
SWEN 6301 Software Construction
Lecture 4: Creating High-Quality Code

Ahmed Tamrawi

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- part of the slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course..

a very complicated task
Software Construction

Design in Construction

Creating High-Quality Code
Working Classes High Quality Routines Defensive Programming

High Quality Routines

What is a routine?

A routine is an individual method or procedure invocable for a single
purpose. Examples include a function in C++, a method in Java, a

function or sub procedure in Microsoft Visual Basic

What is a high-quality routine? That’s a harder question.

What is a high-quality routine?

What is a high-quality routine?
The routine has a bad name. HandleStuff() tells you nothing about what the routine does.

The routine isn’t documented.

The routine has a bad layout. The physical organization of the code on the page gives few
hints about its logical organization.

The routine’s input variable, inputRec, is changed. If it’s an input variable, its value should
not be modified

The routine reads and writes global variables—it reads from corpExpense and writes to
profit . It should communicate with other routines more directly than by reading and
writing global variables.

The routine doesn’t have a single purpose. It initializes some variables, writes to a database,
does some calculations—none of which seem to be related to each other in any way. A
routine should have a single, clearly defined purpose.

The routine doesn’t defend itself against bad data. If crntQtr equals 0 , the expression
ytdRevenue * 4.0 / (double) crntQtr causes a divide-by-zero error.

The routine uses several magic numbers: 100 , 4.0, 12 , 2 , and 3 .

Some of the routine’s parameters are unused: screenX and screenY are not referenced
within the routine.

One of the routine’s parameters is passed incorrectly: prevColor is labeled as a reference parameter (&) even though it isn’t assigned a value within the routine.

The routine has too many parameters. The upper limit for an
understandable number of parameters is about 7

The routine’s parameters are poorly ordered and are not
documented

Valid Reasons to Create a Routine
Reduce Complexity

The single most important reason to create a routine is to reduce a program’s complexity. Create
a routine to hide information so that you won’t need to think about it.

Other reasons to create routines:
minimizing code size and improving
maintainability and correctness

But without the abstractive power
of routines, complex programs
would be impossible to manage.

An indication that a routine needs
to be broken out is loop deep
nesting or a conditional

Valid Reasons to Create a Routine
Introduce an intermediate, understandable abstraction
Putting a section of code into a well-named routine is one of the best ways to document its purpose

leafName = GetLeafName(node)

Valid Reasons to Create a Routine
Avoid duplicate code

Undoubtedly the most popular reason for creating a routine is to avoid duplicate code.

Valid Reasons to Create a Routine
Hide Sequences

It’s a good idea to hide the order in which events happen to be processed

For example, a sequence might be
found when you have two lines of
code that read the top of a stack and
decrement a stackTopvariable.

Put those two lines of code into a
PopStack() routine to hide the
assumption about the order in
which the two operations must be
performed

Hiding that assumption will be better than
baking it into code from one end of the
system to the other.

Valid Reasons to Create a Routine
Hide Pointer Operations

Pointer operations tend to be hard to read and error prone. By isolating them in routines, you can
concentrate on the intent of the operation rather than on the mechanics of pointer manipulation

if the operations are done in only
one place, you can be more certain
that the code is correct. If you find a
better data type than pointers, you
can change the program without
traumatizing the code that would
have used the pointers.

Valid Reasons to Create a Routine
Improve portability

Use of routines isolates nonportable capabilities, explicitly identifying
and isolating future portability work.

Nonportable capabilities include nonstandard language features,
hardware dependencies, operating-system dependencies, and so on.

Valid Reasons to Create a Routine
Simplify Complicated Boolean Tests

Understanding complicated boolean tests in detail is rarely necessary for understanding program flow.

Putting such a test into a function
makes the code more readable
because (1) the details of the test
are out of the way and (2) a
descriptive function name
summarizes the purpose of the test.

Giving the test a function of its own emphasizes
its significance. It encourages extra effort to
make the details of the test readable inside its
function.

Valid Reasons to Create a Routine
Improve Performance

You can optimize the code in one place instead of in several places.

Centralizing code into a routine
means that a single optimization
benefits all the code that uses that
routine, whether it uses it directly or
indirectly.

Having code in one place makes it practical to
recode the routine with a more efficient
algorithm or in a faster, more efficient
language.

Operations That Seem Too Simple to Put Into Routines

Constructing a whole routine to contain two or three lines of code
might seem like overkill, but experience shows how helpful a good

small routine can be.
Small routines offer several advantages. One is that they improve readability.

Operations That Seem Too Simple to Put Into Routines

If that original line of code had still been in a dozen places, the test would have been repeated a dozen
times, for a total of 36 new lines of code. A simple routine reduced the 36 new lines to 3.

Design at the Routine Level
Cohesion Coupling
how closely the operations

in a routine are related
the relationships between

functions

Design at the Routine Level: Cohesion
Some programmers prefer the term “strength”; how strongly related are the operations in a routine

Cosine() CosineAndTan()
A function like Cosine() is perfectly cohesive
because the whole routine is dedicated to

performing one function.

A function like CosineAndTan() has lower cohesion
because it tries to do more than one thing. The

goal is to have each routine do one thing well and
not do anything else.

One study of 450 routines found that 50
percent of the highly cohesive routines
were fault free, whereas only 18 percent
of routines with low cohesion were fault
free
(Card, Church, and Agresti1986)

Another study of a different 450 routines (which is just
an unusual coincidence) found that routines with the
highest coupling-to-cohesion ratios had 7 times as
many errors as those with the lowest coupling-to-
cohesion ratios and were 20 times as costly to fix
(Selby and Basili1991)

Design at the Routine Level: Desired Cohesion
Functional Cohesion

Functional cohesion is the strongest and best kind of cohesion,
occurring when a routine performs one and only one operation

• Compute Cosine of Angle
• Verify Alphabetic Syntax
• Read Transaction Record
• Determine Customer Mortgage Repayment
• Compute Point of Impact of Missile
• Calculate Net Employee Salary
• Assign Seat to Airline Customer

Design at the Routine Level: Acceptable Cohesion
Sequential Cohesion

Sequential cohesion exists when a routine contains operations that must be performed in a specific order, that
share data from step to step, and that don’t make up a complete function when done together.

For example, given a birth date, calculates an employee’s age and time to retirement.
If the routine calculates the age and then uses that result to calculate the employee’s time to retirement, it has
sequential cohesion.

Design at the Routine Level: Acceptable Cohesion
Communicational Cohesion

Communicational cohesion occurs when operations in a routine make use of the same data and aren’t
related in any other way.

For example, suppose you wrote a function to query a database to get the name and
office number for an employee in your company.
It may make sense for your application, but the only common point between the two operations is that the data
comes from the same employee record.

Design at the Routine Level: Acceptable Cohesion
Temporal Cohesion

Temporal cohesion occurs when operations are combined into a routine because they are all done at the same time.

Some programmers consider temporal cohesion to be unacceptable because it’s
sometimes associated with bad programming practices such as having a mixture of
dissimilar code in a Startup() routine.

To avoid this problem, think of temporal
routines as organizers of other events.

have the temporally cohesive routine call other routines to
perform specific activities rather than performing the operations
directly itself. But this raises the issue of choosing a name that
describes the routine at the right level of abstraction

It will be clear that the point of the routine is to orchestrate activities rather than to do
them directly.

Design at the Routine Level: Unacceptable Cohesion
Procedural Cohesion

Procedural cohesion occurs when operations in a routine are done in a specified order.

The routine has procedural cohesion because it puts a set of operations in a specified
order and the operations don’t need to be combined for any other reason.

• Clean Utensils from Previous Meal
• Prepare Chicken for Roasting
• Make Phone Call
• Take Shower
• Chop Vegetables
• Set Table

To achieve better cohesion, put
the separate operations into their

own routines.

Design at the Routine Level: Unacceptable Cohesion
Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

The control flow or “logic” of the routine is the only thing that ties the operations
together—they’re all in a big if statement or case statement together.

Design at the Routine Level: Unacceptable Cohesion
Logical Cohesion

Logical cohesion occurs when several operations are stuffed into the same routine and one of the
operations is selected by a control flag that’s passed in.

It’s usually all right, to create a logically cohesive routine if its code consists solely of a
series of if or case statements and calls to other routines.

if the routine’s only function is to dispatch commands and it doesn’t do any of the processing itself, that’s usually a
good design.

The technical term for this kind of routine is “event handler” An event
handler is often used in interactive environments such as the Windows

and Linux GUI environments.

Design at the Routine Level: Unacceptable Cohesion
Coincidental Cohesion

Coincidental cohesion occurs when the operations in a routine have no discernible relationship to each other

It’s hard to convert coincidental cohesion to any better kind of cohesion—you usually
need to do a deeper redesign and reimplementation

• Fix Car
• Bake Cake
• Walk Dog
• Fill our Astronaut-Application Form
• Get out of Bed
• Go the the Movies

Design at the Routine Level: Bad Coupling
Tight Coupling

Large dependence on the structure of one module by another.

Design at the Routine Level: Good Coupling
Loose Coupling

Modules with loose coupling are more independent and easier to maintain

Design at the Routine Level: Worst Coupling
Content Coupling

A module changes another module’s data

Design at the Routine Level: Not Worst Coupling
Common Coupling

This occurs when all modules reference the same global data structure

Design at the Routine Level: Not Worst Coupling
External Coupling

Modules communicate through an external medium, such as files

Design at the Routine Level: Acceptable Coupling
Control Coupling

Two modules exhibit control coupling if one (``module A'') passes to the other (``module B'') a piece of
information that is intended to control the internal logic of the other.

Design at the Routine Level: Acceptable Coupling
Stamp Coupling

Two modules (``A'' and ``B'') exhibit stamp coupling if one passes directly to the other a ``composite'' piece of
data-that is, a piece of data with meaningful internal structure -such as a record (or structure), array, or

(pointer to) a list or tree.

Design at the Routine Level: Ideal Coupling

Modules A and B have the lowest possible level of coupling -no
coupling at all -if they have no direct communication and are also
not ``tied together'' by shared access to the same global data area
or external device.
it implies that A and B be implemented, tested, and maintained (almost) completely independently; neither will affect

the behavior of the other

Good Routine Names
A good name for a routine clearly describes everything the routine does

Describe everything the routine does Avoid meaningless, vague, or wishy washy verbs

Don’t differentiate routine names solely by number Make names of routines as long as necessary

To name a function, use a description of the return value To name a procedure, use a strong verb followed by an object

Use opposites preciselyEstablish conventions for common operations

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

Some verbs are elastic, stretched to cover just about any meaning. Routine
names like HandleCalculation() , PerformServices() , OutputUser() ,
ProcessInput() , and DealWithOutput() don’t tell you what the routines do.

describe all the outputs and side effects. If a routine computes report
totals and opens an output file, ComputeReportTotals() is not an adequate
name for the routine. ComputeReportTotalsAndOpenOutputFile() is an
adequate name but is too long and silly.

A procedure with functional cohesion usually performs an operation on an
object. The name should reflect what the procedure does, and an
operation on an object implies a verb-plus object name.

In some systems, it’s important to distinguish among different kinds of
operations. A naming convention is often the easiest and most reliable
way of indicating these distinctions

How Long Can a Routine Be?

The theoretical best maximum length is often described as one
screen or one or two pages of program listing, approximately
50 to 150 lines. In this spirit, IBM once limited routines to 50
lines, and TRW limited them to two pages (McCabe 1976)

A large percentage of routines in object-oriented programs will be accessor routines, which will be very short. From
time to time, a complex algorithm will lead to a longer routine, and in those circumstances, the routine should be

allowed to grow organically up to 100–200 lines (A line is a non comment, nonblank line of source code).

How to Use Routine Parameters?

One often-cited study by Basiliand Perricone (1984) found that
39 percent of all errors were internal interface errors—errors in
communication between routines.

Interfaces between routines are some of the most error-prone areas of a program

How to Use Routine Parameters?
Put parameters in input-modify-output order

Instead of ordering parameters randomly or alphabetically, list the parameters that are
input-only first, input-and-output second, and output-only third

How to Use Routine Parameters?
Consider creating your own in and out keywords

How to Use Routine Parameters?
If several routines use similar parameters, put the similar parameters in a consistent order

The order of routine parameters can be a mnemonic, and inconsistent order can make
parameters hard to remember.

How to Use Routine Parameters?
Use all the parameters

If you pass a parameter to a routine, use it. If you aren’t using it, remove the parameter
from the routine interface.

Unused parameters are correlated with an increased error rate. In
one study, 46 percent of routines with no unused variables had
no errors, and only 17 to 29 percent of routines with more than
one unreferenced variable had no errors (Card, Church, and Agresti1986).

How to Use Routine Parameters?
Put status or error variables last

By convention, status variables and variables that indicate an
error has occurred go last in the parameter list. They are

incidental to the main purpose of the routine, and they are
output-only parameters, so it’s a sensible convention.

How to Use Routine Parameters?
Don’t use routine parameters as working variables

It’s dangerous to use the parameters passed to a routine as working variables. Use local
variables instead.

How to Use Routine Parameters?
Document interface assumptions about parameters

If you assume the data being passed to your routine has certain characteristics, document the assumptions as
you make them. Even better than commenting your assumptions, use assertions to put them into code

Whether parameters are
input-only, modified, or

output-only

Units of numeric
parameters (inches,

feet, meters, and so on)

Meanings of status codes and
error values if enumerated

types aren’t used

Ranges of expected
values

Specific values that should
never appear

How to Use Routine Parameters?
Limit the number of a routine’s parameters to about seven

Seven is a magic number for people’s comprehension

If you find yourself consistently passing more than a few arguments, the coupling
among your routines is too tight. Design the routine or group of routines to reduce the

coupling. If you are passing the same data to many different routines, group the
routines into a class and treat the frequently used data as class data.

How to Use Routine Parameters?
Make sure actual parameters match formal parameters

Formal parameters, also known as “dummy parameters,” are the variables declared in a routine
definition. Actual parameters are the variables, constants, or expressions used in the actual routine calls.

A common mistake is to put the wrong
type of variable in a routine call

The most important reason for creating a routine is to improve the
intellectual manageability of a program, and you can create a routine for

many other good reasons. Saving space is a minor reason; improved
readability, reliability, and modifiability are better reasons.

Sometimes the operation that most benefits from being put into a routine
of its own is a simple one.

You can classify routines into various kinds of cohesion, but you can make
most routines functionally cohesive, which is best.

The name of a routine is an indication of its quality. If the name is bad and
it’s accurate, the routine might be poorly designed. If the name is bad and

it’s inaccurate, it’s not telling you what the program does. Either way, a
bad name means that the program needs to be changed.

Defensive Programming
The idea is based on defensive driving. In defensive driving, you adopt the mind-set that you’re never sure what

the other drivers are going to do. That way, you make sure that if they do something dangerous you won’t be
hurt. You take responsibility for protecting yourself even when it might be the other driver’s fault.

Defensive Programming

Part of the Interstate-90 floating bridge in Seattle sank during a storm
because the flotation tanks were left uncovered, they filled with water, and

the bridge became too heavy to float. During construction, protecting
yourself against the small stuff matters more than you might think.

Defensive Programming

Defensive Programming

Protecting Your Program from Invalid Inputs
In school you might have heard the expression, “Garbage in, garbage out.” That expression is essentially

software development’s version of caveat emptor: let the user beware.

For production software, garbage in, garbage out
isn’t good enough. A good program never puts

out garbage, regardless of what it takes in.

Check the values of all data
from external sources

Check the values of all routine
input parameters

Decide how to handle bad
inputs

Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a

program to check itself as it runs

When an assertion is true, that means everything is
operating as expected. When it’s false, that means it has

detected an unexpected error in the code.

Assertions are especially useful in large, complicated programs and in
high-reliability programs. They enable programmers to more quickly

flush out mismatched interface assumptions, errors that creep in
when code is modified, and so on.

Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a

program to check itself as it runs

An assertion usually takes two arguments: a Boolean expression that describes
the assumption that’s supposed to be true, and a message to display if it isn’t.

Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a

program to check itself as it runs

You use assertions primarily for debugging and identifying logic errors in an
application. They are comment-like code

You must explicitly enable assertions when executing a program, because they
reduce performance and are unnecessary for the program’s user.

Users should not encounter any Assertion Errors through normal execution of a
properly written program. Such errors should only indicate bugs in the

implementation. E.g., Debug mode vs. Release mode

Assertions
An assertion is code that’s used during development—usually a routine or macro—that allows a

program to check itself as it runs

• That an input parameter’s value falls within its expected range (or an output
parameter’s value does)

• That a file or stream is open (or closed) when a routine begins executing (or when it
ends executing)

• That a file or stream is at the beginning (or end) when a routine begins executing (or
when it ends executing)

• That a file or stream is open for read-only, write-only, or both read and write
• That the value of an input-only variable is not changed by a routine
• That a pointer is non-null
• That an array or other container passed into a routine can contain at least X number of

data elements
• That a table has been initialized to contain real values
• That a container is empty (or full) when a routine begins executing (or when it finishes)
• That the results from a highly optimized, complicated routine match the results from a

slower but clearly written routine

Assertions: Guidelines for Using Assertions
Use error-handling code for conditions you expect to occur;

use assertions for conditions that should never occur

Assertions check for conditions that should never occur. Error-handling code
checks for off-nominal circumstances that might not occur very often, but that
have been anticipated by the programmer who wrote the code and that need
to be handled by the production code. Error handling typically checks for bad

input data; assertions check for bugs in the code.

Assertions: Guidelines for Using Assertions
Avoid putting executable code into assertions

Putting code into an assertion raises the possibility that the compiler will eliminate the code
when you turn off the assertions.

Assertions: Guidelines for Using Assertions
Do not use assertions for argument checking in public

methods
Argument checking is typically part of the published specifications (or contract) of a method, and

these specifications must be obeyed whether assertions are enabled or disabled

Erroneous arguments should result in an appropriate
runtime exception (such as IllegalArgumentException,

IndexOutOfBoundsException, or NullPointerException)

Assertions: Guidelines for Using Assertions
Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain

phase of execution. For example, a loop invariant is a condition that is true at the beginning and
end of every execution of a loop.

Assertions: Guidelines for Using Assertions
Use Assertions for Internal Invariants

An invariant is a condition that can be relied upon to be true during execution of a program, or
during some portion of it. It is a logical assertion that is held to always be true during a certain

phase of execution. For example, a loop invariant is a condition that is true at the beginning and
end of every execution of a loop.

Assumption: the suit variable will
have one of only four values. To test
this assumption, you should add the
following default case:

Assertions: Guidelines for Using Assertions
Use Assertions for Control Flow Invariants
place an assertion at any location you assume will not be reached

Assertions: Guidelines for Using Assertions
Use assertions to document and verify preconditions and postconditions

Preconditions are the properties that the client
code of a routine or class promises will be true

before it calls the routine or instantiates the
object. Preconditions are the client code’s

obligations to the code it calls.

Postconditions are the properties that the
routine or class promises will be true when it
concludes executing. Postconditions are the

routine’s or class’s obligations to the code that
uses it.

If the variables latitude, longitude, and elevation
were coming from an external source, invalid
values should be checked and handled by error-
handling code rather than by assertions.

Assertions: Guidelines for Using Assertions
For highly robust code, assert and then handle the error anyway

Error-Handling Techniques
Return a neutral value

Sometimes the best response to bad data is to continue operating and simply
return a value that’s known to be harmless.

• A numeric computation might return 0.
• A string operation might return an empty string, or a pointer operation might

return an empty pointer.
• A drawing routine that gets a bad input value for color in a video game might

use the default background or foreground color.

Error-Handling Techniques
Substitute the next piece of valid data

When processing a stream of data, some circumstances call for simply returning
the next valid data.

If you’re reading records from a database
and encounter a corrupted record, you
might simply continue reading until you
find a valid record.

If you’re taking readings from a
thermometer 100 times per second and
you don’t get a valid reading one time, you
might simply wait another 1/100th of a
second and take the next reading.

Error-Handling Techniques
Return the same answer as the previous time

Error-Handling Techniques
Substitute the closest legal value

In some cases, you might choose to return the closest legal value. This is often a
reasonable approach when taking readings from a calibrated instrument

The thermometer might be calibrated
between 0 and 100 degrees Celsius, for
example. If you detect a reading less than
0, you can substitute 0, which is the closest
legal value.

Cars use this approach to error handling
whenever going back. Since a
speedometer doesn’t show negative
speeds, when it simply shows a speed of
0—the closest legal value.

Error-Handling Techniques
Log a warning message to a file

When bad data is detected, you might choose to log a warning message to a
file and then continue on.

This approach can be used in conjunction
with other techniques like substituting the
closest legal value or substituting the next
piece of valid data.

If you use a log, consider whether you can
safely make it publicly available or whether
you need to encrypt it or protect it some
other way.

Error-Handling Techniques
Return an Error Code

You could decide that only certain parts of a system will handle errors. Other
parts will not handle errors locally; they will simply report that an error has

been detected and trust that some other routine higher up in the calling
hierarchy will handle the error.

■ Set the value of a status variable
■ Return status as the function’s return value
■ Throw an exception by using the language’s built-in
exception mechanism

Call an error-processing routine/object
Centralize error handling in a global error-handling routine or error-handling object.

Error-Handling Techniques
Display an error message wherever the error is encountered
This approach minimizes error-handling overhead; however, it does have the potential to spread

user interface messages through the entire application-how to separate UI. Tight coupling

Beware of telling a potential attacker of the system
too much. Attackers sometimes use error messages to

discover how to attack a system.

Error-Handling Techniques
Shutdown

Some systems shut down whenever they detect an error. This approach is useful
in safety-critical applications.

Error-Handling Techniques: Correctness vs. Robustness

Correctness means never returning an inaccurate result;
returning no result is better than returning an inaccurate result.

Robustness means always trying to do something that will allow
the software to keep operating, even if that leads to results that
are inaccurate sometimes.

Safety-critical applications tend to favor
correctness to robustness. It is better to return no

result than to return a wrong result. e.g. the
radiation machine

Consumer applications tend to favor robustness
to correctness. Any result whatsoever is usually

better than the software shutting down.

Exceptions
An exception is an event, which occurs during the execution of a program, that

disrupts the normal flow of the program's instructions.

If code in one routine encounters an unexpected condition that it doesn’t
know how to handle, it throws an exception, essentially throwing up its
hands and yelling, “I don’t know what to do about this—I sure hope

somebody else knows how to handle it!”
Code that has no sense of the context of an error can return control to other parts of the system
that might have a better ability to interpret the error and do something useful about it.

Exceptions
An exception is an event, which occurs during the execution of a program, that

disrupts the normal flow of the program's instructions.

Exceptions

The benefit of exceptions is their ability to signal error conditions in such a way that they
cannot be ignored (Meyers 1996)

Use exceptions to notify other parts of the program about
errors that should not be ignored

Other approaches to handling errors create the possibility that
an error condition can propagate through a code base

undetected. Exceptions eliminate that possibility.

Exceptions

Exceptions should be reserved for conditions that are truly exceptional—in other words, for
conditions that cannot be addressed by other coding practices

Throw an exception only for conditions that are truly
exceptional

Exceptions represent a tradeoff between a powerful way to
handle unexpected conditions on the one hand and increased

complexity on the other.

Exceptions
Don’t use an exception to pass the buck

If an error condition can be handled locally, handle it locally.
Don’t throw an uncaught exception in a section of code if you

can handle the error locally.

The rules for how exceptions are processed become very complicated very quickly when
exceptions are thrown in constructors and destructors.

Avoid throwing exceptions in constructors and destructors
unless you catch them in the same place

Exceptions

A routine should present a consistent abstraction in its interface, and so should a class. The
exceptions thrown are part of the routine interface, just like specific data types are.

Throw exceptions at the right level of abstraction

Exceptions

Be sure the message contains the information needed to understand why the exception was thrown.

Include in the exception message all information that led
to the exception

If the exception was thrown because of an array index error, be
sure the exception message includes the upper and lower array

limits and the value of the illegal index.

Exceptions
Avoid empty catch blocks

Either the code within the try block is wrong because it raises an exception for no reason, or the
code within the catch block is wrong because it doesn’t handle a valid exception.

Know the exceptions your library code throws
If you’re working in a language that doesn’t require a routine or class to define the exceptions

it throws, be sure you know what exceptions are thrown by any library code you use.

Exceptions
Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

Exceptions
Consider building a centralized exception reporter

Exceptions provide the means to separate the details of what to do when something out of the
ordinary. Error detection, reporting, and handling often lead to confusing spaghetti code

Barricade Your Program to Contain the Damage Caused by Errors
Barricades are a damage-containment strategy. The reason is similar to that for having isolated compartments in

the hull of a ship.

Debugging Aids
Don’t Automatically Apply Production Constraints to the Development Version

A common programmer blind spot is the assumption that limitations of the production software apply to
the development version

Be willing to trade speed and resource usage during
development in exchange for built-in tools that can make

development go more smoothly.

Introduce Debugging Aids Early
The earlier you introduce debugging aids, the more they’ll help

Debugging Aids

Use Offensive Programming
Exceptional cases should be handled in a way that makes them obvious during development and

recoverable when production code is running

• Make sure assert/abort the program. Don’t allow programmers to get into the habit of

just hitting the Enter key to bypass a known problem. Make the problem painful enough

that it will be fixed.

• Completely fill any memory allocated so that you can detect memory allocation errors.

• Completely fill any files or streams allocated to flush out any file-format errors.

• Be sure the code in each case statement’s default or else clause fails hard (aborts the

program) or is otherwise impossible to overlook.

• Fill an object with junk data just before it’s deleted.

• Set up the program to e-mail error log files to yourself so that you can see the kinds of

errors that are occurring in the released software, if that’s appropriate for the kind of

software you’re developing.

Debugging Aids
Plan to Remove Debugging Aids

If you’re writing code for your own use, it might be fine to leave all the debugging code in the program.
If you’re writing code for commercial use, the performance penalty in size and speed can be prohibitive.

Use version-control tools and
build tools like ant and make

Use a built-in
preprocessor

Write your own
preprocessor Use debugging stubs

Determining How Much Defensive Programming to
Leave in Production Code

Leave in code that checks
for important errors

Leave in code that helps the
program crash gracefully

Log errors for your
technical support personnel

Make sure that error messages
you leave in are friendly

Being Defensive About Defensive Programming

Think about where you need to be defensive, and set
your defensive programming priorities accordingly

Production code should handle errors in a more sophisticated way than “garbage in, garbage out.”

Defensive-programming techniques make errors easier to find, easier to fix, and less damaging to
production code.

Assertions can help detect errors early, especially in large systems, high-reliability systems, and fast-
changing code bases.

The decision about how to handle bad inputs is a key error-handling decision and a key high-level
design decision.

Exceptions provide a means of handling errors that operates in a different dimension from the
normal flow of the code. They are a valuable addition to the programmer’s intellectual toolbox when

used with care, and they should be weighed against other error-processing techniques

Constraints that apply to the production system do not necessarily apply to the development
version. You can use that to your advantage, adding code to the development version that helps to

flush out errors quickly.

