
SWEN 6301 Software Construction
Lecture 8: Developer Testing and Debugging

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- Slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course..

Testing

Testing

• Some programmers use the terms “testing” and “debugging”
interchangeably, but not right.

• Testing is a means of detecting errors.
• Debugging is a means of diagnosing and correcting the root causes of

errors that have already been detected.

Testing can only show the presence of errors,
not their absence

6

Testing

• The testing process has two distinct goals:
• To demonstrate to the developer and the customer that the

software meets its requirements.
• For custom software, this means that there should be at least one test for every

requirement in the requirements document. For generic software products, it means
that there should be tests for all of the system features, plus combinations of these
features, that will be incorporated in the product release.

• To discover situations in which the behavior of the software is
incorrect, undesirable, or does not conform to its specification.

• These are a consequence of software defects. Defect testing is concerned with rooting
out undesirable system behavior such as system crashes, unwanted interactions with
other systems, incorrect computations, and data corruption.

7

Testing

• The first goal leads to validation testing, where you expect the system
to perform correctly using a given set of test cases that reflect the
system’s expected use.

• The second goal leads to defect testing, where the test cases are
designed to expose defects.

8

Testing

• Defect testing is to find
those inputs in the set Ie that
reveal problems with the
system.

• Validation testing involves
testing with correct inputs
that are outside Ie, the system
to generate the expected
correct outputs.

9

Testing

• The ultimate goal is to establish confidence that the software system
is ‘fit for purpose’.

• This means that the system must be good enough for its intended
use.

• The level of required confidence depends on the system’s purpose,
the expectations of the system users, and the current marketing
environment for the system:

10

Testing

• Software purpose
• The more critical the software, the more important that it is reliable.
• For example, the level of confidence required for software used to

control a safety-critical system is much higher than that required for a
prototype that has been developed to demonstrate new product
ideas.

11

Testing

• User expectations
• Because of their experiences with buggy, unreliable software, many

users have low expectations of software quality. They are not
surprised when their software fails.

• When a new system is installed, users may tolerate failures because
the benefits of use outweigh the costs of failure recovery.

• In these situations, you may not need to devote as much time to
testing the software.

• However, as software matures, users expect it to become more
reliable so more thorough testing of later versions may be required.

12

Testing

• Marketing environment
• When a system is marketed, the sellers of the system must take into

account competing products, the price that customers are willing to
pay for a system, and the required schedule for delivering that
system.

• In a competitive environment, a software company may decide to
release a program before it has been fully tested and debugged
because they want to be the first into the market.

• If a software product is very cheap, users may be willing to tolerate a
lower level of reliability.

13

Testing

• Test cases are specifications of the inputs to the test and the expected
output from the system (the test results), plus a statement of what is
being tested.

• Test data are the inputs that have been devised to test a system.

14

Testing

• Test data can be generated automatically,
• but automatic test case generation is impossible?
What about mutation testing?

• However, test execution can be automated.

15

Testing

• Unit testing is the execution of a complete class, routine, or small
program that has been written by a single programmer or team of
programmers, which is tested in isolation from the more complete
system.

• Unit tests are basically written and executed by software
developers to make sure that code behaves as expected.

16

Testing – Unit Testing

• When you are testing object classes, you should design your tests to
provide coverage of all of the features of the object. This means that
you should:

• test all operations associated with the object;
• set and check the value of all attributes associated with the object;
• put the object into all possible states. This means that you should

simulate all events that cause a state change.

17

Testing – Unit Testing

• For example, WeatherStation object
• It has a single attribute, which is its
identifier. This is a constant that is set
when the weather station is installed.

• You therefore only need a test that
checks if it has been properly set up.

• You need to define test cases for all of
the methods associated with the object
such as reportWeather, reportStatus, etc.

Testing – Unit Testing

• Ideally, you should test methods in
isolation but, in some cases, some test
sequences are necessary.

• For example, to test the method that
shuts down the weather station
instruments (shutdown), you need to
have executed the restart method.

Testing – Unit Testing

• Inheritance makes object class testing more complicated.
• You can’t simply test an operation in the class where it is defined and

assume that it will work as expected in the subclasses that inherit the
operation.

• The operation that is inherited may make assumptions about other
operations and attributes.

• These may not be valid in some subclasses that inherit the operation.
You therefore have to test the inherited operation in all of the
contexts where it is used.

20

Testing – Unit Testing

• To test the states of the weather station,
you use a state model (as on the next
slide)

• Using this model, you can identify
sequences of state transitions that have
to be tested and define event
sequences to force these transitions.

• In principle, you should test every
possible state transition sequence,
although in practice this may be too
expensive.

Testing – Unit Testing

• Whenever possible, you should automate unit testing.
• In automated unit testing, you make use of a test automation

framework (such as JUnit) to write and run your program tests.
• Unit testing frameworks provide generic test classes that you extend

to create specific test cases.
• They can then run all of the tests that you have implemented and

report, often through some GUI, on the success or failure of the tests.
• An entire test suite can often be run in a few seconds so it is possible

to execute all the tests every time you make a change to the program.

24

Testing – Unit Testing

• An automated test has three parts:
1. A setup part, where you initialize the system with the test case,

namely the inputs and expected outputs.
2. A call part, where you call the object or method to be tested.
3. An assertion part where you compare the result of the call with

the expected result. If the assertion evaluates to true, the test
has been successful; if false, then it has failed.

25

Testing – Unit Testing

• Sometimes the object that you are testing has dependencies on other
objects that may not have been written or which slow down the
testing process if they are used.

• For example, if your object calls a database, this may involve a slow
setup process before it can be used.

• In these cases, you may decide to use mock objects.

26

Testing – Unit Testing

• Mock objects are objects with the same interface as the external
objects being used that simulate its functionality.

• Therefore, a mock object simulating a database may have only a few
data items that are organized in an array.

• They can therefore be accessed quickly, without the overheads of
calling a database and accessing disks.

27

Testing

• Component testing is the execution of a class, package, small
program, or other program element that involves the work of
multiple programmers or programming teams, which is tested in
isolation from the more complete system.

• Like subsystem testing
• Stubs can be used for testing a subsystem while the connected

subsystems aren’t finished yet

28

Testing

• Integration testing is the combined execution of two or more classes,
packages, components, or subsystems that have been created by
multiple programmers or programming teams.

• This kind of testing typically starts as soon as there are two classes to
test and continues until the entire system is complete.

29

Testing

• Regression testing is the repetition of previously executed test cases
for the purpose of finding defects in modified software that
previously passed the same set of tests.

• Any new feature is added
• Any enhancement is done
• Any bug is fixed
• Any performance related issue is fixed

30

Testing

• System testing is the execution of the software in its final
configuration, including integration with other software and hardware
systems.

• It tests for security, performance, resource loss, timing problems, and
other issues that can’t be tested at lower levels of integration.

• It may include tests based on
• risks and/or requirement specifications, business process, use

cases, or other high level descriptions of system behavior,
interactions with the operating systems, and system resources.

31

Testing

• Acceptance testing is the execution of the software after it is
released, by the customer

• After the system test has corrected all or most defects, the system
will be delivered to the user or customer for acceptance testing.

32

Testing

• Testing is usually broken into two broad categories:
• black-box (or specification-based) testing
• white-box (or glass-box) testing

33

Testing

• Black-box testing refers to tests in which the tester cannot see
the inner workings of the item being tested. This obviously does
not apply when you test code that you have written!

• a.k.a. Specification-based testing technique or input/output driven
testing techniques because they view the software as a black-box with
inputs and outputs.

• Concentrating on what the software does, not how it does it.

34

Testing

• White-box testing refers to tests in which the tester is aware
of the inner workings of the item being tested. This is the
kind of testing that you as a developer use to test your own
code.

• a.k.a. Structure-based testing technique is or ‘glass-box’ testing
technique because here the testers require knowledge of how the
software is implemented, how it works.

35

Developer Testing

• Developer testing typically consists of unit tests, component
tests, and integration tests

• but can sometimes include regression tests and system tests.
• A key question is, How much time should be spent in developer

testing on a typical project?

36

Developer Testing

• What do you do with the results of developer testing?
• To assess the reliability of the product under development. Even if

you never correct the defects that testing finds, testing describes
how reliable the software is.

• To guide corrections to the software.
• Finally, over time, the record of defects found through testing

helps reveal the kinds of errors that are most common. You can
use this information to select appropriate training classes, direct
future technical review activities, and design future test cases.

37

Developer Testing

• During construction, you generally write a routine or class, check it
mentally, and then review it or test it.

• Regardless of your integration or system-testing strategy, you should
test each unit thoroughly before you combine it with any others.

38

Developer Testing

• Test for each relevant requirement to make sure that the
requirements have been implemented.

• Plan the test cases for this step at the requirements stage or as early
as possible—preferably before you begin writing the unit to be tested.

• Consider testing for common omissions in requirements.
• The level of security, storage, the installation procedure, and system

reliability are all fair game for testing and are often missed at
requirements time.

39

Developer Testing

• Test for each relevant design concern to make sure that the design has
been implemented.

• Plan the test cases for this step at the design stage or as early as
possible-before you begin the detailed coding of the routine or class
to be tested.

40

Developer Testing

• Use basis testing to add detailed test cases to those that test the
requirements and the design.

• Add data-flow tests, and then add the remaining test cases needed to
thoroughly exercise the code.

• At a minimum, you should test every line of code.
• Basis testing and data-flow testing are described later...

41

Developer Testing

• Use a checklist of the kinds of errors you’ve made on the project to
date or have made on previous projects.

42

Developer Testing – Test Cases First

• Writing test cases before writing the code doesn’t take any more effort
than writing test cases after the code;

• it simply resequences the test-case-writing activity.
• Writing test cases first helps to detect defects earlier and you can correct

them more easily.
• Writing test cases first forces you to think at least a little bit about the

requirements and design before writing code, which tends to produce
better code.

• Writing test cases first exposes requirements problems sooner, before the
code is written, because it’s hard to write a test case for a poor
requirement.

• If you save your test cases, which you should do, you can still test last, in
addition to testing first.

43

Developer Testing - Limitations

• Developer tests tend to be “clean tests”
• Developers tend to test for whether the code works (clean tests)

rather than test for all the ways the code breaks (dirty tests).
• Immature testing organizations tend to have about five clean tests for

every dirty test.
• Mature testing organizations tend to have five dirty tests for every

clean test. This ratio is not reversed by reducing the clean tests; it’s
done by creating 25 times as many dirty tests (Boris Beizer in Johnson
1994).

44

Developer Testing - Limitations

• Developer testing tends to have an optimistic view of test coverage
• Average programmers believe they are achieving 95 percent test

coverage, but they’re typically achieving more like 80 percent test

coverage in the best case, 30 percent in the worst case, and more like

50-60 percent in the average case (Boris Beizer in Johnson 1994).

45

Developer Testing - Limitations

• Developer testing tends to skip more sophisticated kinds of test
coverage

• Most developers view the kind of test coverage known as “100%
statement coverage” as adequate.

• This is a good start, but it’s hardly sufficient.
• A better coverage standard is to meet what’s called “100% branch

coverage,” with every predicate term being tested for at least one
true and one false value.
What is the ultimate coverage?

46

Testing Tricks

• To use testing to prove that a program works, you’d have to test every
conceivable input values.

• Suppose, for example, that you have a program that takes a name, an
address, and a phone number and stores them in a file.

• Each of the names and addresses is 20 characters long and that there
are 26 possible characters to be used in them. This would be the
number of possible inputs:

48

Testing Tricks – Incomplete Testing

• Since exhaustive testing is
impossible, practically speaking, the
art of testing is that of

• picking the test cases most likely
to find errors.

• You need to concentrate on picking a
few that tell you different things
rather than a set that tells you the
same thing over and over.

49

Testing Tricks – Structured Basis Testing
• Test each statement in a program at least once.

• If the statement is a logical statement—an if or a while, for
example—you need to vary the testing according to how
complicated the expression inside the if or while is to make sure
that the statement is fully tested.

• The easiest way to make sure that you’ve gotten all the bases covered
is to calculate the number of paths through the program and then
develop the minimum number of test cases that will exercise every
path through the program.
• Equivalence Behavior Testing?

• Path Counting Problem?

• NPATH Paper: https://dl.acm.org/citation.cfm?id=42379

• Path Counting Toolbox: https://knowledgecentricsoftwarelab.com/PathCounter/
50

https://dl.acm.org/citation.cfm?id=42379

Testing Tricks – Structured Basis Testing

51

• Basis path testing (structured testing) is a white box method for designing test cases.

• The method analyzes the control flow graph of a program to find a set of linearly

independent paths of execution.

• The method normally uses McCabe' cyclomatic complexity to determine the number

of linearly independent paths and then generates test cases for each path thus

obtained.

• Basis path testing guarantees complete branch coverage (all edges of the control flow

graph), but achieves that without covering all possible paths of the control flow

graph—the latter is usually too costly.

• Basis path testing has been widely used and studied

https://en.wikipedia.org/wiki/Basis_path_testing

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Branch_coverage
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)

Testing Tricks – Structured Basis Testing
• Step 1 : Draw the

Flow Graph of the
Function/Program
under consideration
as shown below:

52

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

Testing Tricks – Structured Basis Testing
• Step 2 : Determine
the independent
paths.

53

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

Testing Tricks – Structured Basis Testing

• You can compute the minimum number of cases needed for basis
testing in this straightforward way:

1. Start with 1 for the straight path through the routine.
2. Add 1 for each of the following keywords, or their equivalents: if,

case, while, for, and, and or, etc.

54

V(G) = E - N + 2: Where, E - Number of edges N - Number of Nodes
V(G) = P + 1: Where P = Number of predicate nodes (node that contains condition)

Testing Tricks – Structured Basis Testing

• Start with one and count the if
once to make a total of two. So,
you need to have at least two
test cases to cover all the paths
through the program.

• In this example, you’d need to
have the following test cases:

55

56

Testing Tricks – Structured Basis Testing

• If the routine were much more complicated than this, the number of
test cases you’d have to use just to cover all the paths would increase
pretty quickly.

• Shorter routines tend to have fewer paths to test. Boolean
expressions without a lot of ands and ors have fewer variations to
test. Ease of testing is another good reason to keep your routines
short and your boolean expressions simple.

• Now that you’ve created six test cases for the routine and satisfied
the demands of structured basis testing, can you consider the routine
to be fully tested? Probably not.

59

Testing Tricks – Data-Flow Testing

• Data-flow testing is a family of test strategies based on selecting
paths through the program's control flow in order to explore
sequences of events related to the status of variables or data objects.

• focuses on the points at which variables receive values and the
points at which these values are used.

• Data Flow testing helps us to pinpoint any of the following issues:
• A variable that is declared but never used within the program.
• A variable that is used but never declared.
• A variable that is defined multiple times before it is used.
• Deallocating a variable before it is used.

60

Testing Tricks – Data-Flow Testing

• Data-flow testing is based on the idea that data usage is at least as
error-prone as control flow.

• Data can exist in one of three states:
• Defined The data has been initialized, but it hasn’t been used yet.
• Used The data has been used for computation, as an argument to a routine,

or for something else.
• Killed The data was once defined, but it has been undefined in some way.

• For example, if the data is a pointer, perhaps the pointer has been freed.
If it’s a for-loop index, perhaps the program is out of the loop and the
programming language doesn’t define the value of a for-loop index once
it’s outside the loop.

61

Testing Tricks – Data-Flow Testing

• In addition to having the terms “defined,” “used,” and “killed,” it’s
convenient to have terms that describe entering or exiting a routine
immediately before or after doing something to a variable:

• Entered The control flow enters the routine immediately before the variable is
acted upon. For example, a working variable is initialized at the top of a
routine.

• Exited The control flow leaves the routine immediately after the variable is
acted upon. For example, a return value is assigned to a status variable at the
end of a routine.

62

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• The normal combination of data states is that a variable is defined,

used one or more times, and perhaps killed. View the following
patterns suspiciously:

• Defined-Defined
• Defined-Exited
• Defined-Killed
• Entered-Killed
• Entered-Used
• Killed-Killed
• Killed-Used
• Used-Defined

63

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Defined-Defined
• Define a variable twice before the value is set to it

64

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Defined-Exited
• If the variable is a local variable, it doesn’t make sense to define it and

exit without using it.

65

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Defined-Killed
• Defining a variable and then killing it suggests that either the variable

is not-essential or the code piece that was supposed to use the
variable is missing.

66

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Entered-Killed
• This is a problem if the variable is a local variable. It wouldn’t need to

be killed if it hasn’t been defined or used.
• If, on the other hand, it’s a routine parameter or a global variable, this

pattern is all right as long as the variable is defined somewhere else
before it’s killed.

67

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Entered-Used
• Again, this is a problem if the variable is a local variable.
• The variable needs to be defined before it’s used.
• If, on the other hand, it’s a routine parameter or a global variable, the

pattern is all right if the variable is defined somewhere else before it’s
used.

68

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Killed-Killed
• A variable shouldn’t need to be killed twice. Variables don’t come

back to life.
• A resurrected variable indicates sloppy programming.
• Double kills are also fatal for pointers

69

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Killed-Used
• Using a variable after it has been killed is a logical error.

70

Testing Tricks – Data-Flow Testing

• Combinations of Data States
• Used-Defined
• Using and then defining a variable might or might not be a problem,

depending on whether the variable was also defined before it was
used.

• Certainly if you see a used-defined pattern, it’s worthwhile to check
for a previous definition.

71

Testing Tricks – Data-Flow Testing
Combinations of Data States
• Check for these anomalous sequences of data states before testing

begins.
• After you’ve checked for the anomalous sequences, the key to writing

data-flow test cases is to exercise all possible defined-used paths.
• You can do this to various degrees of thoroughness, including

• All definitions. Test every definition of every variable—that is, every place at
which any variable receives a value. This is a weak strategy because if you try
to exercise every line of code, you’ll do this by default.

• All defined-used combinations. Test every combination of defining a variable
in one place and using it in another. This is a stronger strategy than testing all
definitions because merely executing every line of code does not guarantee
that every defined-used combination will be tested.

72

Testing Tricks – Data-Flow Testing
Combinations of Data States
• What are the test cases

for basis testing?

73

Testing Tricks – Data-Flow Testing
Combinations of Data States

74

Testing Tricks – Data-Flow Testing
Combinations of Data States
• To cover every path in the program, you need one test case in which

Condition 1 is true and one in which it’s false.
• You also need a test case in which Condition 2 is true and one in

which it’s false.
• This can be handled by two test cases: Case 1 (Condition 1=True,

Condition 2=True) and Case 2 (Condition 1=False, Condition 2=False).
• Those two cases are all you need for structured basis testing.
• They’re also all you need to exercise every line of code that defines

a variable; they give you the weak form of data-flow testing
automatically.

75

Testing Tricks – Data-Flow Testing
Combinations of Data States
• To cover every defined-used combination, however, you

need to add a few more cases.
• Right now you have the cases created by having

Condition 1 and Condition 2 true at the same time and
Condition 1 and Condition 2 false at the same time.

• But you need two more cases to test every defined-used
combination: (1) x = a and then y = x - 1 and (2) x = b
and then y = x + 1. In this example, you can get these
combinations by adding two more cases: Case 3
(Condition 1=True, Condition 2=False) and Case 4
(Condition 1=False, Condition 2=True).

Testing Tricks – Data-Flow Testing
Combinations of Data States
• A good way to develop test cases is to start with structured basis

testing, which gives you some if not all of the defined-used data
flows.

• Then add the cases you still need to have a complete set of defined-
used data-flow test cases.

77

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• A good test case covers a large part of the possible input data.
• If two test cases flush out exactly the same errors, you need only one

of them.
• The concept of “equivalence partitioning” is a formalization of this

idea and helps reduce the number of test cases required.
• is a software testing technique that divides the input data of a

software unit into partitions of equivalent data from which test
cases can be derived.

• In principle, test cases are designed to cover each partition at least
once.

78

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• Password: must be a minimum 8 characters and maximum 12

characters.

• What are the test cases?

79

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• Password: must be a minimum 8 characters and maximum 12

characters.
�ꢀ

�ꢀ

�ꢀ

�ꢀ

�ꢀ

Test Case 1: Consider password length less than 8.
Test Case 2: Consider password of length exactly 8.
Test Case 3: Consider password of length between 9 and 11.
Test Case 4: Consider password of length exactly 12.
Test Case 5: Consider password of length more than 12.

80

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• Once you have identified a set of partitions, you choose test cases from

each of these partitions.
• A good rule of thumb for test case selection is to choose test cases on the

boundaries of the partitions, plus cases close to the midpoint of the
partition.

• The reason for this is that designers and programmers tend to consider
typical values of inputs when developing a system. You test these by
choosing the midpoint of the partition.

• Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) so are sometimes overlooked by developers.

• Program failures often occur when processing these atypical values.
81

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• Equivalence partitions
as shown here:

83

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• The condition to be tested is m_employee[ID

].governmentRetirementWithheld < MAX_GOVT_RETIREMENT.

• This case has two equivalence classes:
• the class in which m_employee[ID

].governmentRetirementWithheld is less than
MAX_GOVT_RETIREMENT and the class in which it’s greater than
or equal to MAX_GOVT_RETIREMENT.

• Other parts of the program might have other related equivalence
classes that imply that you need to test more than two possible
values of m_employee[ID].governmentRetirementWithheld, but as
far as this part of the program is concerned, only two are needed.

84

Testing Tricks – Data-Flow Testing
Equivalence Partitioning
• Thinking about equivalence partitioning won’t give you a lot of new

insight into a program when you have already covered the program
with basis and data-flow testing.

• It’s especially helpful, however, when you’re looking at a program
from the outside (from a specification rather than the source code) or
when the data is complicated and the complications aren’t all
reflected in the program’s logic.

85

Testing Tricks – Data-Flow Testing
Error Guessing
• In addition to the formal test techniques, good programmers use a

variety of less formal, heuristic techniques to expose errors in their
code.

• One heuristic is the technique of error guessing.
• It means creating test cases based upon guesses about where the

program might have errors, although it implies a certain amount of
sophistication in the guessing.

86

Testing Tricks – Data-Flow Testing
Boundary Analysis
• One of the most fruitful areas for testing is boundary conditions—off-

by-one errors.
• Saying num – 1 when you mean num and saying >= when you mean >

are common mistakes.

87

Testing Tricks – Data-Flow Testing
Boundary Analysis
• The idea of boundary analysis is to write test cases that exercise the

boundary conditions.
• If you’re testing for a range of values that are less than max, you have

three possible conditions:

• As shown, there are three boundary cases: just less than max, max
itself, and just greater than max. It takes three cases to ensure that
none of the common mistakes has been made.

88

Testing Tricks – Data-Flow Testing
Compound Boundaries
• A more complicated kind of boundary condition occurs when the

boundary involves a combination of variables.
• For example, if two variables are multiplied together, what happens

when both are large positive numbers? Large negative numbers? 0?
What if all the strings passed to a routine are uncommonly long?

90

Testing Tricks – Data-Flow Testing
Compound Boundaries
• In the running example, you might want to see what happens to the

variables totalWithholdings, totalGovernmentRetirement, and
totalRetirement when every member of a large group of employees
has a large salary—say, a group of programmers at $250,000 each.

91

Testing Tricks – Data-Flow Testing
Compound Boundaries
• A test case in the same vein but on the opposite side of the looking

glass would be a small group of employees, each of whom has a
salary of $0.00:

92

Testing Tricks – Data-Flow Testing
Classes of Bad Data
• Aside from guessing that errors show up around boundary conditions,

you can guess about and test for several other classes of bad data.
• Typical bad-data test cases include

• Too little data (or no data)
• Too much data
• The wrong kind of data (invalid data)
• The wrong size data
• Uninitialized data

93

Testing Tricks – Data-Flow Testing
Classes of Bad Data
• Some of the test cases you would think of if you followed these

suggestions have already been covered.

• Classes of bad data nonetheless gives rise to a few more cases:

94

Testing Tricks – Data-Flow Testing
Classes of Good Data
• When you try to find errors in a program, it’s easy to miss the fact

that the main case might contain an error.
• Usually the nominal cases described in the basis-testing section

represent one kind of good data.
• Following are other kinds of good data that are worth checking.
• Checking each of these kinds of data can reveal errors, depending on

the item being tested.

95

Testing Tricks – Data-Flow Testing
Classes of Good Data
• Checking each of these kinds of data can reveal errors, depending on

the item being tested.
• Nominal cases—middle-of-the-road, expected values
• Minimum normal configuration
• Maximum normal configuration
• Compatibility with old data

96

Testing Tricks – Data-Flow Testing
Classes of Good Data
• The minimum normal configuration is useful for testing not just one

item, but a group of items.
• It’s similar in spirit to the boundary condition of many minimal values,

but it’s different in that it creates the set of minimum values out of
the set of what is normally expected.

• One example would be to save an empty spreadsheet when testing a
spreadsheet.

• In the case of the running example, testing the minimum normal
configuration would add the following test case:

98

Testing Tricks – Data-Flow Testing
Classes of Good Data
• The maximum normal configuration is the opposite of the minimum.
• It’s similar in spirit to boundary testing, but again, it creates a set of

maximum values out of the set of expected values.
• An example of this would be saving a spreadsheet that’s as large as

the “maximum spreadsheet size” advertised on the product’s
packaging.

• In the case of the running example, testing the maximum normal
configuration depends on the maximum normal number of
employees, assuming it’s 500, you would add the following test case:

99

Testing Tricks – Data-Flow Testing
Use Test Cases That Make Hand-Checks Convenient
• Let’s suppose you’re writing a test case for a nominal salary; you need

a nominal salary, and the way you get one is to type in whatever
numbers your hands land on.

• Testing $90,783.82
• Now, further suppose that the test case succeeds—that is, it finds an

error. How do you know that it’s found an error? Well, presumably,
you know what the answer is and what it should be because you
calculated the correct answer by hand.

• Better to use numbers that can be hand checked, e.g. $90,000

100

Typical Errors - Which Classes Contain the
Most Errors?
• It’s natural to assume that defects are distributed evenly throughout

your source code.
• If you have an average of 10 defects per 1000 lines of code, you might

assume that you’ll have one defect in a class that contains 100 lines of
code.

• This is a natural assumption, but it’s wrong.

102

Typical Errors - Which Classes Contain the
Most Errors?
• It was reported that a program at IBM identified 31 of 425 classes are

error-prone.
• The 31 classes were repaired or completely redeveloped, and, in less

than a year, customer-reported defects were reduced ten to one.
• Total maintenance costs were reduced by about 45 percent.
• Customer satisfaction improved from “unacceptable” to “good” (Jones

2000).

104

Typical Errors - Which Classes Contain the
Most Errors?
• Most errors tend to be concentrated in a few highly defective

routines. Here is the general relationship between errors and code:
• 80% of the errors are found in 20%of a project’s classes or routines

(Endres 1975, Gremillion 1984, Boehm 1987b, Shull et al 2002).
• 50% of the errors are found in 5% of a project’s classes (Jones

2000).

105

Typical Errors - Which Classes Contain the
Most Errors?
• These relationships might not seem so important until you recognize a

few conclusions.
• First, 20% of a project’s routines contribute 80% of the cost of

development (Boehm 1987b). That doesn’t necessarily mean that the
20% that cost the most are the same as the 20% with the most
defects, but it’s pretty suggestive.

• Second, regardless of the exact proportion of the cost contributed by
highly defective routines, highly defective routines are extremely
expensive.

106

Typical Errors - Which Classes Contain the
Most Errors?
• In a classic study in the 1960s, IBM performed an analysis of its

OS/360 operating system and found that errors were not distributed
evenly across all routines but were concentrated into a few.

• Those error-prone routines were found to be “the most expensive
entities in programming” (Jones 1986a).

• They contained as many as 50 defects per 1000 lines of code, and
fixing them often cost 10 times what it took to develop the whole
system (The costs included customer support and in-the-field
maintenance.)

107

Typical Errors - Which Classes Contain the
Most Errors?
• Third, the implication of expensive routines for development is clear.
• If you can cut close to 80% of the cost by avoiding troublesome

routines, you can cut a substantial amount of the schedule as well.
• This is a clear illustration of the General Principle of Software Quality:

improving quality improves the development schedule and reduces
development costs.

108

Typical Errors - Which Classes Contain the
Most Errors?
• Fourth, the implication of avoiding troublesome routines for

maintenance is equally clear.
• Maintenance activities should be focused on identifying, redesigning,

and rewriting from the ground up those routines that have been
identified as error-prone.

• In the IBM project mentioned earlier, productivity of the product
releases improved about 15% after replacement of the error-prone
classes (Jones 2000).

109

Debugging
Debugging Issues Finding a Defect Fixing a Defect Psychological Considerations Debugging Tools

Overview of Debugging Issues

• Debugging is the process of identifying the root cause of an error and
correcting it.

• It contrasts with testing, which is the process of detecting the error
initially. On some projects, debugging occupies as much as 50 percent
of the total development time.

• For many programmers, debugging is the hardest part of
programming.

6

Outline
•Debugging Issues
•Finding a Defect
•Fixing a Defect
•Psychological Considerations
•Debugging Tools

5

Overview of Debugging Issues

• A bug in software means that a programmer made a mistake.
• Like testing, debugging isn’t a way to improve the quality of your

software; it’s a way to diagnose defects. Software quality must be
built in from the start.

• The best way to build a quality product is to develop requirements
carefully, design well, and use high-quality coding practices.

• Debugging is a last resort.

7

Overview of Debugging Issues - Defects

• Assuming that you don’t want the program to have a defect, it means
that you don’t fully understand what the program does.

• If you don’t know exactly what you’re telling the computer to do,
you’re only a small step away from merely trying different things until
something seems to work—that is, programming by trial and error.
And if you’re programming by trial and error, defects are guaranteed.

• You don’t need to learn how to fix defects; you need to learn how to
avoid them in the first place.

8

Example: the GNU Debugger (GDB)

http://www.cprogramming.com/gdb.html
• A good debugger is one of the most important tools in a

programmer's toolkit.
• On a UNIX or Linux system, GDB (the GNU debugger) is a powerful

and popular debugging tool; it lets you do whatever you like with
your program running under GDB.

9

http://www.cprogramming.com/gdb.html

Overview of Debugging Issues - Defects

• Learn about the program you’re working on
• You have something to learn about the program because if you

already knew it perfectly, it wouldn’t have a defect. You would have
corrected it already.

21

Overview of Debugging Issues - Defects

• Learn about the kinds of mistakes you make
• If you wrote the program, you inserted the defect. It’s not every day

that a spotlight exposes a weakness with glaring clarity, but such a
day is an opportunity, so take advantage of it.

• Once you find the mistake, ask yourself how and why you made it.
• How could you have found it more quickly?
• How could you have prevented it?
• Does the code have other mistakes just like it?
• Can you correct them before they cause problems of their own?

22

Overview of Debugging Issues - Defects

• Learn about the quality of your code from the point of view of
someone who has to read it

• You’ll have to read your code to find the defect.
• This is an opportunity to look critically at the quality of your code.

• Is it easy to read? How could it be better?
• Use your discoveries to refactor your current code or to improve the

code you write next.

23

Overview of Debugging Issues - Defects

• Learn about how you solve problems
• Does your approach to solving debugging problems give you

confidence? Does your approach work? Do you find defects quickly?
Or is your approach to debugging weak? Do you feel anguish and
frustration? Do you guess randomly? Do you need to improve?

• Considering the amount of time many projects spend on debugging,
you definitely won’t waste time if you observe how you debug.

• Taking time to analyze and change the way you debug might be the
quickest way to decrease the total amount of time it takes you to
develop a program.

24

Overview of Debugging Issues - Defects

• Learn about how you fix defects
• In addition to learning how you find defects, you can learn about how

you fix them.
• Do you make the easiest possible correction by applying goto

bandages and special-case makeup that changes the symptom but
not the problem? Or do you make systemic corrections, demanding
an accurate diagnosis and prescribing treatment for the heart of the
problem?

25

Overview of Debugging Issues - An Ineffective
Approach
• Find the defect by guessing
• To find the defect, scatter print statements randomly throughout a

program.
• Examine the output to see where the defect is. If you can’t find the

defect with print statements, try changing things in the program until
something seems to work.

• Don’t back up the original version of the program, and don’t keep a
record of the changes you’ve made.

• Programming is more exciting when you’re not quite sure what the
program is doing. Stock up on cola and candy because you’re in for a
long night in front of the terminal.

26

Overview of Debugging Issues - An Ineffective
Approach
• Fix the error with the most obvious fix
• It’s usually good just to fix the specific problem you see, rather than

wasting a lot of time making some big, ambitious correction that’s going to
affect the whole program.

• This is a perfect example:

• Who needs to dig all the way into Compute() for an obscure problem with
the value of 17 when you can just write a special case for it in the obvious
place?

28

Overview of Debugging Issues - An Ineffective
Approach
• Don’t waste time trying to understand the problem
• It’s likely that the problem is trivial, and you don’t need to understand

it completely to fix it.
• Simply finding it is enough.

27

Overview of Debugging Issues - An Ineffective
Approach
• Don’t waste time trying to understand the problem
• It’s likely that the problem is trivial, and you don’t need to understand

it completely to fix it.
• Simply finding it is enough.

29

Outline
•Debugging Issues
•Finding a Defect
•Fixing a Defect
•Psychological Considerations
•Debugging Tools

30

Finding a Defect - The Scientific Method of
Debugging
• Here are the steps you go through when you use the classic scientific

method:
1. Gather data through repeatable experiments.
2. Form a hypothesis that accounts for the relevant data.
3. Design an experiment to prove or disprove the hypothesis.
4. Prove or disprove the hypothesis.
5. Repeat as needed.

31

Finding a Defect - The Scientific Method of
Debugging
• The scientific method has many parallels in debugging. Here’s an

effective approach for finding a defect:
1. Stabilize the error.
2. Locate the source of the error (the “fault”).

• Gather the data that produces the defect.
• Analyze the data that has been gathered, and form a hypothesis about the defect.
• Determine how to prove or disprove the hypothesis, either by testing the program or by

examining the code.
• Prove or disprove the hypothesis by using the procedure identified in 2(c).

3. Fix the defect.
4. Test the fix.
5. Look for similar errors.

32

Finding a Defect - The Scientific Method of
Debugging
• The first step is similar to the scientific method’s first step in that it relies

on repeatability.
• The defect is easier to diagnose if you can stabilize it—that is, make it

occur reliably.
• The second step uses the steps of the scientific method. You gather the test

data that divulged the defect, analyze the data that has been produced,
and form a hypothesis about the source of the error.

• You then design a test case or an inspection to evaluate the hypothesis,
and you either declare success (regarding proving your hypothesis) or
renew your efforts, as appropriate.

• When you have proven your hypothesis, you fix the defect, test the fix, and
search your code for similar errors.

33

Finding a Defect - The Scientific Method of
Debugging
• Let’s look at each of the steps in conjunction with an example. Assume

that you have an employee database program that has an error.
• The program is supposed to print a list of employees and their income-

tax withholdings in alphabetical order. Here’s part of the output:
• The error is that Many-Loop, Mavis and Modula, Mildred are out of

order.

34

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• If a defect doesn’t occur reliably, it’s almost impossible to diagnose.
• Making a defect occur predictably is one of the most challenging tasks in

debugging.

35

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• An error that doesn’t occur predictably is usually an initialization error, a

timing issue, or a dangling-pointer problem.
• If the calculation of a sum is right sometimes and wrong sometimes, a

variable involved in the calculation probably isn’t being initialized
properly—most of the time it just happens to start at 0.

• If the problem is a strange and unpredictable phenomenon and you’re
using pointers, you almost certainly have an uninitialized pointer or are
using a pointer after the memory that it points to has been deallocated.

36

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• Stabilizing an error usually requires more than finding a test case that

produces the error.
• It includes narrowing the test case to the simplest one that still

produces the error.
• The goal of simplifying the test case is to make it so simple that

changing any aspect of it changes the behavior of the error. Then, by
changing the test case carefully and watching the program’s behavior
under controlled conditions, you can diagnose the problem.

• If you work in an organization that has an independent test team,
sometimes it’s the team’s job to make the test cases simple. Most of the
time, it’s your job.

37

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• To simplify the test case, you bring the scientific method into play again.

Suppose you have 10 factors that, used in combination, produce the error.
Form a hypothesis about which factors were irrelevant to producing the error.

• Change the supposedly irrelevant factors, and rerun the test case. If you still
get the error, you can eliminate those factors and you’ve simplified the test.

• Then you can try to simplify the test further. If you don’t get the error, you’ve
disproved that specific hypothesis and you know more than you did before.

• It might be that some subtly different change would still produce the error,
but you know at least one specific change that does not.

38

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• In the employee withholdings example, when the program is run

initially, Many-Loop, Mavis is listed after Modula, Mildred.
• When the program is run a second time, however, the list is fine:

39

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• It isn’t until Fruit-Loop, Frita is entered and shows up in an incorrect

position that you remember that Modula, Mildred had been entered
just prior to showing up in the wrong spot too.

• What’s odd about both cases is that they were entered singly. Usually,
employees are entered in groups.

40

Finding a Defect - The Scientific Method of
Debugging | Stabilize the Error
• You hypothesize: the problem has something to do with entering a single

new employee. If this is true, running the program again should put Fruit-
Loop, Frita in the right position. Here’s the result of a second run:

• This successful run supports the hypothesis. To confirm it, you want to try
adding a few new employees, one at a time, to see whether they show up
in the wrong order and whether the order changes on the second run41.

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• Locating the source of the error also calls for using the scientific

method.
• You might suspect that the defect is a result of a specific problem, say an

off-by-one error.
• You could then vary the parameter you suspect is causing the problem—

one below the boundary, on the boundary, and one above the
boundary—and determine whether your hypothesis is correct.

42

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• In the running example, the source of the problem could be an off-by-

one defect that occurs when you add one new employee but not when
you add two or more.

• Examining the code, you don’t find an obvious off-by-one defect.

43

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• Resorting to Plan B, you run a test case with a single new employee to

see whether that’s the problem. You add Hardcase, Henry as a single
employee and hypothesize that his record will be out of order.

• Here’s what you find:

44

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• The line for Hardcase, Henry is exactly where it should be, which means

that your first hypothesis is false.
• The problem isn’t caused simply by adding one employee at a time.
• It’s either a more complicated problem or something completely

different.

45

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• Examining the test-run output again, you notice that Fruit-Loop, Frita

and Many-Loop, Mavis are the only names containing hyphens (-).
• Fruit-Loop was out of order when she was first entered, but Many-Loop

wasn’t, was she?
• Although you don’t have a printout from the original entry, in the

original error Modula, Mildred appeared to be out of order, but she was
next to Many-Loop.

• Maybe Many-Loop was out of order and Modula was all right.
• You hypothesize again: the problem arises from names with hyphens,

not names that are entered singly.

46

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• But how does that account for the fact that the problem shows up only

the first time an employee is entered? You look at the code and find that
two different sorting routines are used.

• One is used when an employee is entered, and another is used when
the data is saved. A closer look at the routine used when an employee is
first entered shows that it isn’t supposed to sort the data completely. It
only puts the data in approximate order to speed up the save routine’s
sorting.

• Thus, the problem is that the data is printed before it’s sorted. The
problem with hyphenated names arises because the rough-sort routine
doesn’t handle niceties such as punctuation characters.

• Now, you can refine the hypothesis even further.
47

Finding a Defect - Tips for Finding Defects

• Check for common defects
• Use code-quality checklists to stimulate your thinking about possible

defects.
• If you’re following the inspection practices described in Section 21.3,

“Formal Inspections,” you’ll have your own fine-tuned checklist of the
common problems in your environment.

• You can also use the checklists that appear throughout this book. See
the “List of Checklists” following the book’s table of contents.

71

Finding a Defect - The Scientific Method of
Debugging | Locate the Source of the Error
• You hypothesize one last time: names with punctuation characters

aren’t sorted correctly until they’re saved.
• You later confirm this hypothesis with additional test cases.

48

Finding a Defect - Tips for Finding Defects

• Once you’ve stabilized an error and refined the test case that produces
it, finding its source can be either trivial or challenging, depending on
how well you’ve written your code.

• If you’re having a hard time finding a defect, it could be because the
code isn’t well written.

49

Finding a Defect - Tips for Finding Defects

• Use all the data available to make your hypothesis
• When creating a hypothesis about the source of a defect, account for as

much of the data as you can in your hypothesis.
• In the example, you might have noticed that Fruit-Loop, Frita was out of

order and created a hypothesis that names beginning with an “F” are
sorted incorrectly.

• That’s a poor hypothesis because it doesn’t account for the fact that
Modula, Mildred was out of order or that names are sorted correctly the
second time around. If the data doesn’t fit the hypothesis, don’t discard
the data—ask why it doesn’t fit, and create a new hypothesis.

50

Finding a Defect - Tips for Finding Defects

• Use all the data available to make your hypothesis
• The second hypothesis in the example—that the problem arises from

names with hyphens, not names that are entered singly—didn’t seem
initially to account for the fact that names were sorted correctly the
second time around either.

• In this case, however, the second hypothesis led to a more refined
hypothesis that proved to be correct.

• It’s all right that the hypothesis doesn’t account for all of the data at first
as long as you keep refining the hypothesis so that it does eventually.

51

Finding a Defect - Tips for Finding Defects

• Refine the test cases that produce the error
• If you can’t find the source of an error, try to refine the test cases

further than you already have.
• You might be able to vary one parameter more than you had assumed,

and focusing on one of the parameters might provide the crucial
breakthrough.

52

Finding a Defect - Tips for Finding Defects

• Exercise the code in your unit test suite
• Defects tend to be easier to find in small fragments of code than in large

integrated programs.
• Use your unit tests to test the code in isolation.

53

Finding a Defect - Tips for Finding Defects

• Use available tools
• Numerous tools are available to support debugging sessions: interactive

debuggers, picky compilers, memory checkers, syntax-directed editors, and so
on.

• The right tool can make a difficult job easy. With one tough-to-find error, for
example, one part of the program was overwriting another part’s memory.

• This error was difficult to diagnose using conventional debugging practices
because the programmer couldn’t determine the specific point at which the
program was incorrectly overwriting memory.

• The programmer used a memory breakpoint to set a watch on a specific
memory address. When the program wrote to that memory location, the
debugger stopped the code and the guilty code was exposed.

54

Finding a Defect - Tips for Finding Defects

• Reproduce the error several different ways
• Sometimes trying cases that are similar to the error-producing case but

not exactly the same is instructive.
• Think of this approach as triangulating the defect.
• If you can get a fix on it from one point and a fix on it from another, you

can better determine exactly where it is.

55

Finding a Defect - Tips for Finding Defects

• Reproduce the error several different ways
• Reproducing an error several different ways helps diagnose the cause of

the error.
• Once you think you’ve identified the defect, run a case that’s close to

the cases that produce errors but that should not produce an error
itself. If it does produce an error, you don’t completely understand the
problem yet.

• Errors often arise from combinations of factors, and trying to diagnose
the problem with only one test case often doesn’t diagnose the root
problem.

56

Finding a Defect - Tips for Finding Defects

• Reproduce the error several different ways

57

Finding a Defect - Tips for Finding Defects

• Generate more data to generate more hypotheses
• Choose test cases that are different from the test cases you already

know to be erroneous or correct.
• Run them to generate more data, and use the new data to add to your

list of possible hypotheses.

58

Finding a Defect - Tips for Finding Defects

• Use the results of negative tests
• Suppose you create a hypothesis and run a test case to prove it.

Suppose further that the test case disproves the hypothesis, so you still
don’t know the source of the error.

• You do know something you didn’t before—namely, that the defect is
not in the area you thought it was.

• That narrows your search field and the set of remaining possible
hypotheses.

59

Finding a Defect - Tips for Finding Defects

• Brainstorm for possible hypotheses
• Rather than limiting yourself to the first hypothesis you think of, try to

come up with several.
• Don’t analyze them at first—just come up with as many as you can in a

few minutes.
• Then look at each hypothesis and think about test cases that would

prove or disprove it.
• This mental exercise is helpful in breaking the debugging logjam that

results from concentrating too hard on a single line of reasoning.

60

Finding a Defect - Tips for Finding Defects

• Keep a notepad by your desk, and make a list of things to try
• One reason programmers get stuck during debugging sessions is that

they go too far down dead-end paths.
• Make a list of things to try, and if one approach isn’t working, move on

to the next approach.

61

Finding a Defect - Tips for Finding Defects

• Narrow the suspicious region of the code
• If you’ve been testing the whole program or a whole class or routine,

test a smaller part instead.
• Use print statements, logging, or tracing to identify which section of

code is producing the error.

62

Finding a Defect - Tips for Finding Defects

• Narrow the suspicious region of the code
• If you need a more powerful technique to narrow the suspicious region

of the code, systematically remove parts of the program and see
whether the error still occurs.

• If it doesn’t, you know it’s in the part you took away. If it does, you know
it’s in the part you’ve kept.

63

Finding a Defect - Tips for Finding Defects

• Narrow the suspicious region of the code
• Rather than removing regions haphazardly, divide and conquer. Use a

binary search algorithm to focus your search.
• Try to remove about half the code the first time.
• Determine the half the defect is in, and then divide that section. Again,

determine which half contains the defect, and again, chop that section
in half. Continue until you find the defect.

64

Finding a Defect - Tips for Finding Defects

• Narrow the suspicious region of the code
• If you use many small routines, you’ll be able to chop out sections of

code simply by commenting out calls to the routines.
• Otherwise, you can use comments or pre-processor commands to

remove code.

65

Finding a Defect - Tips for Finding Defects

• Narrow the suspicious region of the code
• If you’re using a debugger, you don’t necessarily have to remove pieces

of code. You can set a breakpoint partway through the program and
check for the defect that way instead.

• If your debugger allows you to skip calls to routines, eliminate suspects
by skipping the execution of certain routines and seeing whether the
error still occurs.

• The process with a debugger is otherwise similar to the one in which
pieces of a program are physically removed.

66

Finding a Defect - Tips for Finding Defects

• Be suspicious of classes and routines that have had defects before
• Classes that have had defects before are likely to continue to have

defects.
• A class that has been troublesome in the past is more likely to contain a

new defect than a class that has been defect-free.
• Reexamine error-prone classes and routines.

67

Finding a Defect - Tips for Finding Defects

• Check code that’s changed recently
• If you have a new error that’s hard to diagnose, it’s usually related to

code that’s changed recently.
• It could be in completely new code or in changes to old code. If you

can’t find a defect, run an old version of the program to see whether the
error occurs. If it doesn’t, you know the error’s in the new version or is
caused by an interaction with the new version. Scrutinize the differences
between the old and new versions.

• Check the version control log to see what code has changed recently. If
that’s not possible, use a diff tool to compare changes in the old,
working source code to the new, broken source code.

68

Finding a Defect - Tips for Finding Defects

• Expand the suspicious region of the code
• It’s easy to focus on a small section of code, sure that “the defect must

be in this section.”
• If you don’t find it in the section, consider the possibility that the defect

isn’t in the section.
• Expand the area of code you suspect, and then focus on pieces of it by

using the binary search technique described earlier.

69

Finding a Defect - Tips for Finding Defects

• Integrate incrementally
• Debugging is easy if you add pieces to a system one at a time.
• If you add a piece to a system and encounter a new error, remove the

piece and test it separately.

70

Finding a Defect - Tips for Finding Defects

• Talk to someone else about the problem
• Some people call this “confessional debugging.”
• You often discover your own defect in the act of explaining it to

another person.
• For example, if you were explaining the problem in the salary

example, you might sound like this:

72

Finding a Defect - Tips for Finding Defects

• Talk to someone else about the problem

• Jennifer didn’t say a word, and you solved your problem. This result is
typical, and this approach is a potent tool for solving difficult defects.

73

Finding a Defect - Tips for Finding Defects

• Take a break from the problem
• Sometimes you concentrate so hard you can’t think.
• How many times have you paused for a cup of coffee and figured out

the problem on your way to the coffee machine? Or in the middle of
lunch? Or on the way home? Or in the shower the next morning?

• If you’re debugging and making no progress, once you’ve tried all the
options, let it rest.

• Go for a walk. Work on something else. Go home for the day. Let your
subconscious mind tease a solution out of the problem.

74

Outline
•Debugging Issues
•Finding a Defect
•Fixing a Defect
•Psychological Considerations in Debugging
•Debugging Tools—Obvious and Not-So-Obvious

86

Fixing a Defect

• The hard part of debugging is finding the defect. Fixing the defect is
the easy part.

• But as with many easy tasks, the fact that it's easy makes it especially
error-prone.

• At least one study found that defect corrections have more than a 50
percent chance of being wrong the first time (Yourdon 1986b).

87

Fixing a Defect

• Understand the problem before you fix it
• The best way to make your life difficult and corrode the quality of

your program is to fix problems without really understanding them.
• Before you fix a problem, make sure you understand it to the core.

88

Fixing a Defect

• Understand the program, not just the problem
• If you understand the context in which a problem occurs, you’re more likely

to solve the problem completely rather than only one aspect of it.
• A study done with short programs found that programmers who achieve a

global understanding of program behavior have a better chance of
modifying it successfully than programmers who focus on local behavior,
learning about the program only as they need to (Littman et al. 1986).

• Because the program in this study was small (280 lines), it doesn’t prove
that you should try to understand a 50,000-line program completely before
you fix a defect. It does suggest that you should understand at least the
code in the vicinity of the defect correction—the “vicinity” being not a few
lines but a few hundred.

89

Fixing a Defect

• Confirm the defect diagnosis
• Before you rush to fix a defect, make sure that you’ve diagnosed the

problem correctly.
• Take the time to run test cases that prove your hypothesis and

disprove competing hypotheses.
• If you’ve proven only that the error could be the result of one of

several causes, you don’t yet have enough evidence to work on the
one cause; rule out the others first.

90

Fixing a Defect

• Save the original source code
• Before you begin fixing the defect, be sure to archive a version of the

code that you can return to later.
• It’s easy to forget which change in a group of changes is the

significant one.
• If you have the original source code, at least you can compare the old

and the new files and see where the changes are.

91

Fixing a Defect

• Fix the problem, not the symptom
• You should fix the symptom too, but the focus should be on fixing the

underlying problem rather than wrapping it in programming duct
tape.

• If you don’t thoroughly understand the problem, you’re not fixing the
code.

• You’re fixing the symptom and making the code worse.

92

Fixing a Defect

• Fix the problem, not the symptom

• Suppose that when client equals 45, sum turns out to be wrong by
$3.45. Here’s the wrong way to fix the problem:

93

Fixing a Defect

• Fix the problem, not the symptom
• Now suppose that when client equals 37 and the number of claims

for the client is 0, you’re not getting 0. Here’s the wrong way to fix the
problem:

Fixing a Defect

• Change the code only for good reason
• Related to fixing symptoms is the technique of changing code at

random until it seems to work.
• The typical line of reasoning goes like this: “This loop seems to

contain a defect. It’s probably an off-by-one error, so I’ll just put a -1
here and try it. OK. That didn’t work, so I’ll just put a +1 in instead.
OK. That seems to work. I’ll say it’s fixed.”

• By changing the program randomly, you say in effect, “I don’t know
what’s happening here, but I’ll try this change and hope it works.”

• Don’t change code randomly.
95

Fixing a Defect

• Make one change at a time
• Changes are tricky enough when they’re done one at a time.
• When done two at a time, they can introduce subtle errors that look

like the original errors.
• Then you’re in the awkward position of not knowing whether you

didn’t correct the error, whether you corrected the error but
introduced a new one that looks similar, or whether you didn’t
correct the error and you introduced a similar new error.

• Keep it simple: make just one change at a time.

96

Fixing a Defect

• Check your fix
• Check the program yourself, have someone else check it for you, or

walk through it with someone else.
• Run the same triangulation test cases you used to diagnose the

problem to make sure that all aspects of the problem have been
resolved.

• If you’ve solved only part of the problem, you’ll find out that you still
have work to do.

• Rerun the whole program to check for side effects of your changes.
The easiest and most effective way to check for side effects is to run
the program through an automated suite of regression tests.

97

Fixing a Defect

• Add a unit test that exposes the defect
• When you encounter an error that wasn’t exposed by your test suite,

add a test case to expose the error so that it won’t be reintroduced
later.

98

Fixing a Defect

• Look for similar defects
• When you find one defect, look for others that are similar.
• Defects tend to occur in groups, and one of the values of paying

attention to the kinds of defects you make is that you can correct all
the defects of that kind.

• Looking for similar defects requires you to have a thorough
understanding of the problem.

• Watch for the warning sign: if you can’t figure out how to look for
similar defects, that’s a sign that you don’t yet completely understand
the problem.

99

Outline
•Debugging Issues
•Finding a Defect
•Fixing a Defect
•Psychological Considerations
•Debugging Tools

100

Psychological Considerations

• When you see a token in a program that says Num, what do you see?
• Do you see a misspelling of the word “Numb”? Or do you see the

abbreviation for “Number”? Most likely, you see the abbreviation for
“Number.”

• This is the phenomenon of “psychological set”—seeing what you
expect to see.

101

Psychological Considerations

• What was written on the previous image?
• In this classic puzzle, people often see only one “the.” People see

what they expect to see.

102

Psychological Considerations

• Students learning while loops often expect a loop to be continuously
evaluated; that is, they expect the loop to terminate as soon as the
while condition becomes false, rather than only at the top or bottom
(Curtis et al. 1986).

• They expect a while loop to act as “while” does in natural language.

103

Psychological Considerations

• A programmer who unintentionally used both the variable SYSTSTS
and the variable SYSSTSTS thought he was using a single variable.

• He didn’t discover the problem until the program had been run
hundreds of times and a book was written containing the erroneous
results (Weinberg 1998).

104

Psychological Considerations

• A programmer looking at code like this
code:

105

Psychological Considerations

• Psychological distance can be defined as the ease with which two
items can be differentiated.

• If you are looking at a long list of words and have been told that
they’re all about ducks, you could easily mistake “Queck” for “Quack”
because the two words look similar.

• The psychological distance between the words is small.
• You would be much less likely to mistake “Tuack” for “Quack” even

though the difference is only one letter again. “Tuack” is less like
“Quack” than “Queck” is because the first letter in a word is more
prominent than the one in the middle.

106

Psychological Considerations

• As you construct code, choose names with large differences so that
you avoid the problem.

107

Outline
•Debugging Issues
•Finding a Defect
•Fixing a Defect
•Psychological Considerations
•Debugging Tools

108

Debugging Tools

• You can do much of the detailed, brain-busting work of debugging
with debugging tools that are readily available.

• The tool that will drive the final stake through the heart of the defect
vampire isn’t yet available, but each year brings an incremental
improvement in available capabilities.

109

Debugging Tools - Source-Code Comparators

• A source-code comparator such as Diff is useful when you’re
modifying a program in response to errors.

• If you make several changes and need to remove some that you can’t
quite remember, a comparator can pinpoint the differences and jog
your memory.

• If you discover a defect in a new version that you don’t remember in
an older version, you can compare the files to determine what
changed.

110

Debugging Tools - Compiler Warning Messages

• Set your compiler’s warning level to the highest, pickiest level
possible, and fix the errors it reports

• It’s sloppy to ignore compiler errors. It’s even sloppier to turn off the
warnings so that you can’t even see them.

• Setting a switch on the compiler to turn off warnings just means you
can’t see the errors.

• It doesn’t make them go away.

111

Debugging Tools - Compiler Warning Messages

• Treat warnings as errors
• Some compilers let you treat warnings as errors.
• One reason to use the feature is that it elevates the apparent

importance of a warning.
• Just as setting your watch five minutes fast tricks you into thinking it’s

five minutes later than it is, setting your compiler to treat warnings as
errors tricks you into taking them more seriously.

112

Debugging Tools - Extended Syntax and Logic
Checking
• You can use additional tools to check your code more thoroughly than

your compiler does.
• For example, for C programmers, the lint utility painstakingly checks

for use of uninitialized variables (writing = when you mean = =) and
similarly subtle problems.

113

Debugging Tools - Debuggers

• Good debuggers allow you to set breakpoints to break when
execution reaches a specific line, or the nth time it reaches a specific
line, or when a global variable changes, or when a variable is assigned
a specific value.

• They allow the program to be executed backwards, stepping back to
the point where a defect originated.

• Good debuggers allow full examination of data, including structured
and dynamically allocated data. They make it easy to view the
contents of a linked list of pointers or a dynamically allocated array.

115

Debugging Tools - Execution Profilers

• You might not think of an execution profiler as a debugging tool, but a
few minutes spent studying a program profile can uncover some
surprising (and hidden) defects.

• For example, I had suspected that a memory-management routine in
one of my programs was a performance bottleneck.

• Memory management had originally been a small component using a linearly
ordered array of pointers to memory. .

• I replaced the linearly ordered array with a hash table in the expectation that
execution time would drop by at least half. But after profiling the code, I
found no change in performance at all. I examined the code more closely and
found a defect that was wasting a huge amount of time in the allocation
algorithm.

114

