SWEN 6301 Software Construction
Lecture 2: Laying the Foundation

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- part of the slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course and Hans-Petter Halvorsen’s lecture notes on Software Development course.

a very complicated task

Laying the Foundation Variables & Statements Concurrency Software Craftsmanship

L

;-"
;.——..*-
N h

—
—

P

Loy

-~ .

Creating High-Quality Code Code Improvements System Considerations

Laying the Foundation

Software Metaphors for a Richer Understanding Measure Twice, Cut Once: Key Construction
Construction of Software Development Upstream Prerequisites Decisions

Software Construction

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,
maintainable, robust, and secure software

What Is Software Construction?

Construction Activities

T —————
= COdlng and lnlcgralmn)

Construction
g\}’lanmng) Debugglng

Coding implies the mechanical translation of a
preexisting design into a computer language;
construction is not at all mechanical and
involves substantial creativity and judgment.

\ Integrat ion)

Software) Unit)
w Testing ("‘ —
=3
S

Construction focuses on coding and debugging but also includes
detailed design, unit testing, integration testing, and other activities.

(\ A
()(llll“ m() o

)l)(lm«mln«‘

& -

———————— et

High-level View of Construction Activities

Verifying that the groundwork has been laid so that
construction can proceed successfully

Determining how your code will be tested
Designing and writing classes and routines
Creating and naming variables and named constants

Selecting control structures and organizing blocks of
statements

Unit testing, integration testing, and debugging your
own code

Reviewing other team members’ low-level designs and
code and having them review yours

Polishing code by carefully formatting and commenting
it

Integrating software components that were created
separately

Tuning code to make it faster and use fewer resources

Specific Tasks of Construction Activities

Why is Software Construction Important?

-
Construction is a large ®
part of software Construction’s product, the source
development code, is often the only accurate
é description of the software
Construction is the central
activity in software development [

Construction is the only activity
that’s guaranteed to be done

With a focus on construction, the
individual programmer’s productivity
can improve enormously

SUMMAR

Software construction is the central activity in software
development; construction is the only activity that’s guaranteed to
happen on every project.

The main activities in construction are detailed design, coding,
debugging, integration, and developer testing (unit testing and
integration testing).

Other common terms for construction are “coding” and
“programming.”

The quality of the construction substantially affects the quality of
the software.

Your understanding of how to do construction determines how
good a programmer you are.

Metaphors for a Richer Understanding
of Software Development

The Importance of Metaphors

Important developments often arise out of analogies. By comparing a topic you understand poorly to something
similar you understand better, you can come up with insights that result in a better understanding of the less-familiar

topic. This use of metaphor is called “modeling.”

1 he S"vaen;s m-«& s Q Aﬂ';boaﬁ_&,
and Hhe teacher chucks skarr
ObJ((h n ifs 2ewu| direction

to see what sticks

The chemist Kekulé perceived the structure of
the benzene ring after dreaming of a snake
biting its own tail

The kinetic theory of gases was based on a
“billiard-ball” model. Gas molecules have
mass and collide elastically

A good metaphor is simple, relates well to other relevant metaphors, and
explains much of the experimental evidence and other observed phenomena

How to Use Software Metaphors

To give you insight into your To help you think about your To help you imagine better

programming problems and processes

Algorithm

set of well-defined instructions for carrying
out a particular task

predictable, deterministic, and not subject
to chance

tells you how to go from point A to point B
with no detours, no side trips to points D,
E, and F, and no stopping to smell the roses
or have a cup of joe

programming activities ways of doing things.

Hevuristic

etiiéo
. helps you look for an answer
"o 5
< 3 e
cxl g . » subject to chance as a heuristic tells you
" J only how to look, not what to find
QENG ““‘h
-;_" J doesn’t tell you how to get directly from
point A to point B; it might not even
@ know where point A and point B are

An algorithm gives you the instructions directly

A heuristic tells you how to discover the instructions, or
where to look for them

Common Software Metaphors

Software Penmanship: Writing Code

Y

Al

1R IEE

Lo =——

Software Construction: Building Software

Software Oyster Farming
System Accretion

Applying Software Techniques:

The Intellectual Toolbox

SUMMAR

Metaphors are heuristics, not algorithms. As such, they tend to be a little sloppy.

Metaphors help you understand the software-development process by relating it to other
activities you already know about.

Some metaphors are better than others

Treating software construction as similar to building construction suggests that careful
preparation is needed and illuminates the difference between large and small projects.

Thinking of software-development practices as tools in an intellectual toolbox suggests
further that every programmer has many tools and that no single tool is right for every job.

Metaphors are not mutually exclusive. Use the combination of metaphors that works best
for you.

S MEASURE
*'v-
W

I ’# & | Measure Twice, Cut Once:
(' _. Upstream Prerequisites

CUT ONCE

Software development which amounts to 65% of project cost;
Doing the most expensive part of the project twice is as bad an
idea in software as it is in any other line of work.

Importance of Prerequisites

A common denominator of programmers who build high quality software is their use of high-quality
practices. Such practices emphasize quality at the beginning, middle, and end of a project.

The earlier parts of the project
have already laid some of the
groundwork for success/failure

Construction

st b e

Requirements/Design

If you emphasize quality at the
beginning, you plan for, require,
and design a high-quality product.

Testing

Testing # Quality Assurance

The overarching goal of preparation is Risk Reduction

a good project planner clears major risks out of the way as early as possible so that the bulk of
the project can proceed as smoothly as possible

Preparation for construction is
not an exact science, and the
specific approach to risk
reduction must be decided

poor requirements project by projeCt-

poor project planning

most common project risks in software development

Causes of Incomplete Preparation

MANAGERS

Managers are notoriously unsympathetic to programmers who spend
time on construction prerequisites

WISCA or WIMP syndrome: Why Isn’t Sam Coding Anything? or Why Isn’t
Mary Programming?

</>
P
DEVELOPERS

do not have the expertise to carry out upstream activities

The skills needed to plan a project, create a compelling business
case, develop comprehensive and accurate requirements, and
create high-quality architectures are far from trivial

The recommendation to “do more upstream work” sounds like
nonsense: If the work isn’t being done well in the first place, doing
more of it will not be useful!

Some programmers do know how to perform upstream activities,
but they don’t prepare because they can’t resist the urge to begin

coding as soon as possible.

Utterly Compelling and Foolproof Argument for Doing
Prerequisites Before Construction

Appeal to Logic Appeal to Analogy Appeal to Data Boss-Readiness Test

Appeal to Data

The cost to fix a defect rises dramatically as the time from when it’s introduced to

when it’s detected increases

Researchers have found that purging an error by the beginning of construction allows rework to be done 10 to 100
times less expensively than when it’s done in the last part of the process, during system test or after release

Phase in Which a
Defect Is Introduced

Requirements

Architecture

>/

Construction \ \ r‘>>/

Requirements Construction Post-Release

Cost

Architecture System Test

Phase in Which a Defect Is Detected

Table 3-1 Average Cost of Fixing Defects Based on When They're Introduced and Detected

Time Detected

Time Introduced Requirements Architecture Construction System Test Post-Release
Requirements 1 3 5-10 10 10-100
Architecture — 1 10 15 25-100
Construction — — 1 10 10-25

Source: Adapted from “Design and Code Inspections to Reduce Errors in Program Development” (Fagan 1976), Software Defect Removal
(Dunn 1984), “Software Process Improvement at Hughes Aircraft” (Humphrey, Snyder, and Willis 1991), “Calculating the Return on
Investment from More Effective Requirements Management” (Leffingwell 1997), “Hughes Aircraft’s Widespread Deployment of a
Continuously Improving Software Process” (Willis et al. 1998), “An Economic Release Decision Model: Insights into Software Project
Management” (Grady 1999), “What We Have Learned About Fighting Defects” (Shull et al. 2002), and Balancing Agility and Discipline:
A Guide for the Perplexed (Boehm and Turner 2004).

TEST YOUR
BOSS

Boss-Readiness Test

Which of these statements are self-fulfilling prophecies?

1. We'd better start coding right away because we’re going
to have a lot of debugging to do.

2. We haven’t planned much time for testing because we’re
not going to find many defects.

3. We’ve investigated requirements and design so much that
I can’t think of any major problems we’ll run into during
coding or debugging.

Determine the Kind of Software You’re Working On

Vice president and Chief Technology
Officer of Namcook Analytics LLC

He summarized 20 years of software research by
pointing out that he and his colleagues have seen 40
different methods for gathering requirements, 50
variations in working on software designs, and 30
kinds of testing applied to projects in more than 700
different programming languages.

Determine the Kind of Software You’re Working On

Different kinds of software projects call for
different balances between preparation and
construction

Every project is unique, but
projects do tend to fall into
general development styles

Typical Good Practices for Three
Common Kinds of Software Projects

Kind of Software

Mission-Critical

Embedded
Life-Critical Systems

=y ¢l
Typical Internet site Embedded software Avionics software
applications oot site Games Embedded software
Inventory Internet site Medical devices
management Packaged software Operating systems
Games Software tools Packaged software
Management Web services
information systems
Payroll system
Life-cycle Agile development Staged delivery Staged delivery
models (Extreme Program- Evolutionary Spiral development
ming, Scrum, time- delivery))
box development, Evolutionary delivery
and so on) Spiral development
Evolutionary
prototyping
Planning and Incremental project Basic up-front Extensive up-front
management planning planning planning
As-needed testand Basic test planning Extensive test
QA planning As-needed QA planning
Informal change planning Extensive QA
control Formal change planning
control Rigorous change
control
Requirements Informal require- Semiformal require- Formal requirements
ments specification ments specification specification
As-needed require- Formal requirements
ments reviews inspections
Design Design and coding Architectural design Architectural design
are combined Informal detailed Formal architecture
design inspections
As-needed design Formal detailed
reviews design
Formal detailed
design inspections
Construction Pair programming Pair programming Pair programming or
orindividual coding or individual coding individual coding
Informal check-in Informal check-in Formal check-in
procedure or no procedure procedure
check-in procedure As-needed code Formal code
reviews inspections
Testing Developers test Developers test Developers test their
and QA their own code their own code own code
Test-first Test-first Test-first
development development development
Little or no testing Separate testing Separate testing
by a separate test group group
group Separate QA group
Deployment Informal deploy- Formal deployment Formal deployment
ment procedure procedure procedure

Software Development Phases

Future Improvements

all the activities that make a software system available

-
—— - for use
—

Deployment

The high-level part of software design that holds the
 Mmore detailed parts of the design. It focuses on how to
P - determine the quality of an existing architecture

Testing

Construction

describe what the system should do and are often
= = collected in a so-called “Software Requirements
- Specification (SRS)” document.

Architecture - -

Requirements = ~

defines what the problem is without any reference to
== = possible solutions and lays the foundation for the rest
of the developments process

— -
__
-

Problem Definition = =~

Software Development Process
PLAN-DRIVEN METHODS AGILE METHODS

Waterfall Model V-Model eXtreme SCRUM
e | Programming (XP)
[_~’ I m“ "'.',‘ o .' mo //.
oo I\ St 2/ Feature Driven
—£— \ e BT f . Development (FDD)
Cevign Vet on JTest ane

s \
Jwieqgt almn

———t Lean Software
Development

Design and
implementation

Requirements
engineering

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-Driven Methods

Waterfall Model

Panning to create » new Software

Finahed

Requirement
=2
Finished
00 boch et o Design j
|
:

Nt Fahed 7
e - Implementation T
.

A Sequential Process

Fincred
Nt P rtbed
Go back ang P Tesm '
You cannot go 10 next phase before Deployrrent
2 L .
fnsihed the previous phase Go bach and o Maintenance

Software Finished

In practice, it is impossible to create perfect requirements
and design before you start implementing the code, so it is
common to go back and update these phases iteratively.

V-Model

Operation
Concept of Zgpy i
Operations . VerTralion uaintenance
Project . Validation
roje R.q rem
D efinition uand.n“ Verification
Architecture and Validation
Integration,
Detailled Te 1, aqg
Design Verification
Integration
Implementation
Time »

Reflects a project management view of software development

and fits the needs of project managers, accountants and
lawyers rather than software developers or users.

Agile Software Development

A group of software development methods based on iterative and incremental development

Important Agile features and principles

Customer Involvement Test Driven Development Less Documentation.

(TDD) Only whatis necessary cqntinuously Integrate Changes

Communication .
Refactoring

Work in Iterations Working Software at all
Pair Programming Incremental times

g i
| THAT MEANS NO MORE |¢
R T :
A AL §| PLANNING AND NOMORE [3| 1 ciap THAT
Popular Agile methods Aoans I STRTLRTIRG coor [1f TrameR RGNS
P 8 ™ MING AND COMPLAINING. [I] NAME |
SCRUM eXtreme Programming § \ i
\ | A ‘ Ty
i g p ¥ 3 /:-—?
| E : ™= Y

“e

)

Agile Development vs. Traditional Development

VISIBILITY . ADAPTABILITY

\/\/\/_\

BUSINESS VALUE RISK

Agile Software Development: eXtreme Programming

it advocates frequent "releases" in short development cycles, which is intended to improve productivity and introduce checkpoints at
which new customer requirements can be adopted

Elements of extreme programming include:

* Pair Programming

* Extensive Code Review
* Unit testing of all code (TDD)
* Avoiding programming of features until they are needed
* Flat management structure
* Expecting changes in the customer's requirements
* Frequent communication with the customer and among programmers

EXTREME PROGRAMMING

I CANT GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION

e ¥ solocom

-
g
E

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
USER STORY

N R T T h T T ———

OKAY,HERES A
STORY: YOU GIVE
ME ALL OF MY
FEATURES OR TLL
RUIN YOUR LIFE

Doparu,‘ﬂ D 2003 Uni ted Feature

Syndicate, Inc,

Planning/Feedback Loops

Code

Iteration Plan
Weed s

Acceptance Test
D
Stand Up Meeting

Ooe duy

Pair Negotiation

Y

Unit Test
M sy

Pair Programming

Secomdd

Agile Software Development: SCRUM

A framework for managing work with an emphasis on software development. It is designed for teams of developers (3 to 9) who
break their work into actions that can be completed within timeboxed iterations, called sprints (30 days or less, most commonly
two weeks) and track progress and re-plan in 15-minute stand-up meetings, called daily scrums.

Max 15 mins

10, ﬂu Purpose
Inputs from =] ol * Synchronize activities and create a plan for next 24 hrs.
Customers, Team, TR A
Burn Down/Up Agenda — Each Team member explains:
mm Execs Chart . What has been accomplished since last meeting?
Scrum

What will be done before the next meeting?
What obstacles are in the way?

Master

Max 4 hours

Show the customer and other
stakeholders the work that the team
accomplished in the sprint and
receive feedback

The Team Sprint Review Meeting
Team selects
starting at top
asmuchasit
<an commnt
deliver Sprint end date and Finished
:’,d - Spdt:\y(Sprint :am deliverable Work
Sorint . Backiog donet change e & Max 3 hours
A P Identify and implement ideas for
thil\g N , C . | ‘ c AGILEFORALL process improvement
Meeting o '
Max 8 hours ‘©NoloN Sprint

Retrospective Meeting
Determine what to do

Problem Definition

The problem definition lays the foundation for the
rest of the programming process.

Future Improvements

A problem definition defines what the problem is

_) _ Deployment
without any reference to possible solutions

: Testin
A simple statement (one or two pages). 8

It should be in user language and described from a user’s point of view.
Technical computer terms are better to be avoided
a.k.a. product vision, mission statement and product definition

Construction

Architecture

Requirements
Problem Definition

* “We can’t keep up with orders for the Gigatron”@

* “We need to optimize our automated data-entry system to keep
up with orders”

Problem Definition

Be sure a software or a computer program is required to address
a given problem, maybe the best solution is not a software

E There is a computer system producing reports of quarterly profits.
~ 4 What should we do for yearly profits? A new computer program?
o] Just add up the quarterly profits to calculate the yearly profit.
—

Problem Definition

Be sure you know what you’re aiming at before you shoot

The penalty for failing to define the problem is that you can waste a lot of
time solving the wrong problem. This is a double barreled penalty

B3 Share | because you also don’t solve the right problem. ﬁ

Requirements

Future Improvements

Deployment

Testing

Construction

Architecture

Requirements

Problem Definition

Requirements describe in detail what a software
system is supposed to do, and they are the first step

toward a solution

a.k.a “requirements development,” “requirements analysis,” “analysis,” “requirements
definition,” “software requirements,” “specification,” “functional spec,” and “spec.”

YOUR USER REQUIRE-
MENTS INCLUDE FOUR
MUNDRED FEATURES.

DO YOU REALIZE THAT
NO HUMAN WOULD BE
ABLE TO USE A PRODUCT
WITH THAT LEVEL OF
COMPLEXITY?

5

1hb @ ION mmd P amtere Byrdicate we

GOOD POINT
ID BETTER ADD
"EASY TO ustE”
TO THE LIST

© Scott Adams, Inc/Dist. by UFS, Inc.

Requirements

ILL NEED TO KNOW
YOUR REQUIREMENTS
BEFORE I START TO

| DESIGN THE SOFTLJAR.[/

FIRST OF ALL, |
WHAT ARE YOU |

TRYING TO |
ACCOMPLISH? |

7

MAKE YOU DESIGN

I™ TRYING TO
MY SOFTWARE.

{ I MEAN WHAT ARE
| YOU TRYING TO
| ACCOMPLISH WITH
| THE SOFTWARE?

I WON'T KNOW WHAT
1 CAN ACCOMPLISH
UNTIL YOU TELL ME
WHAT THE SOFTWARE
CAN DO

TRY TO GET THIS
CONCEPT THROUGH YOUR
THICK SKULL THE
SOFTWARE CAN DO
WHATEVER I DESIGN
IT TO DO*

o’

IT TO TELL YOU

" CAN YOU DESIGN
MY REQUIREMENTS?

Requirements

Requirements Engineering (RE) refers to the process of formulating, documenting and
maintaining software requirements.

The requirements are in some cases created by the customer, at least the

k overall requirements (it defines “What” the customers want), while more
details are normally created by architects and developers in the software
company that is going to develop the actual software.

S The main challenge in Requirements Engineering is that

oftware Requirement ,

Specification Document the customers most often don’t know what they want or
are not qualified to know what they need.

Requirements

- Requirements - Requirements

Cheret Maragen

Systern End Lnery Systern End Users

Chevat Engreens Chent Engneen

Comtianie Managen v A betedty

R e L L) A are (wnve b qeoy

User System Functional Non-Functional

- Requirements ‘ Requir/ements Requirements Requirements
Statements in natural language plus Statements of services the system should provide, how
diagrams of the services the system 1 the system should react to particular inputs and how
provides and its operational the system should behave in particular situations. May
constraints. Written for customers. state what the system should not do.

V4 I

A structured document setting out detailed descriptions of
the system’s functions, services and operational constraints.
Defines what should be implemented so may be part of a
contract between client and contractor.

Cove of e

P

Pin e e Ta A]
- — g e

fu e v

L anal

N 4 WA Ny

Vorey -
N 4wy ey

e re o ehse

B A b gTeE

e

T b it e b e

P antage o vty Lasury takae
Pty A e o g o b

P artage O Larger tependert Caterenty
N 4 g b

Constraints on the services or functions offered by
the system such as timing constraints, constraints
on the development process, standards, etc. Often
apply to the system as a whole rather than

individual features or services.

Mental health care patient management
system (MHC-PMS)

User Requirement Definition

1. The MHC-PMS shall generate monthly management reports showing

the cost of drugs prescribed by each dlinic during that month.

System Requirements Specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost, and the prescribing dlinics shall be generated.

1.2 The system shall automatically generate the report for printing after
17.30 on the last working day of the month.

1.3 A report shall be created for each dinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed, and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g, 10 mg, 20 mg)
separate reports shall be created for each dose unit.

1.5 Access to all cost reports shall be restricted to authorized users listed
on a management access control list.

Software Requirement
Specification Document

Requirements

* The software requirements document is the official statement

of what is required of the system developers.

* Should include both a definition of user requirements and a
specification of the system requirements.

* Itis NOT a design document. As far as possible, it should set
of WHAT the system should do rather than HOW it should do.

—t—e

e ad

Pea o s Be eyt ety ¢ e e e ot —
b g ¢ s b Bu s & ¢ . — e .
) # P Aoy b - et —

Pt o e b e end e B b i e e
— b b o |t o Be e | et
D e L e
L e)

A tes Sy o BB taber 4 o b w— —
b o S P ot B = gg—

D R]
D I i
et b As L @ e —

L N e —
P e e T i I R
s o+ ! s e B e e s

R
D T e i

s o e T e & s e — —— | —
D L e e
L e e

P et e e b R s T s —

L S e L R ——
D et i
-

Sample Table of Contents of SRS

S
Crem wver—,

Spechy e wqueemerts and
ad Therm 50 chack that they
et B e h C) ey
wpecdy hanges 1 the

puanTactL

Lo e rrgmrmserds
document o plan & bed for
e systemn and 10 plan e
nderr Sevra grres] o

Use the roguurramnts 13
wdenslarsd whal yden »
0 be developed

Lne e regumreserds by
Sevelop sabdamon tevh for
e watem

e e requurssnds by
el wrwd e v ben pnd
B 1l mombgn between
"oan

Users of SRS

- -

IEEE Recommended Practice for
Software Requirements
Specifications

https://ieeexplore.ieee.org/document/720574/

In practice, requirements and design are inseparable. Many don’t separate SRS and
SDD (Software Design Document) documents, but include everything in a document
called “Software Requirements and Design Document” (SRD).

. . UML
Requirements Analysis
- - ~ ’ Diagrams
Written High-Level ,
R = ts Diagrams as Figures
equiremen + Descriptions of each
Use Case Document?
System Software
Requirement & Database
Sketches, Flow Design Diagram(s)
Charts, etc. Document

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of e

Design Sketches
-both System Arcitecture CAD Drawings
and GUI mockups

m

Why Have Official Requirements?

An explicit set of requirements is important

ensure that the user rather than
the programmer drives the
system’s functionality

keep you from guessing

s help you to avoid arguments

If they’re not, the programmer usually ends
up making requirements decisions during

= = No
programming > R Q \
MIND READER % bryannagiey. con

Coding error during coding: you may change a few lines of code and work goes on.

A | |
“\ Paying attention to requirements Requirements error during coding: you may alter the design, throw away part of

hel ps to minimize cha nges to a the old design, and accommodate code that’s already written. Also, you may have

System after development begins to discard code and test cases affected by the requirement change and write new
code and test cases. Even code that’s unaffected must be retested.

Why Have Official Requirements?

Specifying requirements adequately is a key to project success, perhaps
even more important than effective construction techniques

Without good requirements, you can have the right general problem but miss the mark on
specific aspects of the problem

Why Have Official Requirements?

On large projects an error in requirements
detected during the architecture stage is
typically 3 times as expensive

If detected during coding, it's 5-10 times;
during system test, 10 times; and post-
release, 10—100 times as expensive

The Myth of Stable Requirements

IN SOFTWARE HCAVEN

With stable requirements, a project can proceed from architecture to design to
coding to testing in a way that’s orderly, predictable, and calm.

Customers can’t reliably describe what is needed before the code is written. The problem isn’t that the customers are a
lower life-form. Just as the more you work with the project, the better you understand it, the more they work with it, the
better they understand it.

How much change is typical?
Studies at IBM and other companies have
found that the average project experiences
about a 25% change in requirements during
development which accounts for 70 to 85% of
the rework on a typical project.

Handling Requirements Changes During Construction

Use the requirements checklist
to assess the quality of your
requirements

If your requirements aren’t good enough, stop
work, back up, and make them right before
proceed

Checklist: Requirements

The requirements checklist contains a list of questions to ask yourself about
your project’s requirements. This book doesn’t tell you how to do good require-
ments development, and the list won't tell you how to do one either. Use the list
as a sanity check at construction time to determine how solid the ground that
you're standing on is—where you are on the requirements Richter scale.

Not all of the checklist questions will apply to your project. If you're working on
an informal project, you'll find some that you don’t even need to think about.
You'll find others that you need to think about but don’t need to answer for-
mally. If you're working on a large, formal project, however, you may need to
consider every one.
Specific Functional Requirements

0 Are all the inputs to the system specified, including their source, accuracy,

range of values, and frequency?

0 Are all the outputs from the system specified, including their destination,
accuracy, range of values, frequency, and format?

0 Are all output formats specified for Web pages, reports, and so on?
0 Are all the external hardware and software interfaces specified?

0 Are all the external communication interfaces specified, including hand-
shaking, errorchecking, and communication protocols?

0 Are all the tasks the user wants to perform specified?
0 Is the data used in each task and the data resulting from each task specified?
Specific Nonfunctional (Quality) Requirements

0 Is the expected response time, from the user’s point of view, specified for
all necessary operations?

0 Are other timing considerations specified, such as processing time, data-
transfer rate, and system throughput?

Is the level of security specified?

0 Is the reliability specified, including the consequences of software failure,
the vital information that needs to be protected from failure, and the strat-
egy for error detection and recovery?

Are minimum machine memory and free disk space specified?

0 Isthe maintainability of the system specified, including its ability to adapt
to changes in specific functionality, changes in the operating environment,
and changes in its interfaces with other software?

Q Is the definition of success included? Of failure?

Requirements Quality
Q Are the requirements written in the user’s language? Do the users think
so?
2 Does each requirement avoid conflicts with other requirements?

0 Are acceptable tradeoffs between competing attributes specified—for
example, between robustness and correctness?

QDo the requirements avoid specifying the design?

Q Are the requirements at a fairly consistent level of detail? Should any
requirement be specified in more detail? Should any requirement be spec-
ified in less detail?

0 Are the requirements clear enough to be turned over to an independent
group for construction and still be understood? Do the developers think
so?

0 Is each item relevant to the problem and its solution? Can each item be
traced to its origin in the problem environment?

Q Iseachrequirement testable? Will it be possible for independent testing to
determine whether each requirement has been satisfied?

0 Areall possible changes to the requirements specified, including the like-
lihood of each change?

Requirements Completeness

Q Where information isn’t available before development begins, are the
areas of incompleteness specified?

Q Are the requirements complete in the sense that if the product satisfies
every requirement, it will be acceptable?

Q Are you comfortable with all the requirements? Have you eliminated
requirements that are impossible to implement and included just to
appease your customer or your boss?

Handling Requirements Changes During Construction

Make sure everyone knows the cost
of requirements changes

Clients get excited when they think of a new feature but If your client’s excitement persists, consider establishing a

don’t forget to mention the Schedule and Cost ! formal change control board to review such proposed
changes. It’s all right for customers to change their minds and

to realize that they need more capabilities

Set up a change-control procedure

Changes

NEXT EXIT A

Handling Requirements Changes During Construction

Use development approaches that
accommodate changes

You can build a little, get a little feedback from your users, If the requirements are especially bad or volatile and none
adjust your design a little, make a few changes, and build of the suggestions above are workable, cancel the project.

a little more.

Dump the project

The key is using short development

cycles so that you can respond to your aNCELLED

users quickly

Handling Requirements Changes During Construction

Keep your eye on the business case for
the project

Many requirements issues disappear before your eyes when
you refer back to the business reason for doing the project

Architecture

Software architecture is the high-level part of
software design, the frame that holds the more
detailed parts of the design

Future Improvements

a.k.a “system architecture,” “high-level design,” and “top-level design.”

Deployment
Typically, the architecture is described in a single document

referred to as the “architecture specification” or “top-level
design.”

Testing

Construction

Architecture

The quality of the architecture i i
: determines the ultimate
determines the conceptual)
guality of the system

Requirements integrity of the system.

Problem Definition

Architecture

Good architecture makes construction easy. Bad architecture makes
construction almost impossible

A well-thought-out architecture
provides the structure needed to maintain a system’s conceptual
integrity from the top levels down to the bottom.
provides guidance to programmers—at a level of detail appropriate
to the skills of the programmers and to the job at hand.
partitions the work so that multiple developers or multiple
development teams can work independently.

Architecture changes are like requirements changes in that seemingly
small changes can be far-reaching

Typical Architectural Components: Program Organization

A system architecture first needs an Without an overview, you won’t
overview that describes the system in understand how a class you’re
broad terms developing contributes to the system

~crabed by hand ~ Mebussa. & Doy
O
12-Piece Jigsaw Puzzle IH“ Android System Architecture

Typical Architectural Components: Program Organization

In the architecture, you should
find evidence that alternatives to
the final organization were
considered and find the reasons
for choosing the final organization
over its alternatives.

Typical Architectural Components: Program Organization

The architecture should define
the major building blocks.

Depending on the program size, each building block might be
a single class or a subsystem consisting of many classes

What each building block is
responsible for should be well
defined.

A building block should have one area
of responsibility, and it should know
as little as possible about other
building blocks' areas of responsibility

The communication rules for
each building block should be
well defined.

Typical Architectural Components: Major Classes

The architecture should: The architecturg doesn't need to specify every class
i i in the system. Aim for the 80/20 rule:
* specify the major classes to be used.
* identify the responsibilities of each major class and “Specify the 20 percent
how the class will interact with other classes. uJ80 of the classes that make
o I
mcluc‘/e.' descriptions of the cla§s hierarchies, of state — up 80 percent of the
transitions, and of object persistence. 20 , .
,] system's behavior
* If the system is large enough, describe how classes

are organized into subsystems.

=B n.rl e |

DataStager

-
Y
4
1
|
|
1
|’|
"w
{
]
L’

Feorc

Typical Architectural Components: Data Design

The architecture should describe
the major files and table designs
to be used & describe alternatives
that were considered and justify
the choices that were made. (e.g.,
database vs flat files)

Data should normally be accessed
directly by only one subsystem or
class, except through access
classes or routines that allow
access to the data in controlled
and abstract ways.

Information Hiding

Typical Architectural Components: Business Rules

If the architecture depends on specific business rules, it should identify them and
describe the impact the rules have on the system's design.

Suppose the system is required to follow a business rule that customer
information should be no more than 30 seconds out of date

In that case, the impact that rule has on the architecture’s approach to keeping
customer information up to date and synchronized should be described.

Typical Architectural Components: User Interface Design

The user interface is often specified at

requirements time. If it isn't, it should be The architecture should be modularized so
specified in the software architecture. that a new user interface can be
The architecture should specify major substituted without affecting the business
elements of Web page formats, GUISs, rules and output parts of the program

command line interfaces, and so on.

Components Products

e .

——

.

B

?
=,

-—
e

Typical Architectural Components: Resource Management

Memory management is another
important area for the architecture to
treat in memory-constrained applications
areas such as driver development and
embedded systems.

The architecture should describe a plan
for managing scarce resources such as
database connections, threads, and
handles.

Typical Architectural Components: Security

The architecture should describe the If a threat model has not previously been
approach to design-level and code level built, it should be built at architecture
security. time.

- "010_).(‘;“ ‘id
= . ‘r.‘cu'\. k"' " :‘

3 rOsourc. xdo

if ($thiseyr =
: ule_exists
e { s;e:ourco_dotnh('u‘l. v
f-'.»,ﬁ‘-,rgn t}\.) rUl‘ as th
. .re
W:taxls['accou'] = |u<c.,:;
$this-> sql-a>dele ' ' "
¥ e q tel ‘acl_rules', sdetails n
Update the rule with the nev access «a
$this->_sql-supdate('acl_rules’, srrapl ‘scoem' =

re
J "t

Typical Architectural Components: Performance

If performance is a concern,
performance goals should be specified
in the requirements.

Performance goals can include resource
usage, in which case the goals should
also specify priorities among resources,
including speed vs. memory vs. cost.

Typical Architectural Components: Scalability

The ability of a system to grow to meet future demands.

Number of lines of code in the Linux kernel

662078
0,777 0

The architecture should describe how the . 440000
system will address growth in number of
users, servers, network nodes, database — T

records, and size of database records, —T
transaction volume etc.

If the system is not expected to grow and
scalability is not an issue, the architecture
should make that assumption explicit.

Data souwrce Lnux Foundaton

Typical Architectural Components: Interoperability

If the system is expected to share data or resources with other
software or hardware, the architecture should describe how
that will be accomplished.

Typical Architectural Components: Internationalization/Localization

“Internationalization” is the technical activity of “Localization” (known as “L10n”) is the activity of
preparing a program to support multiple locales. translating a program to support a specific local
Internationalization is often known as “118n” language.

The architecture can decide to use strings in line in
the code where they’re needed, keep the strings in
a class and reference them through the class
interface, or store the strings in a resource file. The
architecture should explain which option was
chosen and why.

Typical Architectural Components: Input / Output

INPUT/OUTPUT
DIAGRAM

The architecture should specify a look- '8

ahead, look-behind, or just in-time
reading scheme. And it should describe

the level at which I/O errors are detected:
at the field, record, stream, or file level. l G
wur] (]

Typical Architectural Components: Error Processing

Some people have estimated that as much as 90 percent of

a program’s code is written for exceptional, error processing thfahfht
ST s OP

towards failure.

cases or housekeeping, implying that only 10 percent is
written for nominal cases

Error handling is often treated as a coding-convention-level
issue, if it's treated at all. But because it has system wide
implications, it is best treated at the architectural level.

Some Questions to Consider:

Is error processing corrective Is error detection active or How does the program
or merely detective? passive? propagate errors?
What are the conventions How will exceptions be Inside the program, at what
for handling error messages? handled? level are errors handled?
What is the level of responsibility of Do you want to use your environment’s built-in

each class for validating its input data? exception-handling mechanism or build your own?

Typical Architectural Components: Fault Tolerance

Fault tolerance is a collection of techniques that increase a system’s
reliability by detecting errors, recovering from them if possible, and
containing their bad effects if not.

Typical Architectural Components: Architectural Feasibility

The architecture should demonstrate that the
system is technically feasible. If infeasibility in any
area could render the project unworkable, the
architecture should indicate how those issues have
been investigated.

The designers might have concerns about a system’s

ability to meet its performance targets, work within

resource limitations, or be adequately supported by
the implementation environments.

Typical Architectural Components: Overengineering

The architecture should clearly indicate whether programmers should err
on the side of overengineering or on the side of doing the simplest thing
that works

The task of touching one's right ear.

over-engineering

Typical Architectural Components: Buy-vs.-Build Decisions

If the architecture isn’t using off-the-shelf
components, it should explain the ways in which it
expects custom-built components to surpass ready

made libraries and components.

The most radical solution to building software is not
to build it at all—to buy it instead or to download
open-source software for free.

Software - Custom Vs Off-the-Shelf

'

Typical Architectural Components: Reuse Decisions

If the plan calls for using preexisting software, test cases, data formats, or
other materials, the architecture should explain how the reused software
will be made to conform to the other architectural goals

Typical Architectural Components: Change Strategy

Because building a software product is a learning
process for both the programmers and the users,
the product is likely to change throughout its
development.

One of the major challenges facing a software
architect is making the architecture flexible enough
to accommodate likely changes.

The architecture should clearly describe a strategy
for handling changes.

Typical Architectural Components: General Architectural Quality

A good architecture should fit the problem.
When you look at the architecture, you should
be pleased by how natural and easy the
solution seems. It shouldn’t look as if the
problem and the architecture have been

forced together with duct tape
The Mythical Man-Month (Brooks 1995)

The architecture’s objectives should The architecture should describe the
be clearly stated. motivations for all major decisions.

Good software architecture is largely The architecture should explicitly
machine- and language-independent. identify risky areas

The architecture should tread the line The architecture should contain
between underspecifying and multiple views.
overspecifying the system.

Checklist: Architecture

Here's a list of issues that a good architecture should address. The list isn’t
intended to be a comprehensive guide to architecture but to be a pragmatic way
of evaluating the nutritional content of what you get at the programmer’s end of
the software food chain. Use this checklist as a starting point for your own
checklist. As with the requirements checklist, if you're working on an informal
project, you'll find some items that you don’t even need to think about. If you're
working on a larger project, most of the items will be useful

Specific Architectural Topics
Q Is the overall organization of the program clear, including a good architec-
tural overview and justification?

Q Are major building blocks well defined, including their areas of responsi
bility and their interfaces to other building blocks?

0 Areall the functions listed in the requirements covered sensibly, by neither
too many nor too few building blocks?

0 Are the most critical classes described and justified?
0 Is the data design described and justified?
Q Is the database organization and content specified?

0 Are all key business rules identified and their impact on the system
described?

Q Isastrategy for the user interface design described?

0 Isthe user interface modularized so that changes in it won't affect the rest
of the program?

0 Isastrategy for handling I/O described and justified?

O Are resource-use estimates and a strategy for resource management
described and justified for scarce resources like threads, database connec-
tions, handles, network bandwidth, and so on?

Q Are the architecture’s security requirements described?

O Does the architecture set space and speed budgets for each class, sub-
system, or functionality area?

Q@ Does the architecture describe how scalability will be achieved?
O Does the architecture address interoperability?

0 Isastrategy for internationalization/localization described?

0 Isacoherent error-handling strategy provided?

Q Is the approach to fault tolerance defined (if any is needed)?

Q Has technical feasibility of all parts of the system been established?
Q Isan approach 1o overengineering specified?
O Are necessary buy-vs.-build decisions included?

0 Does the architecture describe how reused code will be made to conform
to other architectural objectives?

Q Is the architecture designed to accommodate likely changes?
General Architectural Quality
Q Does the architecture account for all the requirements?

Q s any part overarchitected or underarchitected? Are expectations in this
area set out explicitly?

0 Does the whole architecture hang together conceptually?

a Is the top-level design independent of the machine and language that will
be used to implement it?

O Are the motivations for all major decisions provided?

Q Are you, as a programmer who will implement the system, comfortable
with the architecture?

SUMMAR

The overarching goal of preparing for construction is risk reduction.

If you want to develop high-quality software, attention to quality must be part of the software-
development process from the beginning to the end

Part of a programmer’s job is to educate bosses and coworkers about the software- development
process, including the importance of adequate preparation before programming begins.

The kind of project you’re working on significantly affects construction prerequisites

If a good problem definition hasn’t been specified, you might be solving the wrong problem during
construction.

If good requirements work hasn’t been done, you might have missed important details of the problem

If a good architectural design hasn’t been done, you might be solving the right problem the wrong way
during construction.

Understand what approach has been taken to the construction prerequisites on your project, and
choose your construction approach accordingly.

&) 6B () 4 @) &) 6 @)

Construction

Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and
compile the program to an executable unit.

Future Improvements

Deployment

Testing

Construction

Architecture

Requirements

Problem Definition

Key Construction Decisions

Choice of Programming . . Your Location on the Selection of Major
Programming Conventions))
Language Technology Wave Construction Practices

Choice of Programming Language

Studies have shown that the programming-
language choice affects productivity and code
quality in several ways

Programmers are more productive using a
familiar language than an unfamiliar one

Programmers working with high-level languages
achieve better productivity and quality than
those working with lower-level languages.

Human languages

High level
programming
language

Low level

programming
language

Machine language

E.g., English, French, Spanish,
Chinese, German, Arabic etc

E.g., Python, Java, C++

for(1=1;1<=10; 1+4)

Assembly
MOV #10, RO

Binary
10100000 1010 00

Computer hardware

High
level

LOW

level

Choice of Programming Language

Ratio of High-Level-Language Statements to Equivalent C Code

Language Level Relative to C
C 1

C++ 2.5

Fortran 95 2

Java 2.5

Perl 6

Python 6

Smalltalk 6

Microsoft Visual Basic 4.5

Source: Adapted from Estimating Software Costs (Jones 1998), Software Cost Estimation with Cocomo Il
(Boehm 2000), and “An Empirical Comparison of Seven Programming Languages” (Prechelt 2000).

JOb postings conaining top Wagueges

Choice of Programming Language

NOVICE PROGRAMMER

Kind of Program Best Languages Worst Languages
[R Cobol. Fortran, SOL
processimg
Crons placform Java, Perl, Python Assembler, C#, Visual Basic
developenent
Datibase manigelation | SOL. Viswal Basic Assembler, C
Direct memory Assembler, C, Cos C#, Java, Vsl Basic
manpalese
Distritesed system Co Java
Dynaméc memory use C.Coe, Java .
Easy %0 mudntain Cos, Java, Visual Basic | Assembler, Perl
progyam
Fast exrcution Assembler, C, Cos, JavaScript. Perl. Python
Viusal Basic
For esvironmments with | Assembler, C C#, Java. Viswal Basic
lemised ey
Mt hwrmmats 2l Fortran Assembiler
caloulation
Quick-and -ty project | Perl. PHP. Python, Asverrbler
Vissal Baske
Rral temw peosey am C. Cos, Assembler Co, Java, Python. Perl, Visual
Banke
Report writing Cobol, Perl, Visual Assembler, Java
Banse
Secwre program e Jva C,Cos
Sm‘. Fungulsea Perl. Python C
Web den chopemrnt CF Java, JavaScrige, Asserrbiber, C
PHP, Visual Bk

Some lomgmapes stmply dow 1 suppovt certin by of progrowe, awd those have nor

boow nsed an “worst ™ kiwewaoves. For exvoele. Perl is ot lised as 0 “worst
lovpmrpe for smathematic ! colenlimtions

Sl ae haf i e e i 4 tpmder mrguen Swn o Do D XX pan et b e ady B\ Ak ST marn b el b @Gl & we ey e0D De Comgpnder L
o er D e I e e I B e ey Btemm A Lieen Vatey o e] el A e (2008 mbeias geages by @ Lay P
Fmes Bans Lebe ams e o b e — - -4 N ek e Gade. Wiy et “They et [SR
R I et a e T a sl T ALae o GAMears i TCe e madn of Tas Sreclart e Ta hecu tocal P g @ s ——
AS 8 s o ey oy # pon wilh - B MCanams Tarces That Whaped Natory ot T Seme. * Boech siplaia. “They 1 pravide e ke

At O B M DOCement T Mgl O ClaaAs saMearn They W CamGueg Te pete b i mate Y - 13 Ha ehat morhed e

P Bt Dy W et O CoDeN AL Pua 4 Tiese teaTy Y pates wegus R DRt A WAt was B0 e Slure T Seen's & pesk ot Dhe MRAgent Deanches Catt = S wn @ -
Tracing the roots of computer VIrgE AReg The mour enCangered w Adu AR § e pececesasr o J. Lag O FOgImmng L amiy Tea Tor 3 MATy GNLATYE Tendown. (ReC Suf the Language Lat —

mere Seataw el Semoa - AT - e h | Wrae Wenders | —e
languages through the ages

WO W W R R T R S T T T T T R R R R T T R e R T e T R R O T R O T T R O T T T T e e e e e e e e

= — AN Comn e]
EEE 7‘ \\ e
-
—=— S D

Survival of the Fittest i g‘ w

Appeain ls o webn < oy e o Una)
Cote & jub bune Ll Smanprad Vs Snmmess topmr| @iy |

Comven mre loniluasuty Jovd rumt 3 Bhy FardeBe Hartorm | — T — .
e —— -i&- \ X

Mat b powetd wtel Date o Dacher T8 |Seveaoec Dy Moraeot tr Ne
LT ater Pes (progr Shor Larry Wal)

S e Tl Bis Bed Fayme stan o b b e b w0 8 TW Crmme b he P iy, B i T oy s —— 8 W P Mot tni e - e tal P bl eeeady

Programming Conventions

In high-quality software, you can see a relationship between the conceptual integrity
of the architecture and its low-level implementation.

That’s the point of construction guidelines for variable names, class names, routine names, formatting conventions, and
commenting conventions.

Without a unifying discipline, your creation will

be a jumble of sloppy variations in style. Such chec kSty e ([
variations tax your brain—and only for the e

. . . http://checkstyle.sourceforge.net/ http://checkstyle.org/eclipse-cs/
sake of understanding coding-style differences
that are essentially arbitrary.

Before construction begins, spell out the programming conventions you’ll use. Coding convention details
are at such a level of precision that they’re nearly impossible to retrofit into software after it’s written.

Programming into a Language

Programmers who program “in” a language limit their Programmers who program “into” a language first
thoughts to constructs that the language directly decide what thoughts they want to express, and then
supports. If the language tools are primitive, the they determine how to express those thoughts using

programmer’s thoughts will also be primitive. the tools provided by their specific language.

Selection of Major Construction Practices

Checklist: Major Construction Practices
Coding
Qa Have you defined how much design will be done up front and how much
will be done at the keyboard, while the code is being written?

Q Have you defined coding conventions for names, comments, and layout?

Q0 Have you defined specific coding practices that are implied by the architec-
ture, such as how error conditions will be handled, how security will be
addressed, what conventions will be used for class interfaces, what stan-
dards will apply to reused code, how much to consider performance while
coding, and so on?

Q Have you identified your location on the technology wave and adjusted
your approach to match? If necessary, have you identified how you will
program into the language rather than being limited by programming in it?

Teamwork
Q Have you defined an integration procedure—that is, have you defined the
specific steps a programmer must go through before checking code into
the master sources?

Q Will programmers program in pairs, or individually, or some combination
of the two?

Quality Assurance

Q Will programmers write test cases for their code before writing the code
itself?

Q Will programmers write unit tests for their code regardless of whether
they write them first or last?

Q Will programmers step through their code in the debugger before they
check it in?

0 Will programmers integration-test their code before they check it in?
Q Will programmers review or inspect each other’s code?
Tools
Q0 Have you selected a revision control tool?
0 Have you selected a language and language version or compiler version?

Q Have you selected a framework such as J2EE or Microsoft .NET or explic-
itly decided not to use a framework?

0 Have you decided whether to allow use of nonstandard language features?

Q Have you identified and acquired other tools you’'ll be using—editor, refac-
toring tool, debugger, test framework, syntax checker, and so on?

SUMMAR

Every programming language has strengths and weaknesses. Be aware of
the specific strengths and weaknesses of the language you’re using.

Establish programming conventions before you begin programming. It’s
nearly impossible to change code to match them later.

More construction practices exist than you can use on any single project.
Consciously choose the practices that are best suited to your project.

Ask yourself whether the programming practices you’re using are a
response to the programming language you’re using or controlled by it.
Remember to program into the language, rather than programming in it.

Your position on the technology wave determines what approaches will be
effective— or even possible. Identify where you are on the technology
wave, and adjust your plans and expectations accordingly

Testing

A process of executing a program or application with
the intent of finding the software bugs

Future Improvements

Deployment

CAREER PLANNING FOR S/W TESTING

Testing

Construction

Architecture

Requirements

Problem Definition

Testing

Consider different test levels:
Unit, Integration, System Accep ance, and Regression

Testing of a single function, Ensures that the whole
procedure, class. system works properly

| "\

Checks that units tested in isolation Checks if the user functionalities
work properly when put together are delivered. It is often a
contractual prerequisite for the
user to accept/pay for the software

/

Checks that the system preserves
its functionality after maintenance
and/or evolution

AETAS ROVTRMEE WTNOT BLTONETED
TESTS O LR WORENG ON AN
ELBCTRICAL PUNEL wNTW A PR ...

A\

Future Improvements

Deployment

Software deployment is all the activities that make a
software system available for use

Architecture

Requirements

Problem Definition

Hundreds of OS based on Linux

“~ Kl 00. - 5 ' » ’

> . & »
Deployment LAEBAl2nsSadz_A
— . x © &8 98 -, L

; ® > m & < A 8 e G ”
Testin = - 2 ‘ B
. 2 Il G 20 = N
. w ® 3 =99 4682 ¢ xk N=m
Construction —* 5 ET .

A 20O TS

| DONT ALWAYS TEST MY
~CODE

BUT WHEN | DO 1 DO ITHIN
PRODUCTION

