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a very complicated task
Software Construction



Design in Construction

Creating High-Quality Code
Working Classes High Quality Routines Defensive Programming



Design in Construction



Software Design
The conception, invention, or contrivance of a scheme for turning a specification for computer software into 

operational software. Its the activity that links requirements to coding and debugging

A good top-level design 
provides a structure that can 

safely contain multiple 
lower-level designs



Design Challenges: Design is a Wicked Problem

3.  A wicked problem is a problem that could be clearly defined only by solving it, 
or by solving part of it.

The paradox implies that you have to solve the problem 
once in order to clearly define it and then solve it again to 

create a solution that works.

Horst Rittel and Melvin Webber 1973



Design Challenges: Design Is a Wicked Problem

The event is presented as an example of elementary forced resonance, with the wind providing 
an external periodic frequency that matched the natural structural frequency, even though the 
real cause of the bridge's failure was aeroelastic flutter, not resonance. A contributing factor 

was its solid sides, not allowing wind to pass through the bridge's deck. Thus, its design allowed 
the bridge to catch the wind and sway, which ultimately took it down.

Until the bridge collapsed, its 
engineers didn't know that 
aerodynamics needed to be 

considered to such an extent.

Only by building the bridge (solving 
the problem) could they learn about 
the additional consideration in the 

problem that allowed them to build 
another bridge that still stands.

The Tacoma Narrows bridge—an example of a wicked problem



Design Challenges: Design Is a Sloppy Process

The finished software design should look well organized and clean, but the 
process used to develop the design isn’t nearly as tidy as the end result.



Design Challenges: Design Is About Tradeoffs and Priorities

A key part of the designer’s job is 
to weigh competing design 
characteristics and strike a 
balance among those 

characteristics



Design Challenges: Design Involves Restrictions
The point of design is partly to create possibilities and partly to restrict 

possibilities 
The constraints of limited resources for constructing buildings force simplifications of the solution 

that ultimately improve the solution.



Design Challenges: Design Is Nondeterministic

Design Challenges: Design Is a Heuristic Process
Because design is nondeterministic, design techniques tend to be heuristics—“rules of 

thumb” or “things to try that sometimes work”—rather than repeatable processes that are 
guaranteed to produce predictable results



Design Challenges: Design Is Emergent

Designs don’t spring fully formed directly from 

someone’s brain. They evolve and improve 

through design reviews, informal discussions, 

experience writing the code itself, and experience 

revising the code.

DESIGN IS



Key Design Concepts
Managing Complexity Desirable Characteristics Levels of Design



Managing Complexity

Fred Brooks’s landmark paper, “No Silver Bullets: 
Essence and Accidents of Software Engineering” (1987).

Accidental and Essential Difficulties

Software development is made difficult 
because of two different classes of problems: 
the essential and the accidental

The properties that a thing must 
have in order to be that thing

The properties a thing happens 
to have and don’t really bear on 
whether the thing is what it is



Managing Complexity

The only profession in which a single mind is
obliged to span the distance from a bit to a few 
hundred megabytes, a ratio of 1 to 109 , or nine 
orders of magnitude (Dijkstra 1989)

Importance of Managing Complexity

No one’s skull is really big 
enough to contain a modern 
computer program (Dijkstra 1972)

The goal is to minimize the amount of a program you have to 
think about at any one time.

Dividing the system 
into subsystems

Break a complicated 
problem into simple pieces

More independent
the subsystems

Keeping routines 
short



Managing Complexity
How to Attack Complexity

Minimize the amount of essential complexity that 
anyone’s brain has to deal with at any one time

Keep accidental complexity from needlessly 
proliferating



Desirable Characteristics of a Design

Minimal Complexity Ease of Maintenance

Loose Coupling

Reusability

High Fan-In Low-to-Medium Fan-Out

Portability

Leanness

Stratification Standard Techniques

Extensibility



Levels of Design

Design is needed at several different levels 
of detail in a software system. Some design 

techniques apply at all levels, and some 
apply at only one or two.



Levels of Design
❶ Software System
The first level is the entire system. Some programmers 
jump right from the system level into designing classes, 
but it’s usually beneficial to think through higher level 
combinations of classes, such as subsystems or packages.



Levels of Design

❷ Division into Subsystems or Packages
The major design activity at this level is deciding how to 
partition the program into major subsystems and defining 
how each subsystem is allowed to use each other subsystem.

Within each subsystem, different methods of design might be used—choosing the approach 
that best fits each part of the system.

Common 
Subsystems

Business Rules
the laws, regulations, policies, 

and procedures that you encode 
into a computer system

System dependencies
If you're developing a program for 

Microsoft Windows, why limit yourself to 
the Windows environment? Isolate the 
Windows calls in a Windows-interface 

subsystem. If you later want to move your 
program to Mac OS or Linux, all you'll have 

to change is the interface subsystem

Database Access
centralize database operations in 
one place and reduce the chance 
of errors in working with the data.

User interface
May use several subordinate subsystems or 
classes for the GUI interface, command line 

interface, menu operations, window 
management, help system, and so forth



Levels of Design
❷ Division into Subsystems or Packages
The major design activity at this level is deciding how to 
partition the program into major subsystems and defining 
how each subsystem is allowed to use each other subsystem.

Within each subsystem, different methods of design might be used—choosing the approach 
that best fits each part of the system.

IMPORTANT RULE How the various subsystems can communicate?

If all subsystems can communicate with all other subsystems, you lose 
the benefit of separating them at all. 

Make each subsystem meaningful by restricting communications.



• How many different parts of the system does a 
developer need to understand at least a little bit 
to change something in the graphics subsystem?

• What happens when you try to use the business 
rules in another system?

• What happens when you want to put a new user 
interface on the system, perhaps a command-line 
UI for test purposes?

• What happens when you want to put data 
storage on a remote machine?

Levels of Design

• Allow communication between subsystems only 
on a “need to know” basis—and it had better be 
a good reason.

• If in doubt, it’s easier to restrict communication
early and relax it later than it is to relax it early 
and then try to tighten it up after you’ve coded 
several hundred inter-subsystem calls.

• The simplest relationship is to have one 
subsystem call routines in another. 

• A more involved relationship is to have one 
subsystem contain classes from another. 

• The most involved relationship is to have classes 
in one subsystem inherit from classes in another

Suppose for example that you define a system 
with six subsystems



Levels of Design
❸ Division into Classes within Packages
Design at this level includes identifying all classes in the 
system.

Object
Oriented
Programming



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

OOP Key 
Technologies

Objects

Classes

Encapsulation

Inheritance

Polymorphism

Abstraction



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

A class is the static thing you look at in the program listing while 
an object (instantiation of a class) is any specific entity that 

exists in your program at run time.

Book Class Instances of “Book” Class (Objects)



State Behavior

These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Real-world objects share two characteristics
attribute/field method/function

Bike Class

My Bike

Foo Bike

class Bike {
int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence(int newValue) {
this.cadence = newValue;

}

void changeGear(int newValue) {
this.gear = newValue;

}

void speedUp(int increment) {
this.speed += increment; 

}

void applyBrakes(int decrement) {
this.speed -= decrement;

}

void printStates() {
System.out.println(

"cadence: " + this.cadence
+ " speed: " + this.speed
+ " gear: " + this.gear

);
}

}
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These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

class Bike {
int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence(int newValue) {
this.cadence = newValue;

}

void changeGear(int newValue) {
this.gear = newValue;

}

void speedUp(int increment) {
this.speed += increment; 

}

void applyBrakes(int decrement) {
this.speed -= decrement;

}

void printStates() {
System.out.println(

"cadence: " + this.cadence
+ " speed: " + this.speed
+ " gear: " + this.gear

);
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

class BikeDemo {

public static void main(String[] args) {

// create two different Bike Objects
Bike bike1 = new Bike();
Bike bike2 = new Bike();

// perform operations on bike1
bike1.changeCadence(50);
bike1.speedUp(10);
bike1.changeGear(2);
bike1.printStates();

// perform operations on bike2
bike2.changeCadence(50);
bike2.speedUp(10);
bike2.changeGear(2);
bike2.changeCadence(40);
bike2.speedUp(10);
bike2.changeGear(3);
bike2.printStates();

}
}
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Bike.java

BikeDemo.java

What is the output?



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Encapsulation
The process of wrapping code and data 

together into a single unit

Data/Information Hiding
The variables of a class will be hidden from other classes, and can 

be accessed only through the methods of their current class



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Inheritance
Different kinds of objects often have a certain amount in 

common with each other

Object-oriented programming allows 
classes to inherit commonly used 

state and behavior from other classes 
and let you focus on the features that 

make a specific class unique

Super Class

class MountainBike extends Bicycle {
// new fields/methods specific to 
// Mountain bike go here

}

class RoadBike extends Bicycle {
// new fields/methods specific to 
// Road bike go here

}

class TandemBike extends Bicycle {
// new fields/methods specific to 
// Tandem bike go here

}



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Interfaces
Define class instances interaction with the outside world through the methods that they expose

class MountainBike implements Bicycle {
...

}
class RoadBike implements Bicycle {
...

}

class TandemBike implements Bicycle {
...

}

interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment);

void applyBrakes(int decrement);

void printStates();
}

1
2
3
4
5
6
7
8
9
10
11
12

Implementing an interface allows a 
class to become more formal about the 

behavior it promises to provide.

Interfaces form a contract between the class 
and the outside world, and this contract is 

enforced at build time by the compiler.
If a class claims to implement an interface, all methods 

defined by that interface must appear in its source code.



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

public interface SomethingIsWrong {

void foo(int value) {
System.out.println("Something is wrong!");

}
}

Interfaces
Define class instances interaction with the outside world through the methods that they expose



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Abstract Classes/Methods
An abstract class is a class that is declared abstract and cannot be instantiated but can be sub-

classed. An abstract method is a method that is declared without an implementation

abstract class GraphicObject {
int x, y;

void moveTo(int newX, int newY) {
// Some code here

}

abstract void draw();
abstract void resize();

} 

class Rectangle extends GraphicObject {

void draw() {
// some implementation here   

}

void resize() {
// some implementation here

}
}

class Circle extends GraphicObject {

void draw() {
// some implementation here   

}

void resize() {
// some implementation here

}
}



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Abstraction
The process of hiding the implementation details from the user, only the functionality will be provided to 
the user. In other words, user will have the information on what the object does instead of how it does it.

In Java, Abstraction is achieved using 
Abstract classes, and Interfaces



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Polymorphism
The ability of an object to take on many forms



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

Packages
Namespaces that organize a set of related classes and interfaces



These slides are based on the material presented in https://docs.oracle.com/javase/tutorial/java/concepts/

OOP Key 
Technologies

Objects

Classes

Encapsulation

Inheritance

Polymorphism

Abstraction



Levels of Design
❹ Division into Data & Routines within Classes
When you examine the details of the routines inside a class, 
you can see that many routines are simple boxes but a few are 
composed of hierarchically organized routines, which require 
still more design.

The act of fully defining the class’s routines often results in a better 
understanding of the class’s interface, and that causes corresponding 

changes to the interface—that is, changes back at Level 3.



Levels of Design
❺ Internal Routine Design
Design at the routine level consists of laying out the detailed 
functionality of the individual routines. The design consists of 
activities such as writing pseudo-code, looking up algorithms 
in reference books, deciding how to organize the paragraphs 
of code in a routine, and writing programming-language code. 

Internal routine design is typically left to the individual programmer 
working on an individual routine.



Design Building Blocks: Heuristics
Because design is nondeterministic, skillful application of an effective set of 

heuristics is the core activity in good software design

GOAL: Minimal Complexity



Design Heuristics: Find Real-World Objects

Define each object’s public 
interface

Identify the objects and their 
attributes (methods and data)

Determine what can be done to 
each object

Determine what each object is 
allowed to do to other objects

Determine the parts of each object 
that will be visible to other objects

Computer programs are usually 
based on real-world entities

Identifying the objects’ attributes is no more complicated than identifying the objects 
themselves. Each object has characteristics that are relevant to the computer program.

The two generic things objects can do to each 
other are containment and inheritance.

The visibility of the parts of an object should be determined. 
This decision has to be made for both fields and methods

What are the operations performed on each 
object?

Define the formal, syntactic, programming-language level 
interfaces to each object.

The data and methods the object exposes to every other 
object is called the object’s “public interface.” The parts of 
the object that it exposes to derived objects via inheritance 
is called the object’s “protected interface.”



Design Heuristics: Form Consistent Abstractions

Good programmers create abstractions at the routine-interface 
level, class-interface level, and package-interface level

From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details



Design Heuristics: Encapsulate Implementation Details
Encapsulation picks up where abstraction leaves off. It helps managing complexity by forbidding you

to look at the complexity.

Encapsulation says that, not only are you allowed to take a simpler view of a complex 
concept, you are not allowed to look at any of the details of the complex concept. 
What you see is what you get—it’s all you get!



Design Heuristics: Inherit
Inheritance is one of object-oriented programming’s most powerful tools. It can provide great benefits when used 

well, and it can do great damage when used naively.

Object-oriented programming allows 
classes to inherit commonly used 

state and behavior from other classes 
and let you focus on the features that 

make a specific class unique



Design Heuristics: Hide Secrets (Information Hiding)
Information hiding gives rise to the concepts of encapsulation and modularity and it is associated with the concept 

of abstraction.

Information hiding is a particularly powerful heuristic for Software’s 
Primary Technical Imperative because, beginning with its name and 

throughout its details, it emphasizes hiding complexity

David Parnas 1972 Fred Brooks 1995



In information hiding, each class (or package or routine) is characterized by the 
design or construction decisions that it hides from all other classes. The secret 

might be an area that’s likely to change, the format of a file, the way a data type 
is implemented, or an area that needs to be walled off from the rest of the 

program so that errors in that area cause as little damage as possible.

Design Heuristics: Hide Secrets (Information Hiding)

Secrets and the Right to Privacy



Design Heuristics: Hide Secrets (Information Hiding)

An Example of Information Hiding

Information hiding is useful at all levels of design, from the use of 
named constants instead of literals, to creation of data types, to class 

design, routine design, and subsystem design.



Design Heuristics: Hide Secrets (Information Hiding)

Two Categories of Secrets Barriers to Information Hiding Value of Information Hiding
Hiding complexity so that your brain doesn’t 
have to deal with it unless you’re specifically 
concerned with it

Hiding sources of change so that when 
change occurs, the effects are localized

Excessive distribution of information

Circular dependencies

Class data mistaken for global data

Perceived performance penalties

Information hiding is atheoretical techniques 
that has indisputably proven its value in 
practice, which has been true for a long time

Large programs that use information hiding 
were found years ago to be easier to modify—
by a factor of 4—than programs that don’t

Information hiding is part of the foundation of 
both structured and object-oriented design.



Design Heuristics: Identify Areas Likely to Change
Accommodating changes is one of the most challenging aspects of good program design. The goal is to isolate 

unstable areas so that the effect of a change will be limited to one routine, class, or package

Identify items that 
seem likely to change

Separate items that are 
likely to change

Isolate items that seem 
likely to change

Business rules Hardware 
dependencies Input and output

Nonstandard 
language 
features

Difficult design 
and construction 

areas
Status variables Data-size 

constraints

Areas Likely to Change
A good technique for identifying areas likely to change is first to identify the minimal subset of the program 

that might be of use to the user. The subset makes up the core of the system and is unlikely to change.



Design Heuristics: Keep Coupling Loose
Coupling describes how tightly a class or routine is related to other classes or routines.

The goal is to create classes and routines with small, 
direct, visible, and flexible relations to other classes 
and routines, which is known as “loose coupling.

Coupling 
Criteria

Size

Visibility

Flexibility

Kinds of Coupling
Simple-data-parameter coupling

Simple-object coupling

Object-parameter coupling

Semantic coupling

Classes and routines are first and foremost intellectual tools for 
reducing complexity. If they’re not making your job simpler, 

they’re not doing their jobs.



Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most 

common problems



Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most 

common problems

Reduce complexity by providing ready-made abstractions

Reduce errors by institutionalizing details of common solutions

Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a  
pattern. In some cases, shifting code slightly to conform to a 
well-recognized pattern will improve understandability of the 
code. But if the code has to be shifted too far, forcing it to look 
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a 
pattern because of a desire to try out a pattern rather than 
because the pattern is an appropriate design solution.



Design Heuristics: Other Heuristics

Aim for Strong Cohesion Build Hierarchies Formalize Class Contracts

Assign Responsibilities Design for Test Avoid Failure

Choose Binding Time Consciously Make Central Points of Control Consider Using Brute Force

Draw a Diagram Keep Your Design Modular

Cohesion refers to how closely all the routines 
in a class or all the code in a routine support a 

central purpose—how focused the class is

Hierarchies are a useful tool for reducing complexity 
because they allow you to focus on only the level of 

detail you’re currently concerned with.

Contracts are useful for managing complexity 
because, at least in theory, the object can 

safely ignore any noncontractual behavior.

Asking what each object 
should be responsible for

A thought process that can yield interesting 
design insights is to ask what the system will
look like if you design it to facilitate testing.

The high-profile security lapses of various well-known systems 
the past few years make it hard to avoid security vulnerabilities 

but careful considerations should be taken to known failures.

Binding time refers to the time a specific value is 
bound to a variable. Code that binds early tends 
to be simpler, but it also tends to be less flexible.

The Principle of One Right Place—there should be One 
Right Place to look for any nontrivial piece of code, and 
One Right Place to make a likely maintenance change”

A brute-force solution that works is better 
than an elegant solution that doesn’t work

You actually want to leave out most of the 1000 words 
because one point of using a picture is that a picture can 

represent the problem at a higher level of abstraction

Modularity’s goal is to make each routine or class like a 
“black box”: You know what goes in, and you know what 

comes out, but you don’t know what happens inside.



Guidelines for Using Heuristics

G. Polya developed an approach to 
problem solving in mathematics 

that’s also useful in solving 
problems in software design



Design Practices
Heuristics related to design attributes—what you want the completed design to 

look like.



Design Practices: Iterate
Design is an iterative process. You don’t usually go from point A only to point B; you go from point A to point B and 

back to point A

As you cycle through candidate designs and try different 
approaches, you’ll look at both high-level and low-level views.

The big picture you get from working with high-level issues will 
help you to put the low-level details in perspective. The details 

you get from working with low-level issues will provide a 
foundation in solid reality for the high-level decisions.



Design Practices: Divide and Conquer
As Edsger Dijkstra pointed out, no one’s skull is big enough to contain all the details of a complex program, and that 

applies just as well to design

Divide the program into different areas of concern, then tackle 
each of those areas individually. If you run into a dead end in 
one of the areas, iterate!

Incremental refinement is a powerful tool for 
managing complexity.



Design Practices: Top-Down and Bottom-Up

Top-down design begins at a high level of abstraction. 
You define base classes or other nonspecific design 

elements. As you develop the design, you increase the 
level of detail, identifying derived classes, collaborating 

classes, and other  detailed design elements.

Bottom-up design starts with specifics and works 
toward generalities. It typically begins by identifying 

concrete objects and then generalizes aggregations of 
objects and base classes from those specifics



Design Practices: Experimental Prototyping
You can’t fully define the design problem until you’ve at least partially solved it.

Prototyping means writing the absolute minimum 
amount of throwaway code that’s needed to 

answer a specific design question.

A risk of prototyping arises when developers do 
not treat the code as throwaway code.



Design Practices: Collaborative Design
In design, two heads are often better than one, whether those two heads are organized formally or informally



Design Practices: How Much Design Is Enough?
Sometimes only the barest sketch of an architecture is mapped out before coding begins. Other times, teams create 

designs at such a level of detail that coding becomes a mostly mechanical exercise.



Design Practices: Capturing Your Design Work

Insert design documentation into the code itself

Capture design discussions and decisions on a Wiki

Write e-mail summaries

Use a digital camera

Save design flip charts

Use CRC (Class, Responsibility, Collaborator) cards

Create UML diagrams at appropriate levels of detail



Software’s Primary Technical Imperative is managing complexity . This is greatly aided by a 
design focus on simplicity.

Simplicity is achieved in two general ways: minimizing the amount of essential complexity 
that anyone’s brain has to deal with at any one time, and keeping accidental complexity 

from proliferating needlessly.

Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and 
hurts your programs

Good design is iterative; the more design possibilities you try, the better your final design 
will be.

Information hiding is a particularly valuable concept. Asking “What should I hide?” settles 
many difficult design issues.

Lots of useful, interesting information on design is available outside this book. The 
perspectives presented here are just the tip of the iceberg.



Working Classes
In the dawn of computing, programmers thought about programming in terms of statements. 

Throughout the 1970s and 1980s, programmers began thinking about programs in terms of routines. 
In the twenty-first century, programmers think about programming in terms of classes.



A class is a collection of data and 
routines that share a cohesive, well-
defined responsibility. A class might 
also be a collection of routines that 
provides a cohesive set of services 
even if no common data is involved

Maximizes the portion of a program that you can 
safely ignore while working on another section of code



Class Foundations: Abstract Data Types (ADTs)

An ADT might be a graphics window with all the 
operations that affect it, a file and file operations, 
an insurance-rates table and the operations on it, 
or something else

An abstract data type is a collection of data and operations that work on that data.

Understanding ADTs is essential to understanding 
object-oriented programming.

Tap into the power of being able to work in the 
problem domain rather than at the low-level 

implementation domain!
Instead of inserting a node into a linked list, you can add a cell to 
a spreadsheet, a new type of window to a list of window types, 

or another passenger car to a train simulation



Class Foundations: Abstract Data Types (ADTs)
Suppose you’re writing a program to control text output to the screen using a 
variety of typefaces, point sizes, and font attributes (such as bold and italic)

A group of font routines bundled with 
the data—the typeface names, point 

sizes, and font attributes—they 
operate on.

Ad hoc approach to manipulating fonts. For 
example, if you need to change to a 12-
point font size, which happens to be 16 

pixel high

Using ADT Not Using ADT

currentFont.size = 16
currentFont.size = PointsToPixels( 12 )
currentFont.sizeInPixels = PointsToPixels( 12 )
currentFont.sizeInPixels = PointsToPixels( 12 )
currentFont.attribute = currentFont.attribute or 0x02
currentFont.attribute = currentFont.attribute or BOLD
currentFont.bold = True

currentFont.SetSizeInPoints( sizeInPoints )
currentFont.SetSizeInPixels( sizeInPixels )
currentFont.SetBoldOn()
currentFont.SetBoldOff()
currentFont.SetItalicOn()
currentFont.SetItalicOff()
currentFont.SetTypeFace( faceName )



Class Foundations: Abstract Data Types (ADTs)

You can hide 
implementation details

Changes don’t affect the 
whole program

You can make the interface 
more informative

It’s easier to improve 
performance

The program is more 
obviously correct

The program becomes 
more self-documenting

You don’t have to pass 
data all over your program

You’re able to work with real-world entities rather than 
with low-level implementation structures



Class Foundations: Abstract Data Types (ADTs)
Suppose you’re writing software that controls the cooling system for a nuclear 

reactor. You can treat the cooling system as an abstract data type.

coolingSystem.GetTemperature()
coolingSystem.SetCirculationRate( rate )
coolingSystem.OpenValve( valveNumber )
coolingSystem.CloseValve( valveNumber )

The specific environment would determine the 
code written to implement each of these 

operations.

The rest of the program could deal with the 
cooling system through these functions and 

wouldn’t have to worry about internal details 
of data-structure implementations, data-
structure limitations, changes, and so on.



Class Foundations: Abstract Data Types (ADTs)

Build or use typical low-
level data types as ADTs, 

not as low-level data types

Treat common objects 
such as files as ADTs

Treat even simple 
items as ADTs

Refer to an ADT 
independently of the 
medium it’s stored on



Class Foundations: Abstract Data Types (ADTs)
Handling Multiple Instances of Data with ADTs in Non-Object-Oriented Environments

SetCurrentFontSize( sizeInPoints )
SetCurrentFontBoldOn()
SetCurrentFontBoldOff()
SetCurrentFontItalicOn()
SetCurrentFontItalicOff()
SetCurrentFontTypeFace( faceName )

CreateFont( fontId )
DeleteFont( fontId )
SetCurrentFont( fontId )

Option 1: Explicitly identify instances 
each time you use ADT services.

Option 2: Explicitly provide the data 
used by the ADT services.

Option 3: Use implicit instances



Class Foundations: Abstract Data Types (ADTs)

Abstract data types form the foundation for the concept of classes. In 
languages that support classes, you can implement each abstract data 

type as its own class.
Classes usually involve the additional concepts of inheritance and polymorphism. One way of thinking of a class is as an 

abstract data type plus inheritance and polymorphism.



Good Class Interfaces

The first and probably most important step in creating a 
high-quality class is creating a good interface.

Creating a good abstraction for the interface to represent and ensuring that the details remain hidden 
behind the abstraction.

Good Abstraction Good Encapsulation



Good Class Interfaces: Good Abstraction
A class interface provides an abstraction of the implementation that's hidden behind the interface

Employee

It would contain data describing 
the employee's name, address, 
phone number, and so on. It 
would offer services to initialize 
and use an employee

Internally, this class might have additional routines and data to 
support these services, but users of the class don't need to 
know anything about them, so it is great.



Good Class Interfaces: Good Abstraction
A class interface provides an abstraction of the implementation that's hidden behind the interface

It's hard to see any connection among the command 
stack and report routines or the global data. The class 
interface doesn't present a consistent abstraction. The 
routines should be reorganized into more focused 
classes, each of which provides a better abstraction in 
its interface.

The cleanup of this interface assumes that some of 
the original routines were moved to other, more 
appropriate classes and some were converted to 
private routines used by InitializeUserInterface() and 
the other routines.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Each class should implement one and only one ADT.

If you find a class implementing more than one ADT, or if you 
can't determine what ADT the class implements, it's time to 

reorganize the class into one or ore well defined ADTs.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Ask yourself whether the fact that a container class is used should be part of the abstraction. Usually that's 
an implementation detail that should be hidden from the rest of the program.



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction in 

the class interface
One Class = One ADT

Programmers might argue that inheriting from 
ListContainer is convenient because it supports 
polymorphism, allowing an external search or sort 
function that takes a ListContainer object.

That argument fails the main test for inheritance, which is, "Is 
inheritance used only for "is a" relationships?“ To inherit from 
ListContainer would mean that EmployeeCensus "is a“ 
ListContainer, which obviously false



Good Class Interfaces: Good Abstraction



Good Class Interfaces: Good Abstraction
The pursuit of good abstract interfaces gives rise to several guidelines for 

creating class interfaces.

Present a consistent 
level of abstraction 

in the class interface

Be sure you understand 
what abstraction the 
class is implementing

Provide services 
in pairs with 

their opposites

Move unrelated 
information to 
another class

Make interfaces programmatic 
rather than semantic when 

possible

Beware of erosion of the 
interface’s abstraction 

under modification

Don’t add public members 
that are inconsistent with the 

interface abstraction

Consider abstraction and 
cohesion together



Good Class Interfaces: Good Encapsulation

Abstraction helps to manage complexity by providing models that allow 
you to ignore implementation details. Encapsulation is the enforcer 

that prevents you from looking at the details even if you want to
Without encapsulation, abstraction tends to break down



Good Class Interfaces: Good Encapsulation
Minimize accessibility of classes and members

If you're wondering whether a specific 
routine should be public, private, or 
protected, one school of thought is 
that you should favor the strictest 
level of privacy that's workable

Meyers 1998, Bloch 2001

If exposing the routine is consistent with 
the abstraction, it's probably fine to 

expose it. If you're not sure, hiding more 
is generally better than hiding less.



Good Class Interfaces: Good Encapsulation
Don’t expose member data in public

Exposing member data is a violation of encapsulation and 
limits your control over the abstraction

float x;
float y;
float z;

float GetX();
float GetY();
float GetZ();
void SetX( float x );
void SetY( float y );
void SetZ( float z );



Good Class Interfaces: Good Encapsulation
Avoid putting private implementation details into a class’s interface

With true encapsulation, programmers would not be able to see implementation details at all



Good Class Interfaces: Good Encapsulation
Don’t make assumptions about the class’s users

A class should be designed and implemented to adhere to the contract implied by the class interface. It 
shouldn’t make any assumptions about how that interface will or won’t be used,

// initialize x, y, and z to 1.0 because DerivedClass blows
// up if they're initialized to 0.0



Good Class Interfaces: Good Encapsulation
Favor read-time convenience to write-time convenience

Code is read far more times than it’s written, even during initial development

Favoring a technique that speeds write-time 
convenience at the expense of read-time 

convenience is a false economy.



Good Class Interfaces: Good Encapsulation
Be very, very wary of semantic violations of encapsulation

The difficulty of semantic encapsulation compared to syntactic encapsulation is similar.

Not calling Class A’s InitializeOperations() routine because you know that Class A’s PerformFirstOperation() routine calls it 
automatically.

Not calling the database.Connect() routine before you call employee.Retrieve( database ) because you know that the 
employee.Retrieve() function will connect to the database if there isn’t already a connection.

Not calling Class A’s Terminate() routine because you know that Class A’s PerformFinalOperation() routine has already 
called it.

Using a pointer or reference to ObjectB created by ObjectA even after ObjectA has gone out of scope, because you know 
that ObjectA keeps ObjectB in static storage and ObjectB will still be valid.

Using Class B’s MAXIMUM_ELEMENTS constant instead of using ClassA.MAXIMUM_ELEMENTS , because you know that 
they’re both equal to the same value.



Good Class Interfaces: Good Encapsulation
Watch for coupling that’s too tight

In general, the looser the connection, the better

Minimize accessibility of classes and members.

Make data private rather than protected in a 
base class to make derived classes less tightly 

coupled to the base class.

Avoid exposing member data in a class’s public 
interface

Be wary of semantic violations of encapsulation

Observe the “Law of Demeter”



Design and Implementation Issues

Defining good class interfaces goes a long way 
toward creating a high-quality program.



Design and Implementation Issues
Containment (“has a” Relationships)

Containment is the simple idea that a class contains a primitive data element or object. Inheritance is 
more popular than containment, not because it's better.

Implement “has a” through 
containment

Implement “has a” through private 
inheritance as a last resort

Be critical of classes that contain more 
than about seven data members

An employee “has a” name, “has a” phone 
number, “has a” tax ID. You can usually 
accomplish this by making the name, 
phone number, and tax ID member data of 
the Employee class.

In some instances you might find that you can’t 
achieve containment through making one 
object a member of another

The number “7±2” has been found to be a 
number of discrete items a person can 
remember while performing other tasks



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Implement “is a” through 
public inheritance

When a programmer decides to create a new class 
by inheriting from an existing class, that 
programmer is saying that the new class “is a” 
more specialized version of the older class.

For each member routine, will the routine 
be visible to derived classes? Will it have a 
default implementation? Will the default 
implementation be overridable?

For each data member (including variables, 
named constants, enumerations, and so 
on), will the data member be visible to 
derived classes?

If the derived class isn’t going to adhere 
completely to the same interface contract 
defined by the base class, inheritance is not the 
right implementation technique. Consider 
containment or making a change further up the 
inheritance hierarchy.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Design and document 
for inheritance or 

prohibit it
Inheritance adds complexity to a program, 

and, as such, it’s a dangerous technique

If a class isn’t designed to be inherited from, make its members 
non-virtual in C++, final in Java, or non-overridable in 
Microsoft Visual Basic so that you can’t inherit from it.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Adhere to the Liskov
Substitution Principle 

(LSP)
Barbara Liskov argued that you shouldn’t 
inherit from a base class unless the derived 
class truly “is a” more specific version of 
the base class

Subclasses must be usable through the base class interface 
without the need for the user to know the difference. In other 
words, all the routines defined in the base class should mean 
the same thing when they’re used in each of the derived 
classes.

If you have a base class of Account and derived classes of 
CheckingAccount, SavingsAccount, and AutoLoanAccount, a 
programmer should be able to invoke any of the routines derived 
from Account on any of Account's subtypes without caring about 
which subtype a specific account object is the derived classes.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Be sure to inherit only 
what you want to inherit
A derived class can inherit member routine 
interfaces, implementations, or both. An abstract overridable routine means that the derived class inherits the 

routine’s interface but not its implementation.

An overridable routine means that the derived class inherits the routine’s 
interface and a default implementation and it is allowed to override the 
default implementation

A non-overridable routine means that the derived class inherits the 
routine’s interface and its default implementation and it is not allowed to 
override the routine’s implementation.



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Don’t “override” a non-
overridable member 

function

Move common interfaces, data, 
and behavior as high as possible 

in the inheritance tree

Be suspicious of base 
classes of which there is 
only one derived class

Be suspicious of classes 
that override a routine 
and do nothing inside 

the derived routine

Avoid deep inheritance 
trees

Make all data private, 
not protected



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Prefer polymorphism to 
extensive type checking



Design and Implementation Issues
Inheritance (“is a” Relationships)

Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to 
create simpler code by defining a base class that specifies common elements of two or more derived classes.

Why Are There So Many Rules for Inheritance?
If multiple classes share common data but not behavior, create 
a common object that those classes can contain.

If multiple classes share common behavior but not data, derive 
them from a common base class that defines the common 
routines

If multiple classes share common data and behavior, inherit 
from a common base class that defines the common data and 
routines.

Inherit when you want the base class to control your interface; 
contain when you want to control your interface.



Design and Implementation Issues
Member Functions and Data

Keep the number of routines in a 
class as small as possible

Disallow implicitly generated 
member functions and operators 

you don’t want

Minimize the number of 
different routines called by a class
One study found that the number of faults 
in a class was statistically correlated with 
the total number of routines that were 
called from within a classMinimize indirect routine calls to 

other classes
In general, minimize the extent to 

which a class collaborates with 
other classes

Initialize all member data in all 
constructors, if possible

Enforce the singleton property 
by using a private constructor

Prefer deep copies to shallow 
copies until proven otherwise

A deep copy of an object is a member-wise 
copy of the object’s member data; a 
shallow copy typically just points to or 
refers to a single reference copy



Reasons to Create a Class
Model real-world objects

Create a class for each real-world object type that your program models



Reasons to Create a Class
Model abstract objects

An object that isn’t a concrete, real-world object but that provides an abstraction of other concrete objects.

For example, the classic Shape object. 
Rectangle and Triangle really exist, but 
Shape is an abstraction of other 
specific shapes.



Reasons to Create a Class
Reduce complexity

Create a class to hide information so that you won’t need to think about it, no need to know about its internal 
workings. Also, to minimize code size and improve maintainability



Reasons to Create a Class
Isolate complexity

Complexity in all forms—complicated algorithms, large data sets, intricate communications protocols, and so 
on—is prone to errors

If an error does occur, it will be easier 
to find if it isn’t spread through the 
code but is localized within a class



Reasons to Create a Class

Hide implementation 
details

Limit effects of 
changes

Hide global data

Streamline parameter 
passing

Make central points 
of control

Facilitate reusable code

Isolate areas that are likely to 
change so that the effects of 
changes are limited to the scope of 
a single class or a few classes

If you need to use global data, you can hide its 
implementation details behind a class interface. Working 
with global data through access routines provides several 
benefits compared to working with global data directly.

If you’re passing a parameter among 
several routines, that might indicate a 
need to factor those routines into a 
class that share the parameter as 
object data

It’s a good idea to control each task 
in one place

Code put into well-factored classes can be reused in other 
programs more easily than the same code embedded in 
one larger class



Classes to Avoid

Avoid creating god classes, 
all-knowing and all-powerful

Eliminate irrelevant 
classes

Avoid classes named after 
verbs

A class that has only behavior but no data is 
generally not really a class. Consider turning 
a class like DatabaseInitialization() or 
StringBuilder() into a routine on some other 
class.

If a class consists only of data but no 
behavior, ask yourself whether it’s really a 
class and consider demoting it so that its 
member data just becomes attributes of one 
or more other classes.

If a class spends its time retrieving data from other 
classes using Get() and Set() routines (that is, 
digging into their business and telling them what 
to do), ask whether that functionality might better 
be organized into those other classes rather than 
into the god class (Riel 1996).



Beyond Classes: Packages
Classes are currently the best way for programmers to achieve modularity. But 

modularity is a big topic, and it extends beyond classes.



What are the right and wrong things?





Class interfaces should provide a consistent abstraction. Many 
problems arise from violating this single principle.

A class interface should hide something—a system interface, a design 
decision, or an implementation detail.

Containment is usually preferable to inheritance unless you’re 
modeling an “is a” relationship.

Inheritance is a useful tool, but it adds complexity, which is counter to 
Software’s Primary Technical Imperative of managing complexity.

Classes are your primary tool for managing complexity. Give their 
design as much attention as needed to accomplish that objective.




