
SWEN 6301 Software Construction
Lecture 10: Refactoring

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- Slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course..

Refactoring

• Modifying software to improve its readability, maintainability,
and extensibility without changing what it actually does.

• External behavior does NOT change
• Internal structure is improved

Refactoring

• It is a disciplined way to clean up code that minimizes the chances of
introducing bugs.

• In essence when you refactor you are improving the design of the
code after it has been written.

• In software development, we design first then we code
• Refactoring is the opposite of this practice: take a bad design, and

rework it into well-designed code

Refactoring

• Each step is simple
• move a field from one class to another,
• pull some code out of a method to make into its own method, and
• push some code up or down a hierarchy

• Yet the cumulative effect of these small changes can radically improve
the design.

Composing Methods – Extract Method

• You have a code fragment that can be grouped together.
• Turn the fragment into a method whose name explains the

purpose of the method.

Composing Methods – Extract Method

Motivation
• Method is too long or code that needs a comment to understand its

purpose. Then turn that fragment of code into its own method.
• Prefer short, well-named methods for several reasons:

• First, it increases the chances that other methods can use a
method when the method is finely grained.

• Second, it allows the higher-level methods to read more like a
series of comments. Overriding also is easier when the methods
are finely grained.

Composing Methods – Extract Method

Mechanics
• Create a new method, and name it after the intention of the method

(name it by what it does, not by how it does it).
• Copy the extracted code from the source method into the new target

method.
• Scan the extracted code for references to any variables that are local

in scope to the source method. These are local variables and
parameters to the method.

Composing Methods – Extract Method

Mechanics (cont.)
• See whether any temporary variables are used only within this

extracted code. If so, declare them in the target method as temporary
variables.

• Look to see whether any of these local-scope variables are modified
by the extracted code.

• If one variable is modified, see whether you can treat the
extracted code as a query and assign the result to the variable
concerned.

Composing Methods – Extract Method

Mechanics (cont.)
• Pass into the target method as parameters local-scope variables that

are read from the extracted code.
• Replace the extracted code in the source method with a call to the

target method

Composing Methods – Extract Method

Composing Methods – Extract Method

Example: No Local Variables
• Extract the code that prints

the banner. Just cut, paste,
and put in a call:

Composing Methods – Extract Method

Example: Using Local Variables
• The problem is local variables: parameters passed into the original

method and temporaries declared within the original method.
• The easiest case with local variables is when the variables are read

but not changed.
• In this case, can just pass them as parameters

Composing Methods – Extract Method

Example: Using Local Variables
• Extract the printing of details

with a method with one
parameter:

Composing Methods – Extract Method

Example: Using Local Variables
• extract the printing of details

with a method with one
parameter:

Composing Methods – Extract Method

Example: Reassigning a Local Variable
• It's the assignment to local variables that becomes complicated. In

this case we're only talking about temps.
• For temps that are assigned to, there are two cases:

• The simpler case is that in which the variable is a temporary variable used
only within the extracted code. When that happens, you can move the temp
into the extracted code.

• The other case is use of the variable outside the code. If the variable is not
used after the code is extracted, you can make the change in just the
extracted code.

Composing Methods – Extract Method

Example: Reassigning a
Local Variable

• If it is used afterward, you need
to make the extracted code
return the changed value of the
variable.

Composing Methods – Extract Method

Example: Reassigning a
Local Variable

• If it is used afterward, you need
to make the extracted code
return the changed value of the
variable.

• The enumeration variable is
used only in the extracted code,
so I can move it entirely within
the new method.

Composing Methods – Extract Method

• Example: Reassigning a Local Variable
• Rename the returned value if required:

Composing Methods – Extract Method

Example: Reassigning a
Local Variable

• If something more
involved happens to the
variable, have to pass in
the previous value as a
parameter.

Composing Methods – Extract Method

Example: Reassigning a
Local Variable

• In this case, the extraction
would look like this:

Composing Methods – Inline Method

• A method's body is just as clear as its name.
• Put the method's body into the body of its callers and remove the

method.

Composing Methods – Inline Method

Motivation
• Use short methods named to show their intention, because these

methods lead to clearer and easier to read code.
• But sometimes you do come across a method in which the body is as

clear as the name. Or you refactor the body of the code into
something that is just as clear as the name.

• Another time to use Inline Method is when you have a group of
methods that seem badly factored. You can inline them all into one
big method and then reextract the methods.

Composing Methods – Inline Method

Mechanics
• Check that the method is not polymorphic.

• Don't inline if subclasses override the method; they cannot override a method
that isn't there.

• Find all calls to the method.
• Replace each call with the method body.
• Remove the method definition.

Composing Methods – Inline Temp

• You have a temp that is assigned to once with a simple expression,
and the temp is getting in the way of other refactorings.

• Replace all references to that temp with the expression.

Composing Methods – Inline Method

Motivation
• Most of the time Inline Temp is used as part of Replace Temp with

Query, so the real motivation is there.
• The only time Inline Temp is used on its own is when you find a temp

that is assigned the value of a method call.
• Often this temp isn't doing any harm and you can safely leave it there.

If the temp is getting in the way of other refactorings, such as Extract
Method, it's time to inline it.

Composing Methods – Inline Method

Mechanics
• Declare the temp as final if it isn't already, and compile.

• This checks that the temp is really only assigned to once.
• Find all references to the temp and replace them with the right-hand

side of the assignment.
• Remove the declaration and the assignment of the temp.

Composing Methods – Replace Temp with Query

• You are using a temporary variable
to hold the result of an expression.

• Extract the expression into a
method.

• Replace all references to the temp
with the expression. The new
method can then be used in other
methods.

Composing Methods – Replace Temp with Query

Motivation
• The problem with temps is that they are temporary and local.

Because they can be seen only in the context of the method in which
they are used, temps tend to encourage longer methods, because
that's the only way you can reach the temp.

• By replacing the temp with a query method, any method in the class
can get at the information. That helps a lot in coming up with cleaner
code for the class.

Composing Methods – Replace Temp with Query

Mechanics
• Look for a temporary variable that is assigned to once.

• If a temp is set more than once consider Split Temporary Variable
• Declare the temp as final.

• This will ensure that the temp is only assigned to once
• Extract the right-hand side of the assignment into a method.

• Initially mark the method as private. You may find more use for it later, but
you can easily relax the protection later.

Composing Methods – Replace Temp with Query

Example
• Start with a simple method

Composing Methods – Replace Temp with Query

Example
• I'm inclined to replace both temps, one at a time.
• Although it's pretty clear in this case, I can test that they are assigned

only to once by declaring them as final

Composing Methods – Replace Temp with Query

Example
• Compiling will then alert me to any problems. I do this first, because if

there is a problem, I shouldn't be doing this refactoring.
• I replace the temps one at a time. First I extract the right-hand side of

the assignment:

Composing Methods – Replace Temp with Query

Example
• First I replace the first reference to the temp:

Composing Methods – Replace Temp with Query

Example
• Do the next. Also remove the temp declaration:

Composing Methods – Replace Temp with Query

Example
• With that gone, can extract discountFactor in a similar way:

Composing Methods – Replace Temp with Query

Example
• See how it would have been difficult to extract discountFactor if I had

not replaced basePrice with a query.
• The getPrice method ends up as follows:

Composing Methods – Introduce Explaining
Variable
• You have a complicated expression.
• Put the result of the expression, or parts of the expression, in a

temporary variable with a name that explains the purpose.

Composing Methods – Introduce Explaining
Variable
Motivation
• Expressions can become very complex and hard to read.
• In such situations temporary variables can be helpful to break down

the expression into something more manageable.

Composing Methods – Introduce Explaining
Variable
Mechanics
• Declare a final temporary variable, and set it to the result of part of

the complex expression.
• Replace the result part of the expression with the value of the temp.

• If the result part of the expression is repeated, you can replace the repeats
one at a time.

• Repeat for other parts of the expression.

Composing Methods – Introduce Explaining
Variable
Example
• Start with a simple calculation:

Composing Methods – Introduce Explaining
Variable
Example
• Simple: it may be, but can make it easier to follow.
• First I identify the base price as the quantity times the item price. I

can turn that part of the calculation into a temp:

Composing Methods – Introduce Explaining
Variable
Example
• Quantity times item price is also used later, so can substitute with the

temp there as well:

Composing Methods – Introduce Explaining
Variable
Example
• Next I take the quantity discount:

Composing Methods – Introduce Explaining
Variable
Example
• Finally, I finish with the shipping. As do that, can remove the

comment, too, because now it doesn't say anything the code doesn't
say:

Composing Methods – Introduce Explaining
Variable
Example with Extract Method
• Start again:

Composing Methods – Introduce Explaining
Variable
Example with Extract Method
• continue one at a time, finally get:

Composing Methods – Introduce Explaining
Variable
Example with Extract Method
• When to use Introduce Explaining Variable? The answer is when

Extract Method is more effort.
• If I'm in an algorithm with a lot of local variables, I may not be able to

easily use Extract Method. In this case I use Introduce Explaining
Variable to help me understand what is going on.

• As the logic becomes less tangled, I can always use Replace Temp with
Query later. The temp also is valuable if I end up having to use
Replace Method with Method Object.

Composing Methods – Split Temporary Variable

• You have a temporary variable assigned to more than once, but is not
a loop variable nor a collecting temporary variable.

• Make a separate temporary variable for each assignment.

Composing Methods – Split Temporary Variable

Motivation
• Temporary variables are made for various uses. Some of these uses

naturally lead to the temp's being assigned to several times.
• Loop variables change for each run around a loop (such as the i in for

(int i=0; i<10; i++). Collecting temporary variables collect together
some value that is built up during the method.

• Many other temporaries are used to hold the result of a long-winded
bit of code for easy reference later.

• These kinds of variables should be set only once. Otherwise, its purpose will
be confusing and it will be error-prone.

Composing Methods – Split Temporary Variable

Mechanics
• Change the name of a temp at its declaration and its first assignment.

• If the later assignments are of the form i = i + some expression, that indicates
that it is a collecting temporary variable, so don't split it. The operator for a
collecting temporary variable usually is addition, string concatenation, writing
to a stream, or adding to a collection.

• Declare the new temp as final.
• Change all references of the temp up to its second assignment.
• Declare the temp at its second assignment
• Repeat in stages, each stage renaming at the declaration, and

changing references until the next assignment.

Composing Methods – Split Temporary Variable

Example
• Compute the distance traveled by a car. From a standing start, a

car experiences an initial force.
• After a delayed period a secondary force kicks in to further accelerate

the haggis.

Composing Methods – Split Temporary Variable

Example
• Using the common laws of motion, I can compute the distance

traveled as follows:

Composing Methods – Split Temporary Variable

Example
• the variable acc is set twice. It has two responsibilities:

• one to hold the initial acceleration caused by the first force and
• another later to hold the acceleration with both forces.

• This is what to split.

Composing Methods – Split Temporary Variable

• Example
• Start at the beginning by changing the name of the temp and

declaring the new name as final. Then change all references to the
temp from that point up to the next assignment.

Composing Methods – Split Temporary Variable

• Example
• Choose the new name to represent only the first use of the temp. I

make it final to ensure it is only set once
• Then, declare the original temp at its second assignment.

Composing Methods – Split Temporary Variable

• Example
• Continue on the second assignment of the temp. This removes the

original temp name completely, replacing it with a new temp named
for the second use.

Composing Methods – Remove Assignments to
Parameters
• The code assigns to a parameter.
• Use a temporary variable instead.

Composing Methods – Remove Assignments to
Parameters
Motivation
• If you pass in an object named foo, in the parameter, assigning to the

parameter means to change foo to refer to a different object.
• The reason don't like this comes down to lack of clarity and to

confusion between pass by value and pass by reference

Composing Methods – Remove Assignments to
Parameters
Mechanics
• Create a temporary variable for the parameter.
• Replace all references to the parameter, made after the assignment,

to the temporary variable.
• Change the assignment to assign to the temporary variable.

Composing Methods – Remove Assignments to
Parameters
Example
• Start with the following simple routine:

Composing Methods – Remove Assignments to
Parameters
Example
• Replacing with a temp leads to

Composing Methods – Remove Assignments to
Parameters
Example
• You can enforce this convention with the final keyword:

Composing Methods – Remove Assignments to
Parameters
• What to print?

Composing Methods – Remove Assignments to
Parameters
• Pass by value vs. Pass by reference

Composing Methods – Replace Method with
Method Object
• You have a long method that uses local variables in such a way that

you cannot apply Extract Method.
• Turn the method into its own object so that all the local variables

become fields on that object. You can then decompose the method
into other methods on the same object.

Composing Methods – Replace Method with
Method Object
Motivation
• The difficulty in decomposing a method lies in local variables. If they

are rampant, decomposition can be difficult.
• Using Replace Temp with Query helps to reduce this burden, but

occasionally you may find you cannot break down a method that
needs breaking.

• In this case you reach deep into the tool bag and get out your method
object

Composing Methods – Replace Method with
Method Object
Mechanics
• Create a new class, name it after the method.
• Give the new class a final field for the object that hosted the original

method (the source object) and a field for each temporary variable
and each parameter in the method.

• Give the new class a constructor that takes the source object and
each parameter.

• Give the new class a method named "compute."

Composing Methods – Replace Method with
Method Object
Mechanics (cont.)
• Copy the body of the original method into compute. Use the source

object field for any invocations of methods on the original object.
• Replace the old method with one that creates the new object and

calls compute.
• Because all the local variables are now fields, you can freely

decompose the method without having to pass any parameters.

Composing Methods – Replace Method with
Method Object
• Example
• A proper example of this requires a long chapter, so showing this

refactoring for a method that doesn't need it.

Composing Methods – Replace Method with
Method Object
Example
• To turn this into a method object, I begin by declaring a new class. I

provide a final field for the original object and a field for each
parameter and temporary variable in the method.

Composing Methods – Replace Method with
Method Object
Example
• Add a constructor:

Composing Methods – Replace Method with
Method Object
Example
• Now can move the original method over; need to modify any calls of

features of account to use the _account field

Outline
•Composing Methods
•Simplifying Conditional Expressions

Simplifying Conditional Expressions –
Decompose Conditional
Decompose Conditional
• You have a complicated conditional (if-then-else) statement.
• Extract methods from the condition, then part, and else parts.

Simplifying Conditional Expressions –
Decompose Conditional
Motivation
• As with any large block of code, you can make your intention clearer by

decomposing it and replacing chunks of code with a method call
named after the intention of that block of code.

• With conditions you can receive further benefit by doing this for the
conditional part and each of the alternatives.

• This way you highlight the condition and make it clearly what you are
branching on.

• You also highlight the reason for the branching.

Simplifying Conditional Expressions –
Decompose Conditional
Mechanics
• Extract the condition into its own method.
• Extract the then part and the else part into their own methods.

Simplifying Conditional Expressions –
Decompose Conditional
Example
• Calculating the charge for something that has separate rates for winter

and summer:

Simplifying Conditional Expressions –
Decompose Conditional
• Example
• Extract the conditional and each leg as follows:

Simplifying Conditional Expressions –
Consolidate Conditional Expression
• You have a sequence of conditional tests with the same result.
• Combine them into a single conditional expression and extract it.

Simplifying Conditional Expressions –
Consolidate Conditional Expression
• Example: Ands
• How to convert into And?

Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most

common problems

Design Heuristics: Look for Common Design Patterns
Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most

common problems

Reduce complexity by providing ready-made abstractions

Reduce errors by institutionalizing details of common solutions

Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a
pattern. In some cases, shifting code slightly to conform to a
well-recognized pattern will improve understandability of the
code. But if the code has to be shifted too far, forcing it to look
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a
pattern because of a desire to try out a pattern rather than
because the pattern is an appropriate design solution.

https://refactoring.guru/design-patterns

