
SWEN 6301 Software Construction
Lecture 2: Laying the Foundation

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- part of the slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course and Hans-Petter Halvorsen’s lecture notes on Software Development course.

a very complicated task
Software Construction

Laying the Foundation

Creating High-Quality Code

Variables & Statements

Code Improvements

Concurrency

System Considerations

Software Craftsmanship

①

②

③

④

⑤

⑥

⑦

Software
Construction

Laying the Foundation
Metaphors for a Richer Understanding

of Software Development
Measure Twice, Cut Once:

Upstream Prerequisites
Key Construction

Decisions

Software Construction

SWEN 6301 Software
Construction Definition

Software construction is the process of creating and
evolving software source code that results on extensible,

maintainable, robust, and secure software

What Is Software Construction?
Construction Activities

Construction focuses on coding and debugging but also includes
detailed design, unit testing, integration testing, and other activities.

Coding implies the mechanical translation of a
preexisting design into a computer language;
construction is not at all mechanical and
involves substantial creativity and judgment.

Specific Tasks of Construction Activities

Verifying that the groundwork has been laid so that
construction can proceed successfully

Determining how your code will be tested

Designing and writing classes and routines

Creating and naming variables and named constants

Selecting control structures and organizing blocks of
statements

Unit testing, integration testing, and debugging your
own code

Reviewing other team members’ low-level designs and
code and having them review yours

Polishing code by carefully formatting and commenting
it

Integrating software components that were created
separately

Tuning code to make it faster and use fewer resources

High-level View of Construction Activities

Why is Software Construction Important?

Construction is the only activity
that’s guaranteed to be done

Construction is a large
part of software

development

Construction is the central
activity in software development

With a focus on construction, the
individual programmer’s productivity

can improve enormously

Construction’s product, the source
code, is often the only accurate

description of the software

Software construction is the central activity in software
development; construction is the only activity that’s guaranteed to

happen on every project.

The main activities in construction are detailed design, coding,
debugging, integration, and developer testing (unit testing and

integration testing).

Other common terms for construction are “coding” and
“programming.”

The quality of the construction substantially affects the quality of
the software.

Your understanding of how to do construction determines how
good a programmer you are.

Metaphors for a Richer Understanding
of Software Development

The Importance of Metaphors
Important developments often arise out of analogies. By comparing a topic you understand poorly to something

similar you understand better, you can come up with insights that result in a better understanding of the less-familiar
topic. This use of metaphor is called “modeling.”

The chemist Kekulé perceived the structure of
the benzene ring after dreaming of a snake

biting its own tail

A good metaphor is simple, relates well to other relevant metaphors, and
explains much of the experimental evidence and other observed phenomena

The kinetic theory of gases was based on a
“billiard-ball” model. Gas molecules have

mass and collide elastically

Heuristic

How to Use Software Metaphors
To give you insight into your

programming problems and processes
To help you think about your

programming activities
To help you imagine better

ways of doing things.

set of well-defined instructions for carrying
out a particular task

predictable, deterministic, and not subject
to chance

tells you how to go from point A to point B
with no detours, no side trips to points D,

E, and F, and no stopping to smell the roses
or have a cup of joe

helps you look for an answer

subject to chance as a heuristic tells you
only how to look, not what to find

doesn’t tell you how to get directly from
point A to point B; it might not even
know where point A and point B are

An algorithm gives you the instructions directly
A heuristic tells you how to discover the instructions, or

where to look for them

Algorithm

Common Software Metaphors

Software Penmanship: Writing Code

Software Oyster Farming
System Accretion

Software Construction: Building Software

Software Farming: Growing a System

Applying Software Techniques:
The Intellectual Toolbox

Metaphors are heuristics, not algorithms. As such, they tend to be a little sloppy.

Metaphors help you understand the software-development process by relating it to other
activities you already know about.

Some metaphors are better than others

Treating software construction as similar to building construction suggests that careful
preparation is needed and illuminates the difference between large and small projects.

Thinking of software-development practices as tools in an intellectual toolbox suggests
further that every programmer has many tools and that no single tool is right for every job.

Metaphors are not mutually exclusive. Use the combination of metaphors that works best
for you.

Measure Twice, Cut Once:
Upstream Prerequisites

Software development which amounts to 65% of project cost;
Doing the most expensive part of the project twice is as bad an

idea in software as it is in any other line of work.

Importance of Prerequisites
A common denominator of programmers who build high quality software is their use of high-quality

practices. Such practices emphasize quality at the beginning, middle, and end of a project.

Testing

Construction

Requirements/Design

Testing ≠ Quality Assurance

The earlier parts of the project
have already laid some of the

groundwork for success/failure

If you emphasize quality at the
beginning, you plan for, require,

and design a high-quality product.

The overarching goal of preparation is Risk Reduction
a good project planner clears major risks out of the way as early as possible so that the bulk of

the project can proceed as smoothly as possible

poor requirements

poor project planning

most common project risks in software development

Preparation for construction is
not an exact science, and the
specific approach to risk
reduction must be decided
project by project.

Causes of Incomplete Preparation

do not have the expertise to carry out upstream activities

The skills needed to plan a project, create a compelling business
case, develop comprehensive and accurate requirements, and
create high-quality architectures are far from trivial

The recommendation to “do more upstream work” sounds like
nonsense: If the work isn’t being done well in the first place, doing
more of it will not be useful!

DEVELOPERSMANAGERS

Some programmers do know how to perform upstream activities,
but they don’t prepare because they can’t resist the urge to begin
coding as soon as possible.

Managers are notoriously unsympathetic to programmers who spend
time on construction prerequisites

WISCA or WIMP syndrome: Why Isn’t Sam Coding Anything? or Why Isn’t
Mary Programming?

Utterly Compelling and Foolproof Argument for Doing
Prerequisites Before Construction

Appeal to Logic Appeal to Analogy Appeal to Data Boss-Readiness Test

The cost to fix a defect rises dramatically as the time from when it’s introduced to
when it’s detected increases

Researchers have found that purging an error by the beginning of construction allows rework to be done 10 to 100
times less expensively than when it’s done in the last part of the process, during system test or after release

Appeal to Data

Boss-Readiness Test
Which of these statements are self-fulfilling prophecies?
1. We’d better start coding right away because we’re going

to have a lot of debugging to do.
2. We haven’t planned much time for testing because we’re

not going to find many defects.
3. We’ve investigated requirements and design so much that

I can’t think of any major problems we’ll run into during
coding or debugging.

Determine the Kind of Software You’re Working On

Vice president and Chief Technology
Officer of Namcook Analytics LLC

Capers Jones

He summarized 20 years of software research by
pointing out that he and his colleagues have seen 40
different methods for gathering requirements, 50
variations in working on software designs, and 30
kinds of testing applied to projects in more than 700
different programming languages.

Determine the Kind of Software You’re Working On

Different kinds of software projects call for
different balances between preparation and
construction

Every project is unique, but
projects do tend to fall into
general development styles

Typical Good Practices for Three
Common Kinds of Software Projects

Software Development Phases

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

defines what the problem is without any reference to
possible solutions and lays the foundation for the rest
of the developments process

describe what the system should do and are often
collected in a so-called “Software Requirements
Specification (SRS)” document.

The high-level part of software design that holds the
more detailed parts of the design. It focuses on how to
determine the quality of an existing architecture

all the activities that make a software system available
for use

Software Development Process
AGILE METHODSPLAN-DRIVEN METHODS

Waterfall Model V-Model eXtreme
Programming (XP)

SCRUM

Feature Driven
Development (FDD)

Lean Software
Development

Plan-Driven Methods

Waterfall Model V-Model

In practice, it is impossible to create perfect requirements
and design before you start implementing the code, so it is
common to go back and update these phases iteratively.

Reflects a project management view of software development
and fits the needs of project managers, accountants and

lawyers rather than software developers or users.

Agile Software Development
A group of software development methods based on iterative and incremental development

Customer Involvement Test Driven Development
(TDD) Continuously Integrate Changes

RefactoringWork in Iterations
Incremental

Communication

Pair Programming

Less Documentation.
Only what is necessary

Working Software at all
times

Important Agile features and principles

Popular Agile methods
SCRUM eXtreme Programming

http://agilemanifesto.org/iso/en/manifesto.html

Agile Development vs. Traditional Development

Agile Software Development: eXtreme Programming
it advocates frequent "releases" in short development cycles, which is intended to improve productivity and introduce checkpoints at

which new customer requirements can be adopted

Elements of extreme programming include:
• Pair Programming
• Extensive Code Review
• Unit testing of all code (TDD)
• Avoiding programming of features until they are needed
• Flat management structure
• Expecting changes in the customer's requirements
• Frequent communication with the customer and among programmers

Agile Software Development: SCRUM
A framework for managing work with an emphasis on software development. It is designed for teams of developers (3 to 9) who
break their work into actions that can be completed within timeboxed iterations, called sprints (30 days or less, most commonly

two weeks) and track progress and re-plan in 15-minute stand-up meetings, called daily scrums.

Purpose
• Synchronize activities and create a plan for next 24 hrs.
• Track Progress
Agenda – Each Team member explains:
• What has been accomplished since last meeting?
• What will be done before the next meeting?
• What obstacles are in the way?

Max 15 mins

Max 8 hours

Max 4 hours
Show the customer and other
stakeholders the work that the team
accomplished in the sprint and
receive feedback

Identify and implement ideas for
process improvement

Determine what to do

Max 3 hours

Problem Definition

A problem definition defines what the problem is
without any reference to possible solutions

The problem definition lays the foundation for the
rest of the programming process.

• A simple statement (one or two pages).
• It should be in user language and described from a user’s point of view.
• Technical computer terms are better to be avoided
• a.k.a. product vision, mission statement and product definition

• “We can’t keep up with orders for the Gigatron”
• “We need to optimize our automated data-entry system to keep

up with orders”

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

There is a computer system producing reports of quarterly profits.
What should we do for yearly profits? A new computer program?
Just add up the quarterly profits to calculate the yearly profit.

Be sure a software or a computer program is required to address
a given problem, maybe the best solution is not a software

Problem Definition

The penalty for failing to define the problem is that you can waste a lot of
time solving the wrong problem. This is a double barreled penalty

because you also don’t solve the right problem.

Be sure you know what you’re aiming at before you shoot

Problem Definition

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

Requirements

Requirements describe in detail what a software
system is supposed to do, and they are the first step

toward a solution

a.k.a “requirements development,” “requirements analysis,” “analysis,” “requirements
definition,” “software requirements,” “specification,” “functional spec,” and “spec.”

Requirements

Requirements
Requirements Engineering (RE) refers to the process of formulating, documenting and

maintaining software requirements.

The requirements are in some cases created by the customer, at least the
overall requirements (it defines “What” the customers want), while more
details are normally created by architects and developers in the software
company that is going to develop the actual software.SRS

Software Requirement
Specification Document

The main challenge in Requirements Engineering is that
the customers most often don’t know what they want or

are not qualified to know what they need.

Requirements

Mental health care patient management
system (MHC-PMS)

Requirements

SRS

Software Requirement
Specification Document

• The software requirements document is the official statement
of what is required of the system developers.

• Should include both a definition of user requirements and a
specification of the system requirements.

• It is NOT a design document. As far as possible, it should set
of WHAT the system should do rather than HOW it should do.

https://ieeexplore.ieee.org/document/720574/

Users of SRSSample Table of Contents of SRS

In practice, requirements and design are inseparable. Many don’t separate SRS and
SDD (Software Design Document) documents, but include everything in a document

called “Software Requirements and Design Document” (SRD).

Software
Requirement &

Design
Document

SRD

Why Have Official Requirements?

An explicit set of requirements is important
ensure that the user rather than

the programmer drives the
system’s functionality

If they’re not, the programmer usually ends
up making requirements decisions during
programming

keep you from guessing
what the user wants

Paying attention to requirements
helps to minimize changes to a

system after development begins.

Coding error during coding: you may change a few lines of code and work goes on.

Requirements error during coding: you may alter the design, throw away part of
the old design, and accommodate code that’s already written. Also, you may have
to discard code and test cases affected by the requirement change and write new
code and test cases. Even code that’s unaffected must be retested.

help you to avoid arguments

Specifying requirements adequately is a key to project success, perhaps
even more important than effective construction techniques

Without good requirements, you can have the right general problem but miss the mark on
specific aspects of the problem

Why Have Official Requirements?

Why Have Official Requirements?

On large projects an error in requirements
detected during the architecture stage is

typically 3 times as expensive

If detected during coding, it's 5–10 times;
during system test, 10 times; and post-

release, 10–100 times as expensive

The Myth of Stable Requirements

With stable requirements, a project can proceed from architecture to design to
coding to testing in a way that’s orderly, predictable, and calm.

Customers can’t reliably describe what is needed before the code is written. The problem isn’t that the customers are a
lower life-form. Just as the more you work with the project, the better you understand it, the more they work with it, the
better they understand it.

How much change is typical?
Studies at IBM and other companies have
found that the average project experiences
about a 25% change in requirements during
development which accounts for 70 to 85% of
the rework on a typical project.

IN Software Heaven

Handling Requirements Changes During Construction

Use the requirements checklist
to assess the quality of your

requirements
If your requirements aren’t good enough, stop
work, back up, and make them right before
proceed

Handling Requirements Changes During Construction

Make sure everyone knows the cost
of requirements changes

Clients get excited when they think of a new feature but
don’t forget to mention the Schedule and Cost !

Set up a change-control procedure

If your client’s excitement persists, consider establishing a
formal change control board to review such proposed
changes. It’s all right for customers to change their minds and
to realize that they need more capabilities

Handling Requirements Changes During Construction

Use development approaches that
accommodate changes

You can build a little, get a little feedback from your users,
adjust your design a little, make a few changes, and build
a little more.

The key is using short development
cycles so that you can respond to your

users quickly

Dump the project

If the requirements are especially bad or volatile and none
of the suggestions above are workable, cancel the project.

Handling Requirements Changes During Construction

Keep your eye on the business case for
the project

Many requirements issues disappear before your eyes when
you refer back to the business reason for doing the project

Architecture

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

Software architecture is the high-level part of
software design, the frame that holds the more

detailed parts of the design
a.k.a “system architecture,” “high-level design,” and “top-level design.”

Typically, the architecture is described in a single document
referred to as the “architecture specification” or “top-level

design.”

The quality of the architecture
determines the conceptual

integrity of the system.

determines the ultimate
quality of the system

Architecture

A well-thought-out architecture
• provides the structure needed to maintain a system’s conceptual

integrity from the top levels down to the bottom.
• provides guidance to programmers—at a level of detail appropriate

to the skills of the programmers and to the job at hand.
• partitions the work so that multiple developers or multiple

development teams can work independently.

Good architecture makes construction easy. Bad architecture makes
construction almost impossible

Architecture changes are like requirements changes in that seemingly
small changes can be far-reaching

Typical Architectural Components: Program Organization

A system architecture first needs an
overview that describes the system in

broad terms

Android System Architecture12-Piece Jigsaw Puzzle

Without an overview, you won’t
understand how a class you’re

developing contributes to the system

Typical Architectural Components: Program Organization

In the architecture, you should
find evidence that alternatives to

the final organization were
considered and find the reasons

for choosing the final organization
over its alternatives.

Typical Architectural Components: Program Organization

The architecture should define
the major building blocks.

Depending on the program size, each building block might be
a single class or a subsystem consisting of many classes

What each building block is
responsible for should be well

defined.

A building block should have one area
of responsibility, and it should know

as little as possible about other
building blocks' areas of responsibility

The communication rules for
each building block should be

well defined.

Typical Architectural Components: Major Classes

The architecture should:
• specify the major classes to be used.
• identify the responsibilities of each major class and

how the class will interact with other classes.
• include descriptions of the class hierarchies, of state

transitions, and of object persistence.
• If the system is large enough, describe how classes

are organized into subsystems.

The architecture doesn't need to specify every class
in the system. Aim for the 80/20 rule:

“Specify the 20 percent
of the classes that make

up 80 percent of the
system's behavior”

Typical Architectural Components: Data Design

The architecture should describe
the major files and table designs

to be used & describe alternatives
that were considered and justify

the choices that were made. (e.g.,
database vs flat files)

Data should normally be accessed
directly by only one subsystem or

class, except through access
classes or routines that allow

access to the data in controlled
and abstract ways.
Information Hiding

Typical Architectural Components: Business Rules

If the architecture depends on specific business rules, it should identify them and
describe the impact the rules have on the system's design.

Suppose the system is required to follow a business rule that customer
information should be no more than 30 seconds out of date
In that case, the impact that rule has on the architecture’s approach to keeping
customer information up to date and synchronized should be described.

Typical Architectural Components: User Interface Design

The user interface is often specified at
requirements time. If it isn't, it should be
specified in the software architecture.
The architecture should specify major
elements of Web page formats, GUIs,
command line interfaces, and so on.

The architecture should be modularized so
that a new user interface can be

substituted without affecting the business
rules and output parts of the program

Typical Architectural Components: Resource Management

The architecture should describe a plan
for managing scarce resources such as

database connections, threads, and
handles.

Memory management is another
important area for the architecture to

treat in memory-constrained applications
areas such as driver development and

embedded systems.

Typical Architectural Components: Security

The architecture should describe the
approach to design-level and code level

security.

If a threat model has not previously been
built, it should be built at architecture

time.

Typical Architectural Components: Performance

If performance is a concern,
performance goals should be specified

in the requirements.

Performance goals can include resource
usage, in which case the goals should

also specify priorities among resources,
including speed vs. memory vs. cost.

Typical Architectural Components: Scalability

The architecture should describe how the
system will address growth in number of
users, servers, network nodes, database
records, and size of database records,

transaction volume etc.

If the system is not expected to grow and
scalability is not an issue, the architecture

should make that assumption explicit.

The ability of a system to grow to meet future demands.

Typical Architectural Components: Interoperability

If the system is expected to share data or resources with other
software or hardware, the architecture should describe how

that will be accomplished.

Typical Architectural Components: Internationalization/Localization

The architecture can decide to use strings in line in
the code where they’re needed, keep the strings in

a class and reference them through the class
interface, or store the strings in a resource file. The

architecture should explain which option was
chosen and why.

“Internationalization” is the technical activity of
preparing a program to support multiple locales.

Internationalization is often known as “I18n”

“Localization” (known as “L10n”) is the activity of
translating a program to support a specific local

language.

Typical Architectural Components: Input / Output

The architecture should specify a look-
ahead, look-behind, or just in-time

reading scheme. And it should describe
the level at which I/O errors are detected:

at the field, record, stream, or file level.

Typical Architectural Components: Error Processing

Some people have estimated that as much as 90 percent of
a program’s code is written for exceptional, error processing

cases or housekeeping, implying that only 10 percent is
written for nominal cases

Error handling is often treated as a coding-convention-level
issue, if it's treated at all. But because it has system wide
implications, it is best treated at the architectural level.

Is error processing corrective
or merely detective?

Is error detection active or
passive?

How does the program
propagate errors?

What are the conventions
for handling error messages?

How will exceptions be
handled?

Inside the program, at what
level are errors handled?

What is the level of responsibility of
each class for validating its input data?

Do you want to use your environment’s built-in
exception-handling mechanism or build your own?

Some Questions to Consider:

Typical Architectural Components: Fault Tolerance

Fault tolerance is a collection of techniques that increase a system’s
reliability by detecting errors, recovering from them if possible, and

containing their bad effects if not.

Typical Architectural Components: Architectural Feasibility

The designers might have concerns about a system’s
ability to meet its performance targets, work within
resource limitations, or be adequately supported by

the implementation environments.

The architecture should demonstrate that the
system is technically feasible. If infeasibility in any

area could render the project unworkable, the
architecture should indicate how those issues have

been investigated.

Typical Architectural Components: Overengineering

The architecture should clearly indicate whether programmers should err
on the side of overengineering or on the side of doing the simplest thing

that works

Typical Architectural Components: Buy-vs.-Build Decisions

The most radical solution to building software is not
to build it at all—to buy it instead or to download

open-source software for free.

If the architecture isn’t using off-the-shelf
components, it should explain the ways in which it
expects custom-built components to surpass ready

made libraries and components.

Typical Architectural Components: Reuse Decisions

If the plan calls for using preexisting software, test cases, data formats, or
other materials, the architecture should explain how the reused software

will be made to conform to the other architectural goals

Typical Architectural Components: Change Strategy

Because building a software product is a learning
process for both the programmers and the users,

the product is likely to change throughout its
development.

One of the major challenges facing a software
architect is making the architecture flexible enough

to accommodate likely changes.

The architecture should clearly describe a strategy
for handling changes.

Typical Architectural Components: General Architectural Quality

A good architecture should fit the problem.
When you look at the architecture, you should
be pleased by how natural and easy the
solution seems. It shouldn’t look as if the
problem and the architecture have been
forced together with duct tape

The Mythical Man-Month (Brooks 1995)

The architecture’s objectives should
be clearly stated.

The architecture should describe the
motivations for all major decisions.

Good software architecture is largely
machine- and language-independent.

The architecture should tread the line
between underspecifying and

overspecifying the system.

The architecture should explicitly
identify risky areas

The architecture should contain
multiple views.

The overarching goal of preparing for construction is risk reduction.

If you want to develop high-quality software, attention to quality must be part of the software-
development process from the beginning to the end

Part of a programmer’s job is to educate bosses and coworkers about the software- development
process, including the importance of adequate preparation before programming begins.

The kind of project you’re working on significantly affects construction prerequisites

If a good problem definition hasn’t been specified, you might be solving the wrong problem during
construction.

If good requirements work hasn’t been done, you might have missed important details of the problem

If a good architectural design hasn’t been done, you might be solving the right problem the wrong way
during construction.

Understand what approach has been taken to the construction prerequisites on your project, and
choose your construction approach accordingly.

Construction
Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and

compile the program to an executable unit.

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

Key Construction Decisions
Choice of Programming

Language Programming Conventions Your Location on the
Technology Wave

Selection of Major
Construction Practices

Choice of Programming Language

Studies have shown that the programming-
language choice affects productivity and code

quality in several ways

Programmers are more productive using a
familiar language than an unfamiliar one

Programmers working with high-level languages
achieve better productivity and quality than
those working with lower-level languages.

Choice of Programming Language

Choice of Programming Language

Programming Conventions

In high-quality software, you can see a relationship between the conceptual integrity
of the architecture and its low-level implementation.

Before construction begins, spell out the programming conventions you’ll use. Coding convention details
are at such a level of precision that they’re nearly impossible to retrofit into software after it’s written.

That’s the point of construction guidelines for variable names, class names, routine names, formatting conventions, and
commenting conventions.

Without a unifying discipline, your creation will
be a jumble of sloppy variations in style. Such

variations tax your brain—and only for the
sake of understanding coding-style differences

that are essentially arbitrary.

http://checkstyle.sourceforge.net/ http://checkstyle.org/eclipse-cs/

Programming into a Language

Programmers who program “in” a language limit their
thoughts to constructs that the language directly
supports. If the language tools are primitive, the

programmer’s thoughts will also be primitive.

Programmers who program “into” a language first
decide what thoughts they want to express, and then
they determine how to express those thoughts using

the tools provided by their specific language.

Selection of Major Construction Practices

Every programming language has strengths and weaknesses. Be aware of
the specific strengths and weaknesses of the language you’re using.

Establish programming conventions before you begin programming. It’s
nearly impossible to change code to match them later.

More construction practices exist than you can use on any single project.
Consciously choose the practices that are best suited to your project.

Ask yourself whether the programming practices you’re using are a
response to the programming language you’re using or controlled by it.

Remember to program into the language, rather than programming in it.

Your position on the technology wave determines what approaches will be
effective— or even possible. Identify where you are on the technology

wave, and adjust your plans and expectations accordingly

Testing

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

A process of executing a program or application with
the intent of finding the software bugs

Testing

Consider different test levels:
Unit, Integration, System, Acceptance, and Regression

Checks that units tested in isolation
work properly when put together

Checks that the system preserves
its functionality after maintenance

and/or evolution

Testing of a single function,
procedure, class.

Checks if the user functionalities
are delivered. It is often a

contractual prerequisite for the
user to accept/pay for the software

Ensures that the whole
system works properly

Deployment

Problem Definition

Requirements

Architecture

Construction

Testing

Deployment

Future Improvements

Software deployment is all the activities that make a
software system available for use

Hundreds of OS based on Linux

