax,0x0(%ebx)

92eds ssalppy |edisAyd

Lower Address: 0

Logical “virtual” Address Space

512KB

&
('bo _@ OS is the only one to modify and
‘;‘ set the relocation register
i .
?’b relocation
register
64K
logical physical)
address address @
CPU ar P 65664 — = =
128 65664 SCTTTTTTTTOT
.@ Fetch instruction at address Opseyrsatteimng
128 from memory
0

Memory Management Unit (MMU)
A hardware device to perform run-time
mapping from virtual to physical addresses

Registers

eax ebx
0 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

512KB

Operating
System

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx
0 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

512KB

Operating
System

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx
0 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

~{39

+ 64KB

100KB= = i

65664

64KB= —

Higher Address: 36KB

33KB: 3000
stack

uninitialized data

bss

Operating
System

initialized data

data

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

B —
Lower Address: O

Registers

eax ebx 512KB
0 33KB Higher Address: 36KB
-
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax 8]
135: movl %eax,0x0(%ebx) v
N
Fetch instruction at address 128 A
Execute this instruction (load from address 33 KB) heap

uninitialized data

bss

OAKBm =l initialized data

daita

Oper‘ating 128: movl @x@(%ebx),%eax

132: addl $0x03, %eax
SyStem 135: movl %eax,0x0(%ebx)

0 Lower Address: O

Registers

eax ebx
3000 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 33 KB)

SN——

3k8 A

+ 64KB

Operating
System

é

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx
3000 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128
Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

512KB

Operating
System

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx
3000 33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128
Execute this instruction (load from address 15 KB)

Fetch instruction at address 132
\

VIMU
132

+ 64KB

512KB

100KB= = i

65668 -@-
-

Operating
System

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax

135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx 512KB
3003 33KB Higher Address: 36KB
 etack
128: movl 0x0(%ebx),%eax
132: addl $06x03, %eax I
135: movl %eax,0x0(%ebx) v
"

Fetch instruction at address 128 A
Execute this instruction (load from address 15 KB) heap

Fetch instruction at address 132

uninitialized data

bss
Execute this instruction (no memory reference) 64KB= == = — initialized data

daita

Oper‘ating 128: movl @x@(%ebx),%eax

132: addl $0x03, %eax
SyStem 135: movl %eax,@x0(%ebx)

0 Lower Address: O

Registers

eax

ebx

3003

33KB

128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax
135: movl %eax,0x0(%ebx)

Fetch instruction at address 128

Execute this instruction (load from address 15 KB)

Fetch instruction at address 132

512KB

100KB= = i

Operating
System

Higher Address: 36KB

33KB: 3000

stack

uninitialized data

bss

initialized data

daita

128: movl Oxo(%ebx),%eax
132: addl $0x03, %eax

135: movl %eax,0x0(%ebx)

Lower Address: O

Registers

eax ebx 512KB
3003 33KB Higher Address: 36KB
"
128: movl oxe(%ebx),%eax pmmmameaen . f
132: addl $0x03, %eax |
135: movl %eax,0x0(%ebx) v
.
Fetch instruction at address 128 ._________i __________
heap

Execute this instruction (load from address 33 KB)

Fetch instruction at address 132 uninitialized data

bss
Execute this instruction (no memory reference) /"N & 64KB= = = = = = — — = initialized data
data
Fetch the instruction at address 135 Operating 128: movl ox@(%ebx) eax
System e 2223?6&?&»

Execute this instruction (store to address 33 KB) Lower Address: 0

The user program deals with logical addresses; it never
sees the real physical addresses about the memory

512KB

Higher Address: 36KB

()
stack
"
4
> Logical “virtual”
heap Address Space
The set of all logical addresses
Physical uninitialized data generated by a program
Address Space Dee
64KB = =itemtamtamtion Sl initialized data
The set of all physical
addresses corresponding to e
these logical addresses Operating -
System =)

0 Lower Address: 0

512KB

&
('bo _@ OS is the only one to modify and
‘;‘ set the relocation register
i .
?’b relocation
register
64K
logical physical)
address address @
CPU ar P 65664 — = =
128 65664 SCTTTTTTTTOT
.@ Fetch instruction at address Opseyrsatteimng
128 from memory
0

Memory Management Unit (MMU)
A hardware device to perform run-time
mapping from virtual to physical addresses

The relocation register enables the OS to simply move the process anywhere in
the memory by changing the relocation register

512KB

Can then allow actions such as kernel code
being transient and kernel changing size

Relocation Register
64KB

Operating
System

The relocation register enables the OS to simply move the process anywhere in
the memory by changing the relocation register

512KB

Can then allow actions such as kernel code
being transient and kernel changing size

Relocation Register
200KB

Operating
System

Memory Protection

How to protect the operating system from access by user
processes and how to protect user processes from one another?

512KB

350KB =

230KB =

200KB =

150KB=

100KB = =

64KB=

Operating
System

Memory Protection

How to protect the operating system from access by user
processes and how to protect user processes from one another?

350KB = =m=

relocation
register
64K
logical physical
address address
CPU i
-20K 44K
64KB = -
.@ Reset value at memory |
address -20K Operating
System
MMU
0 "

. _a _a ¢

Memory Protection

How to protect the operating system from access by user
processes and how to protect user processes from one another?

relocation
register
64K
logical physical
address address
CPU o
100K 164K !
.@_ Reset value at memory Operating
address 100K System
MMU

-_rTeET W .

Memory Protection

How to protect the operating system from access by user
processes and how to protect user processes from one another? 350KB =
specifies the size specifies the offset
of the logical where the OS placed 230KB=
address space the process in memory
S ¢ . 200KB =
limit relocation
register register
150KB=
logical physical 5 ree
address yes address 100KB = =
CPU < 4 >
no 64KB =
)
o.- s & ot S Vot c—— .
L Operating

System

\J
trap: addressing error

Any attempt by a program executing in user mode to access
OS memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error

Memory Protection

How to protect the operating system from access by user
processes and how to protect user processes from one another?

CPU

Reset value at memory
address 100K

36K 64K
limit relocation
register register
logical physical
address yes address
= o= P
no
EEEEET
0,. PSSP ———
;

\J
trap: addressing error

Any attempt by a program executing in user mode to access
OS memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error

Operating
System

The relocation and limit registers is loaded only by the OS
through a special privileged instruction only in kernel mode.

This scheme allows the operating system to change the value of the registers but prevents user
programs from changing the registers’ contents.

This provision allows OS to load users’ programs into users’
The OS is given unrestricted access to memory, to dump out those programs in case of errors, to
both OS memory and users’ memory access and modify parameters of system calls, to perform 1/0O

to and from user memory, and to provide many other services.

-
‘ wapping

s

Operating 3
System

L B A

What if t

space of a
rea

ne total physical address
| processes to exceed the

physical memory?

Ready Queue

[@@ >

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Operating
System

Ready Queue

-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Operating
System

— >

o ¥ m

Ready Queue

[

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Swap In: @ @

Operating
System

Ready Queue

Swapping

A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows) but its normally disabled

Swap only when free memory extremely low

N

Major part of swap time is transfer time;
total transfer time is directly proportional
to the amount of memory swapped

2 Seconds + Context Switch Time

[>

Transfer Rate: 50MB/second

< 1

2 Seconds + Context Switch Time

100MB

A

.@- Swapping

Issues

is waiting for 1/0O Operation

What should the OS do?

(1) Don’t swap out a process with pending 1/O as the
|/0 would occur to wrong process

(2) Do the swapping, but perform double buffering

Execute I/O operations only into OS buffers instead of process
memory. After the process is swapped in, transfer between
OS buffers and process memory

. T
Operating . -«/ Operating

System -
Y TIITITIITY _S__‘ System
|| LI

-
-
-
-
-
-
-
g
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Py
-
-
-
-~
-
-

Higher Address

The main memory must accommodate both the
operating system and the various user processes

We therefore need to allocate main memory in the most efficient way possible.

& s

> User Space

/|
a
Input Queue
‘ The collection of processes on the disk waiting to Operating
be loaded into memory for execution System
— T

Lower Address

Higher Address

How does the OS allocate free space to
processes to be loaded in memory?

i

/,
q
Input Queue
The collection of processes on the disk waiting to
T

> User Space

‘ be loaded into memory for execution

Operating
System

Lower Address

How does the OS allocate free space to
processes to be loaded in memory?

“Memory-Management Schemes”

AVA
V.V

Contagious Segmentation Paging

Contagious Memory Allocation

Each process like a brick cannot be segmented or broken into pieces and
must be allocated a single section of memory that is contiguous

Contagious Memory Allocation

Fixed-Size Partitioning Variable-Size Partitioning

Divide memory into fixed-size partitions “segments”. Create partitions “segment” variable-sized to a given process’
Each segment contains only one process needs

64K 64K 64KB— -
Operating Operating Operating Operating
System System System System
[} [o ? e -

- e W - wae - e W

Contagious Memory Allocation
Fixed-Size Partitioning

512KB [

64KB

Operating
System

Divide memory into fixed-size
partitions (segments)

Partitions don’t have to be the same size

512KB G

464KB

414KB

364KB

314KB

264KB

164KB

Operating
System

48KB
50KB
50KB
50KB

50KB

» 100KB

> 100KB

Contagious Memory Allocation
Fixed-Size Partitioning

Operating system maintains information about
a) Allocated Partitions (Segments) b) Free Partitions (Holes or Segments)

Allocated Segments
SjuawWbas 2.4

512KB

464KB

414KB

364KB

314KB

264KB

164KB

64KB

Operating
System

48KB
50KB
50KB
50KB

50KB

> 100KB

> 100KB

Segment

Segment

Segment

Segment

Segment

Segment

Segment

Contagious Memory Allocation
Fixed-Size Partitioning

Allocated Segments
SjuaWbas 3.4

Input Queue

512KB |

464KB

414KB

364KB

314KB

264KB

164KB

64KB *

Operating
System

48KB
50KB
50KB
50KB

50KB

> 100KB

Segment 6

Segment 5

Segment 4

Segment 3

Segment 2

> 100kB Segment 1

Segment ©

Which Partition “Segment” to choose?

https://www.youtube.com/watch?v=TnBQkzBsOe8

EKB
14KB 12KB
12KB
19KB 12KB
Process
11KB
13KB 12KB
First-Fit Best-Fit Worst-Fit
Allocate the first segment Allocate the smallest Allocate the largest segment
that is big enough segment that is big enough search entire list, unless ordered by size

search entire list, unless ordered by size

Contagious Memory Allocation
Fixed-Size Partitioning

Allocated Segments

SjuaWbas 3.4

First-Fit

Allocate the first segment that is big enough

Input Queue

512KB |

464KB

414KB

364KB

314KB

264KB

164KB

64KB =

Operating
System

48KB
50KB
50KB
50KB

50KB

} 100KB

Segment 6

Segment 5

Segment 4

Segment 3

Segment 2

> 100KB Segment 1

Segment ©

First-Fit

Allocate the first segment that is big enough

Contagious Memory Allocation

Fixed-Size Partitioning >12KB 48KB Segment 6
464KB
50KB Segment 5
414KB
50KB Segment 4
364KB
50KB Segment 3
Input Queue 314KB
50KB Segment 2
264KB
> 100KB Segment 1
ig 164KB
© 3
S rrg > 100KB Segment ©
R %2
A ro
S Q 64KB
3
& S
§ a. Operating
= System
<

First-Fit

Allocate the first segment that is big enough

Contagious Memory Allocation

. . e 512KB
Fixed-Size Partitioning 48KB Segment 6
464KB
50KB Segment 5
414KB
50KB Segment 4
364KB

50KB Segment 3

Input Queue 314KB

50KB Segment 2
264KB

> 100KB Segment 1

@ } 100KB Segment ©
70K8

Operating
System

164K

Internal Fragmentation
Allocated memory may be slightly larger
than requested memory; this size
difference is memory internal to a
partition, but not being used

64KB

SjuawWbas 3.4

Allocated Segments

First-Fit

Allocate the first segment that is big enough

Contagious Memory Allocation

Fixed-Size Partitioning 512KB |;

48KB Segment 6
464KB

50KB Segment 5
414KB

50KB Segment 4
364KB

50KB Segment 3

Input Queue 314KB

50KB Segment 2

264KB

> 100KB Segment 1

164KB

o

'lg :.:.::

) J |
S rrg - >1OOKB Segment ©
> A I
et ® 70K
S Q 64KB

] 3

= n

§ a.. Operating

= System

<

First-Fit

Allocate the first segment that is big enough

Contagious Memory Allocation <1k [
Fixed-Size Partitioning :
464KB

48KB Segment 6

50KB Segment 5
414KB

50KB Segment 4
364KB

50KB Segment 3

Input Queue 314KB

50KB Segment 2

264KB

> 100KB Segment 1

@ | >1OOKB Segment @
70KB|)

Operating
System

164KB

o

64KB

Allocated Segments
SjuaWbas 3.4

First-Fit

Allocate the first segment that is big enough

s

Contagious Memory Allocation
Fixed-Size Partitioning

48KB Segment 6

50KB Segment 5

50KB Segment 4

50KB Segment 3
Input Queue

50KB Segment 2

> 100KB Segment 1

Internal Fragmentation

Allocated memory may be slightly larger @ } 100KB Segment ©
than requested memory; this size 70KB

difference is memory internal to a
partition, but not being used

SjuawWbas 234

Operating
System

Allocated Segments

First-Fit

Allocate the first segment that is big enough

Contagious Memory Allocation

Fixed-Size Partitioning 512KB

48KB Segment 6

464KB
50KB Segment 5

414KB
50KB Segment 4

364KB

50KB Segment 3

Input Queue 314KB

50KB Segment 2

264KB i

> 100KB Segment 1

@ } 100KB Segment ©
70K8

Operating
System

External Fragmentation
Total memory space exists to satisfy a
request, but it is not contiguous

164KB

64KB

SsjuawWbas 2.4

Allocated Segments

Contagious Memory Allocation
Variable-Size Partitioning

Input Queue

512KB [

64KB ==

Operating
System

Contagious Memory Allocation

Variable-Size Partitioning

Allocated Space

Free Space

64KB

448KB

Best-Fit

Allocate the smallest segment that is big enough

g | %

Input Queue

512KB

64KB [

Operating
System

Contagious Memory Allocation

Variable-Size Partitioning

Allocated Space

Free Space

134KB

378KB

Best-Fit

Allocate the smallest segment that is big enough

EIC

Input Queue

512KB

64KB

Operating
System

Contagious Memory Allocation

Variable-Size Partitioning

Allocated Space

Free Space

214KB

298KB

Best-Fit

Allocate the smallest segment that is big enough

_1 1@

Input Queue

512KB

1

70KB
64KB | *
Operating
System
0

Contagious Memory Allocation

Variable-Size Partitioning

Allocated Space

Free Space

274KB

238KB

Best-Fit

Allocate the smallest segment that is big enough

Input Queue

512KB

64KB |

Operating
System

Best-Fit

Contagious Memory Allocation Allocate the smallest segment that is big enough
Variable-Size Partitioning

512KB |

Input Queue

-
-
-
-
-
E
-
=
-
-
-
-
-
-
[
-
[
-
-
.
|
[
-
e
—
-

Allocated Space Free Space

274KB 238KB

64KB

Operating
System

Contagious Memory Allocation
Variable-Size Partitioning

1O;

300KB

3

Best-Fit

Allocate the smallest segment that is big enough

1t

Input Queue

Allocated Space Free Space

194KB 318KB

External Fragmentation
Total memory space exists to satisfy a
request, but it is not contiguous

512KB

64KB

Operating
System

512KB |:::

64KB

70KB

Operating
System

Contagious Memory Allocation

Best-Fit

Variable-Size Partitioning

3

s

300KB

Input Queue

Allocated Space

Free Space

194KB

318KB

Allocate the smallest segment that is big enough

s

External Fragmentation
Total memory space exists to satisfy a
request, but it is not contiguous

Memory Compaction: Shuffle memory contents to place all free

memory together in one large block

512KB |;

64KB

e —

Operating }
System

512KB

64KB

Operating

®

Best-Fit

Allocate the smallest segment that is big enough

s

512KB

Contagious Memory Allocation
Variable-Size Partitioning

s

300KB

Input Queue

Allocated Space Free Space

194KB 318KB @

64KB 70KB
External Fragmentation
Total memory space exists to satisfy a Operating
request, but it is not contiguous System
Memory Compaction: Shuffle memory contents to place all free 0

-.' - -l

memory together in one large block

Best-Fit

Allocate the smallest segment that is big enough

512KB

Contagious Memory Allocation
Variable-Size Partitioning

s

300KB

Input Queue

Allocated Space Free Space

494KB 18KB @

70KB
64KB :
Operating
System
0

100K 6K

3 1

1 6
10K 25K
1 1 2
2 7 2 3
(@) 0
35K 55K A é’
2 2 5 3
3 8 S 3
% n
15K 88K
1 3
4 9
23K 100K
2 3
5 10

Example from: http://thumbsup2life.blogspot.com/2011/02/best-fit-first-fit-and-worst-fit-memory.html

512KB

497KB

382KB

312KB

112KB

62KB

Operating
System

}'
" } 50KB Segment 1

} 15KB Segment 5

115KB Segment 4

70KB Segment 3

200KB Segment 2

62KB Segment ©

Input Queue

88K 55K 25K 6K 23K 15K 35K 10K 100K
ottor FoH o for fox| FoRIEox fox
9 8 7 6 5 4 3 2 1

Contagious Memory Allocation
Fixed-Size Partitioning

5: 15KB

4: 115KB

3: 70KB

2: 200KB

1: 50KB

Best-Fit ’

Contagious Memory Allocation

I n p u t Q ueue Fixed-Size Partitioning

5: 15KB

100
4: 115KB 13
3: 70KB
2: 200KB

1: 50KB

First-Fit

Contagious Memory Allocation

I n p ut Q ueue Fixed-Size Partitioning

5: 15KB
4: 115KB
3: 70KB
100K
2: 200KB 13

1: 50KB

Worst-Fit ’

Contagious Memory Allocation

I n p ut Q ueue Fixed-Size Partitioning

5: 15KB
4: 115KB
3: 70KB
100K
2: 200KB 3

1: 50KB

How does the OS allocate free space to
processes to be loaded in memory?

“Memory-Management Schemes”

AVA
V.V

Contagious Segmentation Paging

e (o . . ’)
Segmentation “Discontiguous
Divide a process into segments (i.e., Code segment, data segment, stack
segment, etc.) and place each segment into a partition of memory

Logical “virtual”

Address Space

uninitialized data

bss

intialized data

data

text

Divide process
into segments

N

3900

e -

uninitialized data

bss

initialized data

data

text

Split into Segments

subroutine

1000

segment 0

Sqrt

400

segment 1

stack

1100

segment 3
0

symbol
table

1000

segment 4

main
program

segment 2

Place each segment
in available partition

1400

segment 0

2400

3200

segment 3|

4700

5700

segment 2

segment 4

segment 1

6700

We need to track segments of the segmented process!

Without Segmentation A process is loaded in contiguous memory section

512KB

Higher Address: 36KB

33KB: 3000
stack

uninitialized data

bss

64KB= — initialized data

daia

0pe rat ing 128: movl @x@(%ebx),%eax
132: addl $0xe3, %eax
Sy S t em 135: movl %eax,0@x0(%ebx)

0 Lower Address: O

Without Segmentation A process is loaded in contiguous memory section

512KB
Higher Address: 36KB
33KB: 3000
stack
Registers [
eax ebx \
0 33KB
B
128: movl 0x0(%ebx),%eax
132: addl $0x03, %eax heap
135: movl %eax,0x0(%ebx)
uninitialized data
bss
64KB= — initialized data
data
Oper‘ating 128: movl Ox8(%ebx),%eax
System Too: morl San oxoian)

0 Lower Address: 0

Without Segmentation

Registers 1ok
° 0, 0,
128: movl 0x0(%ebx),%eax eax abx
. o,
132: addl $@X@3, %eax 0 33KB Higher Address: 36KB
135: movl %eax, @X@(%ebX) 33kB: 3000
stack
36K 64K v
limit relocation A
register register i
: . heap
logical physical
address yes address o
CPU E + m—- uninitialized data
33KB 97KB .@
bss
no EAKBm =l o - initialized data
data
Operating 128: movl @x8(%ebx),%eax
V . SyStem gé ;gﬂ ;.Zzg?éxg?;exbx)
trap: addressing error
e p——— — 0 Lower Address: 0

D

With NIl ld[elall A process is segmented and each segment is loaded in a separate partition

3900

3300: 3000

stack

uninitialized data

bss

initialized data

data

128: movl Ox@(%ebx),%eax
132: addl $oxe3, %eax
135: movl %eax,0@x0(%ebx)

eﬁ

Split into Segments

subroutine

1000

segment 0

Sart

00 400
segment 1

stack

1000: 3000 Ill60

segment 3

0

1000

symbol
table

segment 4

mai

n

program

128: movl @xe(
132: addl $exe:
135: movl %eax

%ebx) , %eax

3, %eax
,6x0(%ebx)

segment 2

Place each segment
in available partition

2400

3200

4300
4700

5700

6300

6700

segment 0

segment 3|

segment 2

segment 4

segment 1

With Segmentation

1400
segment 0

Registers 2400

€ax ebx subroutine stack
0 33K 1000: 3000 1100
segment 3
%] 3200
1000 symbol
segment 0 table
segment 3
128: movl 0x0(%ebx),%eax . 1000 T g
rt

132: addl $0x03, %eax > . sa00
135: movl %eax,@x0(%ebx) orogram segment 2

128: movl @x0(%ebx),%eax 4700

@e 40@ FEE ;g:g?éx:%;:bx)

segment 1 segment 2 segment 4

. 5700

Logical Address Space

6300
segment 1

6700

Physical Address Space

With Segmentation

1400
segment 0

Registers 2400

€ax ebx subroutine stack
0 4200 1000: 3000 1100
segment 3
%] 3200
1000 symbol
segment 0 table
segment 3
128: movl 0x0(%ebx),%eax . 1000 T g
rt

132: addl $0x03, %eax > . sa00
135: movl %eax,@x0(%ebx) orogram segment 2

128: movl @x0(%ebx),%eax 4700

@e 40@ 132 o ;g::?éx:%;:bx)

segment 1 segment 2 segment 4

. 5700

Logical Address Space

6300
segment 1

6700

Physical Address Space

With Segmentation

Registers
° 0, 0,
128: movl 0@x@(%ebx),%eax eax ebx
132: addl $0x03, %eax - 3 .
135: movl %eax,0x0(%ebx)
1400
segment 0
2400
subroutine | stack
Segment| Offset @ 1100
Number | Within Segment segment 3
1000 ° symbol 3200
3 1000 segment 0 table
_ 1000 segment 3
New Logical address 8 ot segment 4
main 4300
segment 2
4700
i s
segment 1 segment 2 segment 4
. 5700
Logical Address Space
6300
segment 1
6700

Physical Address Space

With Segmentation

CPU

limit
register
logical
address
<
‘ 3 | 1000
no

yes

relocation
register

\
trap: addressing error
~ ——-—

A b g b

0. o © St —— Sast @ c—— —

physical
address

+

1400

2400

3200

4300
4700

5700

6300

6700

segment 0

segment 3|

segment 2

segment 4

segment 1

stack

‘ 1000: 3000 |110@

subroutine

segment 3
0
1000 symbol
segment 0 table
0 1000
Sqrt segment 4

main
program

128: movl @x@(%ebx),%eax
132: a $

ee 4@9 135: movl %eax,@x@(%ebx)

segment 1 segment 2

Logical Address Space

Physical Address Space

With Segmentation

limit
register
logical
address
CPU =
3 l 1000 ‘
no

\
trap: addressing error

yes

rp———

0. B P A S P —

relocation
register

physical
address

+

P

‘

Need a new Hardware Support

1400

2400

3200

4300
4700

5700

6300

6700

segment 0

segment 3|

segment 2

segment 4

segment 1

stack

‘ 1000: 3000 |110@

subroutine

segment 3
0
1000 symbol
segment 0 table
0 1000
Sqrt segment 4

main
program

128: movl @x@(%ebx),%eax
132: a $

ee 4@9 135: movl %eax,@x@(%ebx)

segment 1 segment 2

Logical Address Space

Physical Address Space

With Segmentation

Segmentation Hardware

Segment Table

Maps two-dimensional programmer-defined
addresses into one-dimensional physical address

Base “Relocation” Register
contains the starting physical
address where the segments

reside in memory

.

CPU

Limit Register
specifies the length of the
segment

limit |base
segment
table
d
es
> y
no
Y

trap: addressing error

1400

2400

3200

4300
4700

5700

6300

6700

segment 0

segment 3

segment 2

segment 4

segment 1

With Segmentation

limit | base
0| 1000 | 1400
> 1| 400 | 6300
2| 400 | 4300
3| 1100 | 3200 1400
4| 1000 | 4700 ¢
ento
segment table segm
2400
Limit Reocation
CPU H s | d Register Register subroutine | | stack
‘ 1000: 3000 |11@0
segment 3
yes 320? 1000 0 symbol
< = g segment 0 table
i segment 3| . 1600
Sqrt segment 4
4900 segment 2 main
rogram
4700 1ZEmovi.!;xe(%ebx),%eax
Y 00 App| B 4 EXed
trap: addressing error segment 4 segment 1 segment 2
e
@
5700 .
Logical Address Space
6300
segment 1
6700

Physical Address Space

Is the Memory protected from unintended accesses?

With Segmentation

limit | base
0| 1000 | 1400
> 1| 400 | 6300
2| 400 | 4300
3| 1100 | 3200 1400
4| 1000 | 4700 ¢
ento
segment table segm
2400
Limit Reocation
CPU H s | d Register Register subroutine | | stack
‘ 1000: 3000 |11@0
segment 3
yes 320? 1000 0 symbol
< = g segment 0 table
i segment 3| . 1600
Sqrt segment 4
4900 segment 2 main
rogram
4700 1ZEmovi.!;xe(%ebx),%eax
Y 00 App| B 4 EXed
trap: addressing error segment 4 segment 1 segment 2
e
@
5700 .
Logical Address Space
6300
segment 1
6700

Physical Address Space

Can we have external fragmentation?

What is the solution?

Process 1 Process 1

Logical Logical
“Virtual” 'Z'emory Segment | “Virtual” 'Z'er:'ont’
Address SDE=RL Address onten
0 a 0 a
1 b 1 b
0
2 C 2 C
3 d 3 d
4 e 4 e Limit Base
Segment Register | Register
5 f 5 f egiste 8
1
6 g 6 g 0 4 4
7 h 7 h 1 4 0
8 i 8 i 2 4 28
2
10 k 10 k
11 1 11 1
12 m 12 m
13 n 13 n
3
14 o 14 o
15 p 15 p

Logical
“Virtual”
Address

O 00 N o u B~ W N = O

[
= O

Process 2

Memory

Content

m O O W >

I @O =

Process 2

Logical

] Memory
Segment | “Virtual” Content
Address
0 A
1 B
0
2 C
3 D
4 E
5 F
1
6 G
7 H
8 |
9 J
2
10 K
11 L

Segment

Limit
Register

Base
Register

16

8
20

Process 2

Process1
Logical
Segment | “Virtual” Memory
Content
Address
0 a
1 b
0
2 C
3 d
4 € Segment Limit Base
5 £ Register | Register
1
6 g 0 4 4
7 h 1 4 0
8 i 2 4 28
9 j 3 4 12
2
10 k
11 1
12 m
13 n
3
14 o
15 p

12

Logical Memo
Segment | “Virtual” Conter::
Address
0 A
1 B
0
2 C L
Sesment Limit Base
3 D g Register | Register
4 E 0 4 16
5 F 1 4 8
1
6 G 2 4 20
7 H
8 |
9 J
2
10 K
11 L
—> s{
— limit |base —
segment
table
cPu M s [d
A ¢ &
es
< y e
no

MMU

trap: addressing error

16

20

24

physical memory

28

Process 1

Logical

s M Memory
Segment | “Virtual e
Address

0 a
1 b
0
2 C
3 d
4 e
5 f
1
6 g
7 h
8 i
9]
2
10 k
11 1
12 m
13 n
3
14 o
15 p

Segment

w N = O

Limit
Register

Base
Register

Process 2

Logical Memo
Segment | “Virtual” Conter::
Address
0 A
1 B
0
2 C L
Sesment Limit Base
3 D g Register | Register
4 E 0 4 16
5 F 1 4 8
1
6 G 2 4 20
7 H
8 |
9 J
2
10 K
11 L

cPu M s [d

— limit |base F—

segment
table

MMU

no

trap: addressing error

physical memory

0 [e
.F
g
h
4 a
b
C
d
8 E
F
G
H
12 m
n
)
p
16 A
B
C
D
20 I
J
K
L
24
28
J
k
1

How does the OS allocate free space to
processes to be loaded in memory?

“Memory-Management Schemes”

AVA
V.V

Contagious Segmentation Paging

- —

Ivm- ' r' ﬁv m'

'w'ﬂc \Q

“.‘.

