SWEN 6301 Software Construction
Lecture 1: Course Overview

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- part of the slides are adopted with permission from Mustafa Misir’s lecture notes on Modern Software Development Technology course.

Important Equations for the Class

Erwin Schrodinger (1887-1961) Werner Heisenberg (1901-1976)

Schrédinger Equation: Heisenberg Uncertainty Principal:

0 h? 07 h h
th—V(x,t) = ——=—=V(x,t) + V(2)¥(x,t AzAp > — = —

at(’) 2m8w2(’> @) AT 2
Schrédinger equation does for a quantum-mechanical particle In the world of very small particles, one cannot measure any
what Newton’s Second Law does for a classical particle. The property of a particle without interacting with it in some way.
Solution to Schrédinger equation to determine how a particle This introduces an unavoidable uncertainty into the result.
evolves in time, just as we use Newton’s Second Law to solve Thus, One can never measure all the properties exactly.
for future position and momentum of a classical particle. .

_ The more accurately you know the position (the smaller Ax

A gy o _ is), the less accurately you know the momentum (the larger
1. https://simple.wikipedia.org/wiki/Schr%C3%B6dinger eguation Ap is); and vice versa

2. https://www.quora.com/What-is-the-Schr%C3%B6dinger-wave-
equation-and-what-are-its-applications

Further Reading: https://en.wikipedia.org/wiki/Uncertainty principle

https://simple.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://www.quora.com/What-is-the-Schr%C3%B6dinger-wave-equation-and-what-are-its-applications
https://en.wikipedia.org/wiki/Uncertainty_principle

IOWA STATE IOWA STATE
UNIVERSITY UNIVERSITY

B.Eng. Computer Engineering M.Sc. Computer Engineering Ph.D. Computer Engineering
(Class of 2007) (Class of 2011) (Class of 2016)

Static Program Analysis
Data & Pattern Mining Quankum ‘thsgﬁ 8

Software Analysis & Security siology
Bug finding and Malware detection Build System Analysis ASET‘OV\OM:’

Abstractions and Symbolic Evaluations

Secure Programming

Your best source for knowledge.

I'm on

facebook

- Your turn!

- * Name
» Undergraduate major and/or current work.
* Something about you
* Food you like.
* Programming languages you used.
* Open source projects you contributed to.
* What do you think of this course?
* What are your goals after graduation?

6000 COOoE 8AD CODE —

gren A e

WWW. PHDCOMICS.COM

<

W

CHAPTER 1: SOMETIMES IT"'S
BETTER TO NOT EVEN TRY
TO UNDERSTAND

)"
s

THE ONLY VALIO MEASUREMENT OF CODE QUALITY: WTFS/MINUTE

Deployed in 2005, Identified in 2010

Dec 2015 & Dec 2016

World's First

Power Outage /4% RS
Caused by,Hackers R

November 29, 2011

Ukraine power grid attacks STUXnet Worm

HP printers remotely set on fire

Jeep remotely hijacked

~—~_ M
‘L_ A—v

/- { Complex Software } "

SAADN

Although software development Many programs are still buggy, late,
practice has advanced rapidly in recent and over budget, and many fail to
years, common practice hasn’t satisfy the needs of their users

IT’S IN THE SYLLABUS

This message brought to you by every instructor that ever lived.
WWW.PHDCOMICS. COM

SWENG6301: SOFTWARE CONSTRUCTION

Fall 2019
Instructor: Ahmed Tamrawi Time: S 14:00 - 16:50
Email: ahmedtamrawi@gmail.com Place: Masri 402

Course Site: TED

Office Hours & Questions: After class, by appointment, or simply send me an email. (Please include
“SWENG6301" in the subject line of your emails to me)

Course Overview: Software is everywhere and despite the rapid advances in software development prac-
tices and integrated development environments (IDEs), we still produce buggy, late, over budget, and many
fail to satisfy the needs of their users. The Software Construction course is about how to perform software
development for delivering robust and resilient solutions which minimizes the occurrence of the aforemen-
tioned issues. This course aims at providing the theories and techniques of effective and maintainable
software development by using modern technologies and s,

The primary goal of this course is to help you to create higher-quality software that is robust, flexible,
extensible, scalable, and maintainable. We focus on doing that by understanding what are common software
development practices. The other main goal of this course is to provide experiences and knowledge that
will help you develop as professional programmers and computing system designers. This includes: (1)
experience working in a team, both as a leader and contributor, and (2) experience using tools commonly
used by productive developers.

If you do not feel my goals for the course align well with your personal goals, but you need to take this
course anyway to satisfy a degree requirement, you should meet with me to figure out a way to msake this
course useful for satisfying your personal goals.

on software construction.

Expected Background & Prerequisites: Students entering this course are expected to be comfortable
reading, designing, and writing Java programs that involve code distributed over many modules. You
should be comfortable learning how to use new programming language features and APIs by reading their
documentation (or source code when no documentation is available), and not be surprised when solving
programming assignments requires you to seek documentation beyond what was provided in class. Students
should be able to understand and implement different data structures and sorting algorithms.

Textbook: We will closely follow the textbooks from:
o Steve McConnell's “Code Complete: A Practical Handbook of Software Construction,” 2™ Edition,
(ISBN 978-0735619678).
e Robert C. Martin’s ‘Clean Code: A Handbook of Agile Soft Craft hip”.” 1% Edition (ISBN
978-0132350884).

In addition, we will have several readings from many other resources including:

o Joshua Bloch’s ‘Effective Java',” 3" Edition (ISBN 978-0134685991).

o Edward Crookshanks's ‘Practical Software Development Techniques: Tools and Techniques for Build-
ing Enterprise Software’,” 13 Edition (ISBN 978-1484207291).

o Frank Tsui, Orlando Karam, and Barbara Bernal ’s ‘Essentials of Software Engineering’,” 4** Edition
(ISBN 978-1284106008).

o lan Sommerville’s ‘Software Engincering’,” 10** Edition (ISBN 978-0133943030).

Honor: As a graduate student, you are trusted to be honorable. We will take advantage of this trust to
provide a better learning environment for everyone. In particular, students in SWEN 6301 are expected to
follow these rules:

page 1 of 3

page 2 of 3

page 3 of 3

Goal of the Class

SOMETHING l

gﬁ e
il .

|;;’|
il [|

v
GREAT
SOFTWARE

DEVELOPMENT PROCESS

Improve your ability to create higher-quality software that is robust,
extensible, scalable, maintainable, and secure by understanding what are
common software construction practices

My Goals for Lectures?

Convey some complex technical ideas Lectures are horrible medium for learning complex ideas,
many resource are available online

Teach you what you need to know to do the The point of assignments, exams and project is to teach you
assignments, exams and the project things | want you to learn in the class
Avoid being fired Avoid being fired
Keep most of you awake for 170 minutes You probably should be getting more sleep

Get you to laugh at dumb jokes Gabriel Iglesias is funnier (check him out)

My Real Goal for Lectures

Provide context and meaning for the things you have or
will later learn on your own

As the figure indicates, construction is mostly coding and debugging but also involves
detailed design, construction planning, unit testing, integration, integration testing,
and other activities. If this were a book about all aspects of software development, it
would feature nicely balanced discussions of all activities in the development process.
Because this is a handbook of construction techniques, however, it places a lopsided
emphasis on construction and only touches on related topics. If this book were a dog,
it would nuzzle up to construction, wag its tail at design and testing, and bark at the
other development activities.

Construction is also sometimes known as “coding” or “programming.” “Coding” isn’t
really the best word because it implies the mechanical translation of a preexisting
design into a computer language; construction is not at all mechanical and involves
substantial creativity and judgment. Throughout the book, I use “programming” inter-
changeably with “construction.”

Microsoft

CODE 2

COMPLETE

I%“

/
N

A practical,handbook of software construction

A)

steve McConnell

s Two-timevinner of theSoftwareDevelopinent Magazine Jolt Award
)l .

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Taykor & Francis Group
A CHAPMAN & HALL BOOK

As the premier professional organization for software engineering, the
IEEE Computer Society strives to develop standards for and advance
knowledge of software development. SoftWare Engineering Body of
Knowledge (SWEBOK) is an endeavor to summarize current best prac-
tices of and tool usage within software development. Software construc-
tion is one area of focus and covers the concepts reviewed in this chapter.
The essential details of software construction, as outlined by SWEBOK,
are summarized in Table 2.5. For more details, see http://www.computer.
org/portal/web/swebok.

Software construction suggests code development but spans verifica-
tion of functionality via unit and integration testing as well as debugging.
Although the four fundamentals listed in Table 2.5 apply also to the mod-
eling and design phases of software development, we examine them here
in the context of coding.

SWEBOK’s fundamental to minimize code complexity seeks to pro-
duce clear and readable code. Constraining software complexity eases
the tasks of modeling, documentation, and testing. To limit the software
complexity of a code base, good programming practices should be fol-
lowed, including functional decomposition, encapsulation, appropriate
use of control structures, self-documenting code using mnemonic names
and constants, conscious design and implementation of error processing

The term software construction refers to the
detailed creation of working software through a
combination of coding, verification, unit testing,
integration testing, and debugging.

The Software Construction knowledge area
(KA) is linked to all the other KAs, but it is most
strongly linked to Software Design and Software
Testing because the software construction process
mvolves significant software design and testing.
The process uses the design output and provides an
mnput to testing (“design” and “testing” in this case
referring to the activities, not the KAs). Boundar-
ies between design, construction, and testing (if
any) will vary depending on the software life cycle
processes that are used in a project.

Although some detailed design may be per-
formed prior to construction, much design work
is performed during the construction activity.
Thus, the Software Construction KA is closely
linked to the Software Design KA.

i SWEBQK'
V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Plerre Bourque
Richard E. (Dick) Fairley

9 IEEE
iEEe@p computer society

Do we like any of

No universally
accepted definition

| know that | like
Mansaf!

r

What does this function do?

float[] foo(float[] array, float vall) {
float[] array_2 = null;
float val2 = 0;

1

2

3

4 for(int 1 = 1; i < array.length; i++) {
5 array_2 = new float[i];

6 for(int j = 0; j < 1i; j++) {
7 array_2[jl = arrayljl;

8 ¥

9

10 float avg = average(array_2);
11 if(avg <= vall) {

12 continue;

13 } else {

14 break;

15 I3

16 ¥

17 return array_2;

What is wrong?

float[] foo(float[] array, float vall) {
float[] array_2 = null;
float val2 = 0;

1

2

3

4 for(int 1 = 1; i < array.length; i++) {
5 array_2 = new float[i];

6 for(int j = 0; j < 1i; j++) {
7 array_2[jl = arrayljl;

8 ¥

9

10 float avg = average(array_2);
11 if(avg <= vall) {

12 continue;

13 } else {

14 break;

15 I3

16 }
17 return array_2;

What is wrong?

OooNOUTEE WN -

float[] foo(float[] array, float vall) {

float[] array_2 = null;
float val2 = 0;
for(int 1 = 1; i < array.length; i++) {
array_2 = new float[il];
for(int j = 0; j < i; j++) {
array_2I[jl = arrayljl;
}

float avg = average(array_2);
if(avg <= vall) A

continue;
} else {

break:

}
}

return array_2;

Not a descriptive function name
No comments about what this function does
Variable names are not descriptive either

Calculates average at each iteration from
scratch instead of updating it, therefore,
being not scalable for very large arrays

One branch of the if is used for loop
continuation

Unused variable val2

Do not check for null array return

A Better Version

8 List<Float> findSubListExceedingTargetAverage(List<Float> values, Float targetAverage) {
2 Float sum = 0.0;

3 List<Float> result = new ArrayList<Float>();

4 for(Float value: values) {

5 result.add(value);

6 sum += value;

7 Float average = sum / (Float) result.size();

8 if(average > targetAverage) {

9 break;

10 s

12 return result;

QA B\ @IS o Wil

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,
maintainable, robust, and secure software

Main Ideas in SWEN 6301
| Creating Code

How do you create code that is robust, extensible,
maintainable, and secure?

How do you evolve code in an efficient way with minimum
complexity to keep the overall code robust, extensible,
maintainable, and secure?

a very complicated task

How complicated is Software Construction for a Tesla car?

Course Overview
o

Laying the Foundation Variables & Statements Concurrency Software Craftsmanship

'

Creating High-Quality Code Code Improvements System Considerations

LET'US GET SERIOUS)

- : N
L 4 N

AND CLEAN SON

.

Soon all code will be

We are close to the end of generated instead of written
code

Programmers simply won’t be needed
because business people will generate
programs from specifications

We will create machines that can do what we want rather than what we say.
These machines can translate vaguely specified needs into perfectly
executing programs that precisely meet those needs.

There Will Be Code

We will never be rid of code

Code represents the details of the requirements. At some level those
details cannot be ignored or abstracted; they have to be specified.

Specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

HOW TO WRITE GOoD COpE:

Good Code vs Bad Code

It was the bad code that brought
the company down

Productivity

o 8 8 8 8

1

8

The Total Cost of Owning a Mess

Hire new developers The Grand Redesign in the Sky

Time

Why does good code rot so quickly into bad code?

The schedul oh The requirements changed in Stupid managers and intolerant
€ schedules were too tight ways that thwart the original customers and useless marketing types
to do things right . .
design and telephone sanitizers

But the fault is not in our stars, but in ourselves. We are unprofessional.

The project managers look to The users look to us to validate The managers and marketers look to us
us to help work out the the way the requirements will for the information they need to make
schedule fit into the system. promises and commitments
You'Te
Fire 1 to defend 1€

It's your 1

ion.
code with equal passio

Mow $e cuviermer eaplaned

How e prapct wen
e v

e

How B cantomer was biled How i was sapporied

It is unprofessional for
programmers to bend to the will of
managers who don’t understand
the risks of making messes.

The only way to make the deadline—
the only way to go fast—is to keep the
code as clean as possible at all times.

The Art of Clean Code?

A programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

Bjarne Stroustrup

What Is Clean Code?

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the dependencies
minimal to ease maintenance, error handling complete according to
an articulated strategy, and performance close to optimal so as not to
tempt people to make the code messy with unprincipled optimizations.
Clean code does one thing well.

Inventor of C++ and author of The C++
Programming Language

Grady Booch

What Is Clean Code?

Clean code is simple and direct. Clean code reads like well-written
prose. Clean code never obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines of control.

Author of Object Oriented Analysis
and Design with Applications

“Big” Dave Thomas

What Is Clean Code?

Clean code can be read, and enhanced by a developer other than its
original author. It has unit and acceptance tests. It has meaningful
names. It provides one way rather than many ways for doing one
thing. It has minimal dependencies, which are explicitly defined, and
provides a clear and minimal API. Code should be literate since
depending on the language, not all necessary information can be
expressed clearly in code alone.

Founder of OTI, godfather of the
Eclipse strategy

Michael Feathers

What Is Clean Code?

| could list all of the qualities that | notice in clean code, but there is
one overarching quality that leads to all of them. Clean code always
looks like it was written by someone who cares. There is nothing
obvious that you can do to make it better. All of those things were
thought about by the code’s author, and if you try to imagine
improvements, you’re led back to where you are, sitting in appreciation
of the code someone left for you—code left by someone who cares
deeply about the craft.

Author of Working Effectively with
Legacy Code

Ron Jeffries

N

N

What Is Clean Code?

In recent years | begin, and nearly end, with Beck’s

rules of simple code. In priority order, simple code:

* Runs all the tests;

e Contains no duplication;

* Expresses all the design ideas that are in the system;

* Minimizes the number of entities such as classes, methods,
functions, and the like.

Author of Extreme Programming
Installed and Extreme Programming
Adventures in C#

What Is Clean Code?

You know you are working on clean code when each routine you read
turns out to be pretty much what you expected. You can call it
beautiful code when the code also makes it look like the language was

made for the problem.

Inventor of Wiki, inventor of Fit, coinventor
of eXtreme Programming. Motive force
behind Design Patterns. Smalltalk and OO
thought leader. The godfather of all those
who care about code.

ALWAYS
LEAVE

CODE

THANYOU
FOUND IT!

THE ART OF PROGRAMING

