SWEN 6301 Software Construction
Lecture 10: Refactoring

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- Slides are adopted from Mustafa Misir’s lecture notes on Modern Software Development Technology course..

Refactoring

* Modifying software to improve its readability, maintainability,
and extensibility without changing what it actually does.

* External behavior does NOT change
* Internal structure is improved

It means I'm rewriting
it the way it should have
been written in the first place,
but it sounds cooler.

Just a second,
Will. 'm refactoring some What does that mean?
of my code.

Mercutio, do you
have a minute?

Refactoring

* It is a disciplined way to clean up code that minimizes the chances of
introducing bugs.

* In essence when you refactor you are improving the design of the

COC

e after it has been written.
n software development, we design first then we code

Refactoring is the opposite of this practice: take a bad design, and
rework it into well-designed code

Refactoring

* Each step is simple
 move a field from one class to another,
* pull some code out of a method to make into its own method, and
* push some code up or down a hierarchy

* Yet the cumulative effect of these small changes can radically improve
the design.

Composing Methods — Extract Method

* You have a code fragment that can be grouped together.

* Turn the fragment into a method whose name explains the
purpose of the method.

veid printOwing (double amount) {
volid printOwing (double amount) { printBanner () ;
printBanner () printDetails (amount);

}

//print details
System.out.println ("name:" + name); velid printDetails (double amount)
System.out.println ("amount" + amount); s System.out.println ("name:" + name);

System.out.println ("amount" + amount);

}
}

Composing Methods — Extract Method

Motivation

* Method is too long or code that needs a comment to understand its
purpose. Then turn that fragment of code into its own method.

e Prefer short, well-named methods for several reasons:

* First, it increases the chances that other methods can use a
method when the method is finely grained.

* Second, it allows the higher-level methods to read more like a
series of comments. Overriding also is easier when the methods
are finely grained.

Composing Methods — Extract Method

Mechanics

* Create a new method, and name it after the intention of the method
(name it by what it does, not by how it does it).

* Copy the extracted code from the source method into the new target
method.

* Scan the extracted code for references to any variables that are local
in scope to the source method. These are local variables and
parameters to the method.

Composing Methods — Extract Method

Mechanics (cont.)

* See whether any temporary variables are used only within this
extracted code. If so, declare them in the target method as temporary
variables.

* Look to see whether any of these local-scope variables are modified
by the extracted code.

* If one variable is modified, see whether you can treat the
extracted code as a query and assign the result to the variable
concerned.

Composing Methods — Extract Method

Mechanics (cont.)

* Pass into the target method as parameters local-scope variables that
are read from the extracted code.

* Replace the extracted code in the source method with a call to the
target method

Composing Methods — Extract Method

void printOwing () {

Enumeration e = orders.elements();
double outstanding = 0.0;

// print banner

System.out.println ("**************************") s
System.out.println ("***** Customer Owes ****xih) s
System.out.println ("™**dkkkkkkkokkkkkokkkkkkkkkkk) o

// calculate outstanding

while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ()
outstanding += each.getAmount () ;

}

//print details
System.out.println ("name:"™ + name);
System.out.println ("amount" + outstanding):;

Composing Methods — Extract Method

void printOwing() {

Example: NO Local Variables Enumeration e = orders.elements();

double outstanding = 0.0;

e Extract the code that prints
the banner. Just cut, paste,
. // calculate outstanding
and pUt IN Ad Ca” while (e.hasMoreElements()) {

Order each = (Order) e.nextElement():;
outstanding += each.getAmount () ;

printBanner() ;

}

//print details
System.out.println ("name:" + name);
System.out.println ("amount"™ + outstanding):;

}

void printBanner () {
// print banner
System.out.println ("trittt**ttt*r*********t***");
System.out.println ("***** Customer Owes ***xxkx*4) -

System'out.println ("*t*******f****************") -

Composing Methods — Extract Method

Example: Using Local Variables

* The problem is local variables: parameters passed into the original
method and temporaries declared within the original method.

* The easiest case with local variables is when the variables are read
but not changed.

* In this case, can just pass them as parameters

Composing Methods — Extract Method

Example: Using Local Variables
e Extract the printing of details

void printOwing () {

Wlth 3 methOd Wlth one Enumeration e =._orders.elements();
double outstanding = 0.0;
parameter:
printBanner () ;
// calculate outstanding
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement ()

outstanding += each.getAmount () ;

)

//print details
System.out.println ("name:" + name);
System.out.println ("amount" + outstanding);

Composing Methods — Extract Method

Example: Using Local Variables Vo< printowing() f

O . E ti = d .el ts();
e extract the printing of details double outstanding = 0.05
with a method with one rintBanner () ;
arameter:
p // calculate outstanding
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement /()

outstanding += each.getAmount ()
}

printDetails (outstanding) ;
}

void printDetails (double outstanding) {
System.out.println ("name:" + name);
System.out.println ("amount" + outstanding):;

Composing Methods — Extract Method

Example: Reassigning a Local Variable

* It's the assignment to local variables that becomes complicated. In
this case we're only talking about temps.

* For temps that are assigned to, there are two cases:

* The simpler case is that in which the variable is a temporary variable used
only within the extracted code. When that happens, you can move the temp
into the extracted code.

* The other case is use of the variable outside the code. If the variable is not
used after the code is extracted, you can make the change in just the
extracted code.

Composing Methods — Extract Method

Example: Reassigning a void printOwing() |

Local Variable Enumeration e = orders.elements();
double outstanding = 0.0;

 If it is used afterward, you need

to make the extracted code printBanner () ;
return the changed value of the 7/ calculate outstanding
variable. while (e.hasMoreElements()) {
Order each = (Order) e.nextElement /()

outstanding += each.getAmount () ;

}

printDetails (outstanding);

Composing Methods — Extract Method

Example: Reassighing a
Local Variable

 If it is used afterward, you need
to make the extracted code
return the changed value of the
variable.

 The enumeration variable is
used only in the extracted code,
so | can move it entirely within
the new method.

volid printOwing () {
printBanner () ;
double outstanding = getOutstanding() ;
printDetails (outstanding);

}

double getOutstanding() {

Enumeration e = orders.elements():;
double outstanding = 0.0;
while (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount () ;

}

return outstanding;

Composing Methods — Extract Method

* Example: Reassigning a Local Variable

* Rename the returned value if required:

double getOutstanding() {

Enumeration e = orders.elements();
double result = 0.0;
while (e.hasMoreElements()) {

Order each = (Order) e.nextElement|();

result = each.getAmount () ;
}

return result;

Composing Methods — Extract Method

Example: Reassighing a
Local Variable

* If something more
involved happens to the
variable, have to pass in
the previous value as a
parameter.

volid printOwing (double previousAmount) {

Enumeration e = orders.elements();
double outstanding = previousAmount * 1.2;

printBanner () ;

// calculate outstanding
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement() ;

outstanding += each.getAmount() ;
}

printDetails (outstanding) ;

Composing Methods — Extract Method

void printOwing (double previousAmount) {

ExamPIE: ReaSSigninga double outstanding = previousAmount * 1.2;
Local Variable printBanner () ;
outstanding = getOutstanding(outstanding):;
* |n this case, the extraction printDetails (outstanding) ;
would look like this: }

double getOutstanding(double initialValue) {

double result = i1nitialValue;
Enumeration e = orders.elements();
while (e.hasMoreElements()) {
Order each = (Order) e.nextElement /() ;

result += each.getAmount ()
}

return result;

Composing Methods — Inline Method

* A method's body is just as clear as its name.

e Put the method's body into the body of its callers and remove the
method.

boolean moreThanFivelLateDeliveries () {
return numberOflLateDeliveries > 5;

4

}

int getRating () {
return (numberOfLateDeliveries > 5) ? 2 : 1;

}

Composing Methods — Inline Method

Motivation

e Use short methods named to show their intention, because these
methods lead to clearer and easier to read code.

* But sometimes you do come across a method in which the body is as
clear as the name. Or you refactor the body of the code into
something that is just as clear as the name.

* Another time to use Inline Method is when you have a group of
methods that seem badly factored. You can inline them all into one
big method and then reextract the methods.

Composing Methods — Inline Method

Mechanics

* Check that the method is not polymorphic.

 Don't inline if subclasses override the method; they cannot override a method
that isn't there.

* Find all calls to the method.

* Replace each call with the method body.

* Remove the method definition.

Composing Methods — Inline Temp

* You have a temp that is assigned to once with a simple expression,
and the temp is getting in the way of other refactorings.

* Replace all references to that temp with the expression.

double basePrice = anOrder.basePrice() ;
return (basePrice > 1000)

3

return (anOrder.basePrice() > 1000)

Composing Methods — Inline Method

Motivation

* Most of the time Inline Temp is used as part of Replace Temp with
Query, so the real motivation is there.

* The only time Inline Temp is used on its own is when you find a temp
that is assigned the value of a method call.

* Often this temp isn't doing any harm and you can safely leave it there.
If the temp is getting in the way of other refactorings, such as Extract
Method, it's time to inline it.

Composing Methods — Inline Method

Mechanics

* Declare the temp as final if it isn't already, and compile.
* This checks that the temp is really only assignhed to once.

* Find all references to the temp and replace them with the right-hand
side of the assignment.

* Remove the declaration and the assignment of the temp.

Composing Methods — Replace Temp with Query

* You are using a temporary variable

to hold the result of an expression. deuble basePrice = quantity * _itemPrice;
if (basePrice > 1000)

return basePrice * 0.95;

* Extract the expression into a

else
methOd_ return basePrice * 0.98;
* Replace all references to the temp
with the expression. The new HE (baseprice() 1000 o e,
method can then be used in other else

return basePrice() * 0.98;

methods.

double basePrice() {
return quantity * itemPrice;

}

Composing Methods — Replace Temp with Query

Motivation

* The problem with temps is that they are temporary and local.
Because they can be seen only in the context of the method in which
they are used, temps tend to encourage longer methods, because
that's the only way you can reach the temp.

* By replacing the temp with a query method, any method in the class
can get at the information. That helps a lot in coming up with cleaner
code for the class.

Composing Methods — Replace Temp with Query

Mechanics

* Look for a temporary variable that is assigned to once.
* |If atemp is set more than once consider Split Temporary Variable

* Declare the temp as final.
* This will ensure that the temp is only assigned to once

* Extract the right-hand side of the assignment into a method.

* Initially mark the method as private. You may find more use for it later, but
you can easily relax the protection later.

Composing Methods — Replace Temp with Query

Example
 Start with a simple method

double getPrice () {
int basePrice = quantity * itemPrice;
double discountFactor;
1f (basePrice > 1000) discountFactor = 0.95;
else discountFactor = 0.98;
return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example

* I'm inclined to replace both temps, one at a time.

* Although it's pretty clear in this case, | can test that they are assigned
only to once by declaring them as final

double getPrice () {
final i1nt basePrice = quantity * i1temPrice;
final double discountFactor;
1f (basePrice > 1000) discountFactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example

* Compiling will then alert me to any problems. | do this first, because if
there is a problem, | shouldn't be doing this refactoring.

* | replace the temps one at a time. First | extract the right-hand side of
the aSSignment: double getprice () {

final int basePrice = basePrice();
final double discountFactor;

1f (basePrice > 1000) discountFactor = 0.95;
else discountFactor = 0.98;
return basePrice * discountFactor;

}

private int basePrice() {
return quantity * itemPrice;

}

Composing Methods — Replace Temp with Query

Example
* First | replace the first reference to the temp:

double getPrice () {
final int basePrice = basePrice();

final double discountFactor;

1f (basePrice() > 1000) discountFactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountFactor;

Composing Methods — Replace Temp with Query

Example
* Do the next. Also remove the temp declaration:

double getPrice () {
final double discountFactor;
1f (basePrice() > 1000) discountFactor = 0.95;

else discountFactor = 0.98;
return basePrice() * discountFactor;

Composing Methods — Replace Temp with Query

Example
* With that gone, can extract discountFactor in a similar way:

double getPrice () {
final double discountFactor = discountFactor() ;
return basePrice () * discountFactor;

}

private double discountFactor () {
1f (basePrice() > 1000) return 0.95;
else return 0.98;

Composing Methods — Replace Temp with Query

Example

* See how it would have been difficult to extract discountFactor if | had
not replaced basePrice with a query.

* The getPrice method ends up as follows:

double getPrice() {

int basePrice = quantity * itemPrice;

double discountFactor; double getPrice() ({

if (basePrice > 1000) discountFactor = 0.95; » return basePrice() * discountFactor () :
else discountFactor = 0.98; }

return basePrice * discountFactor;

Composing Methods — Introduce Explaining
Variable

* You have a complicated expression.

* Put the result of the expression, or parts of the expression, in a
temporary variable with a name that explains the purpose.

if ((platform.toUpperCase() .indexOf ("MAC") > ~1) &&
(browser.toUpperCase () .indexOf ("IE") > -1) &&
wasInitialized() && resize > 0)

\ 4

// do something

final boolean isMacOs = platform.toUpperCase () .indexOf ("MAC") >
-1;

final boolean isIEBrowser = browser.toUpperCase () .indexOf ("IE") >
-1;

final boolean wasResized = resize > 0;

1f (isMacOs && 1sIEBrowser && wasInitialized() && wasResized) {
// do something
)

Composing Methods — Introduce Explaining
Variable

Motivation
* Expressions can become very complex and hard to read.

* In such situations temporary variables can be helpful to break down
the expression into something more manageable.

Composing Methods — Introduce Explaining
Variable

Mechanics

* Declare a final temporary variable, and set it to the result of part of
the complex expression.

* Replace the result part of the expression with the value of the temp.

* |f the result part of the expression is repeated, you can replace the repeats
one at a time.

* Repeat for other parts of the expression.

Composing Methods — Introduce Explaining
Variable

Example
 Start with a simple calculation:

double price() {
// price 1s base price - quantity discount + shipping
return quantity * itemPrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +
Math.min(quantity * itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example
e Simple: it may be, but can make it easier to follow.

* First | identify the base price as the quantity times the item price. |
can turn that part of the calculation into a temp:

double price () {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;
return basePrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +
Math.min(quantity * itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example

* Quantity times item price is also used later, so can substitute with the
temp there as well:

double price() {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;

return basePrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +

Math.min (basePrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example
* Next | take the quantity discount:

double price() {
// price is base price - quantity discount + shipping
final double basePrice = quantity * itemPrice;

final double quantityDiscount = Math.max(0, quantity - 500) *
_itemPrice * 0.05;
return basePrice - quantityDiscount +
Math.min (basePrice * 0.1, 100.0);

Composing Methods — Introduce Explaining
Variable

Example

* Finally, | finish with the shipping. As do that, can remove the
comment, too, because now it doesn't say anything the code doesn't

say:

double price() {
final double basePrice = quantity * itemPrice;
final double quantityDiscount = Math.max (0, quantity - 500) *
itemPrice * 0.05;
final double shipping = Math.min(basePrice * 0.1, 100.0);
return basePrice - quantityDiscount + shipping;

Composing Methods — Introduce Explaining

Variable

Example with Extract Method
* Start again:

double price() {
// price is base price - quantity discount + shipping

return quantity * itemPrice -
Math.max (0, quantity - 500) * itemPrice * 0.05 +

Math.min(quantity * 1itemPrice * 0.1, 100.0);

Composing Methods — Introduce Explaining

Variable

Example with Extract Method
e continue one at a time, finally get:

double price() {

return basePrice() - quantityDiscount () + shipping():;
}
private double quantityDiscount () {

return Math.max (0, quantity - 500) * itemPrice * 0.05;
}

private double shipping () {
return Math.min (basePrice() * 0.1, 100.0);

}

private double basePrice() {
return quantity * itemPrice;

}

Composing Methods — Introduce Explaining

Variable

Example with Extract Method

* When to use Introduce Explaining Variable? The answer is when
Extract Method is more effort.

* If I'min an algorithm with a lot of local variables, | may not be able to
easily use Extract Method. In this case | use Introduce Explaining
Variable to help me understand what is going on.

* As the logic becomes less tangled, | can always use Replace Temp with
Query later. The temp also is valuable if | end up having to use
Replace Method with Method Object.

Composing Methods — Split Temporary Variable

* You have a temporary variable assigned to more than once, but is not
a loop variable nor a collecting temporary variable.

* Make a separate temporary variable for each assignment.
double temp = 2 * (height + width);

System.out.println (temp):;
temp = height * width;
System.out.println (temp):;

final double perimeter = 2 * (height + width);
System.out.println (perimeter):;

final double area = height * width;
System.out.println (area);

Composing Methods — Split Temporary Variable

Motivation

* Temporary variables are made for various uses. Some of these uses
naturally lead to the temp's being assigned to several times.

* Loop variables change for each run around a loop (such as the i in for
(int i=0; i<10; i++). Collecting temporary variables collect together
some value that is built up during the method.

* Many other temporaries are used to hold the result of a long-winded
bit of code for easy reference later.

* These kinds of variables should be set only once. Otherwise, its purpose will
be confusing and it will be error-prone.

Composing Methods — Split Temporary Variable

Mechanics

* Change the name of a temp at its declaration and its first assignment.

* |f the later assignments are of the form i =i + some expression, that indicates
that it is a collecting temporary variable, so don't split it. The operator for a
collecting temporary variable usually is addition, string concatenation, writing
to a stream, or adding to a collection.

* Declare the new temp as final.
* Change all references of the temp up to its second assignment.
* Declare the temp at its second assighnment

* Repeat in stages, each stage renaming at the declaration, and
changing references until the next assignment.

Composing Methods — Split Temporary Variable

Example

* Compute the distance traveled by a car. From a standing start, a
car experiences an initial force.

* After a delayed period a secondary force kicks in to further accelerate
the haggis.

Composing Methods — Split Temporary Variable

Example

* Using the common laws of motion, | can compute the distance
traveled as follows:

double getDistanceTravelled (int time) {
double result;

double acc = primaryForce / mass;

int primaryTime = Math.min(time, delay);
result = 0.5 * acc * primaryTime * primaryTime;
int secondaryTime = time - delay;
if (secondaryTime > 0) {
double primaryVel = acc * delay;
acc = (_primaryForce + secondaryForce) / mass;
result += primaryVel * secondaryTime + 0.5 * acc *

secondaryTime * secondaryTime;

}

return result;

Composing Methods — Split Temporary Variable

Example

* the variable acc is set twice. It has two responsibilities:
e one to hold the initial acceleration caused by the first force and
e another later to hold the acceleration with both forces.

* This is what to split.

Composing Methods — Split Temporary Variable

 Example

e Start at the beginning by changing the name of the temp and
declaring the new name as final. Then change all references to the
temp from that point up to the next assignment.

double getDistanceTravelled (int time) {
double result;

final double primaryAcc = primaryForce / mass;
int primaryTime = Math.min(time, delay):;

result = 0.5 * primaryAcc * primaryTime * primaryTime;
int secondaryTime = time - delay;

if (secondaryTime > 0) {
double primaryVel = primaryAcc * delay;
double acc = (primaryForce + secondaryForce) / mass;

result += primaryVel * secondaryTime + 0.5 * acc *
secondaryTime * secondaryTime;

}

return result;

Composing Methods — Split Temporary Variable

 Example

* Choose the new name to represent only the first use of the temp. |
make it final to ensure it is only set once

* Then, declare the original temp at its second assignment.

Composing Methods — Split Temporary Variable

 Example

e Continue on the second assignment of the temp. This removes the

original temp name completely, replacing it with a new temp named
fOr the SeCOnd Use. double getDistanceTravelled (int time) {

double result;
final double primaryAcc = primaryForce / mass;
int primaryTime = Math.min(time, delay);
result = 0.5 * primaryAcc * primaryTime * primaryTime;
int secondaryTime = time - delay;
if (secondaryTime > 0) {
double primaryVel = primaryAcc * delay;
final double secondaryAcc = (primaryForce +
secondaryForce) / mass;

result += primaryVel * secondaryTime + 0.5 *
secondaryAcc * secondaryTime * secondaryTime;

}

return result;

Composing Methods — Remove Assignments to
Parameters

* The code assigns to a parameter.
* Use a temporary variable instead.

int discount (int inputVal, int quantity, int yearToDate) {
if (inputval > 50) inputvVal -= 2;

3

int discount (int inputVal, int quantity, int yearToDate) {
int result = inputVval;
if (inputval > 50) result -= 2;

Composing Methods — Remove Assignments to
Parameters

Motivation

* If you pass in an object named foo, in the parameter, assigning to the
parameter means to change foo to refer to a different object.

* The reason don't like this comes down to lack of clarity and to
confusion between pass by value and pass by reference

void aMethod (Object foo) {
foo.modifyInSomeWay () ; // that's OK
foo = anotherObject; // trouble and despair will follow

Composing Methods — Remove Assignments to
Parameters

Mechanics

* Create a temporary variable for the parameter.

* Replace all references to the parameter, made after the assignment,
to the temporary variable.

* Change the assignment to assign to the temporary variable.

Composing Methods — Remove Assignments to
Parameters

Example

e Start with the following simple routine:

int discount (int inputVal, int quantity, int yearToDate) {

if (inputval > 50) inputval -= 2;
if (guantity > 100) inputvVal -= 1;
if (yearToDate > 10000) inputvVal -= 4;

return inputvVal;

Composing Methods — Remove Assignments to
Parameters

Example

* Replacing with a temp leads to

int discount (int inputVal, int quantity, int yearToDate) {

int result = inputval;

if (inputval > 50) result -= 2;

if (gquantity > 100) result -= 1;

if (yearToDate > 10000) result -= 4;

return result;

Composing Methods — Remove Assignments to
Parameters

Example
* You can enforce this convention with the final keyword:

int discount (final int inputVal, final int quantity, final int
yearToDate) {

int result = 1inputVal;

if (inputval > 50) result -= 2;

if (gquantity > 100) result -= 1;

1f (yearToDate > 10000) result -= 4;

return result;

Composing Methods — Remove Assignments to
Parameters

* What to print?

class Param {

public static void main (String[] args) {
int x = 5;
triple (x);
System.out.println ("x after triple: " + x);

}

private static void triple(int arg) {
arg = arg * 3;
System.out.println ("arg in triple: " + arqg);

Composing Methods — Remove Assignments to
Parameters

* Pass by value vs. Pass by reference

class Param {

public static void main(String[] args) {
int x = 5;
triple(x);
System.out.println ("x after triple: " + x);

}

private static void triple(int arg) {
arg = arg * 3;
System.out.println ("arg in triple: " + arqg):;

arg in triple: 15
x after triple: 5

Composing Methods — Replace Method with
Method Object

* You have a long method that uses local variables in such a way that
you cannot apply Extract Method.

* Turn the method into its own object so that all the local variables
become fields on that object. You can then decompose the method
into other methods on the same object.

class Order...
double price () {
double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;

Composing Methods — Replace Method with
Method Object

Motivation

* The difficulty in decomposing a method lies in local variables. If they
are rampant, decomposition can be difficult.

* Using Replace Temp with Query helps to reduce this burden, but
occasionally you may find you cannot break down a method that
needs breaking.

* In this case you reach deep into the tool bag and get out your method
object

Composing Methods — Replace Method with
Method Object

Mechanics
* Create a new class, name it after the method.

* Give the new class a final field for the object that hosted the original
method (the source object) and a field for each temporary variable
and each parameter in the method.

* Give the new class a constructor that takes the source object and
each parameter.

* Give the new class a method named "compute.”

Composing Methods — Replace Method with
Method Object

Mechanics (cont.)

* Copy the body of the original method into compute. Use the source
object field for any invocations of methods on the original object.

* Replace the old method with one that creates the new object and
calls compute.

* Because all the local variables are now fields, you can freely
decompose the method without having to pass any parameters.

Composing Methods — Replace Method with
Method Object

 Example

* A proper example of this requires a long chapter, so showing this
refactoring for a method that doesn't need it.

Class Account
int gamma (int inputVal, int quantity, int yearToDate) {

int importantValuel = (inputVal * guantity) + delta();

int importantValue? (inputVal * yearToDate) + 100;

1f ((yearToDate - importantValuel) > 100)
importantValue?2 -= 20;

int importantValue3d = importantValue?2 * 7;

// and so on.

return importantValue3 - 2 * importantValuel;

Composing Methods — Replace Method with
Method Object

Example

* To turn this into a method object, | begin by declaring a new class. |
provide a final field for the original object and a field for each
parameter and temporary variable in the method.

class Gamma. ..
private final Account account;
private int inputVal; B
private int quantity;
private int yearToDate;
private int importantValuel;
private int importantValueZ;
private int importantValue3;

Composing Methods — Replace Method with
Method Object

Example
 Add a constructor:

Gamma (Account source, int inputValArg, int quantityArg, 1int
yearToDateArqg) {

account = source;
inputVal = inputValArg;
quantity = quantityArg;
yearloDate = yearlToDateArqg;

Composing Methods — Replace Method with
Method Object

Example

* Now can move the original method over; need to modify any calls of
features of account to use the account field

int compute () {
importantValuel = (inputVal * quantity) +‘_account.delta();
importantValue?2 = (inputVal * yearToDate) + 100;
if ((yearToDate - importantValuel) > 100)
importantValue2 -= 20;
int importantValue3d = importantValue2z2 * 7;
// and so on.
return i1mportantValue3d - 2 * importantValuel;

Outline

* Composing Methods
* Simplifying Conditional Expressions

Simplifying Conditional Expressions —
Decompose Conditional

Decompose Conditional
* You have a complicated conditional (if-then-else) statement.
* Extract methods from the condition, then part, and else parts.

1f (date.before (SUMMER START) || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else charge quantity * summerRate;

1f (notSummer (date))

charge = winterCharge (quantity);
else charge = summerCharge (quantity);

Simplifying Conditional Expressions —
Decompose Conditional

Motivation

* As with any large block of code, you can make your intention clearer by
decomposing it and replacing chunks of code with a method call
named after the intention of that block of code.

* With conditions you can receive further benefit by doing this for the
conditional part and each of the alternatives.

* This way you highlight the condition and make it clearly what you are
branching on.

* You also highlight the reason for the branching.

Simplifying Conditional Expressions —
Decompose Conditional

Mechanics
* Extract the condition into its own method.
* Extract the then part and the else part into their own methods.

Simplifying Conditional Expressions —
Decompose Conditional

Example

 Calculating the charge for something that has separate rates for winter
and summer:

if (date.before (SUMMER START) || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else charge = quantity * summerRate;

Simplifying Conditional Expressions —
Decompose Conditional

 Example
e Extract the conditional and each leg as follows:

if (notSummer (date))
charge winterCharge (quantity);
else charge summerCharge (quantity);

private boolean notSummer (Date date) {
return date.before (SUMMER START) || date.after (SUMMER END);
}

private double summerCharge (int quantity) {
return quantity * summerRate;

}

private double winterCharge(int quantity) {
return quantity * winterRate + winterServiceCharge;

}

Simplifying Conditional Expressions —
Consolidate Conditional Expression

* You have a sequence of conditional tests with the same result.

* Combine them into a single conditional expression and extract it.

double disabilityAmount () {
1f (seniority < 2) return 0;
i1f { monthsDisabled > 12) return 0;
if { isPartTime) return 0;
// compute the disability amount

double disabilityAmount () {
if (isNotEligableForDisability()) return O;
// compute the disability amount

Simplifying Conditional Expressions —
Consolidate Conditional Expression

* Example: Ands

e How to convert into And?

if (onVacation())
1f {(lengthOfService() > 10)
return 1;
return 0.5;

return (onVacation() && lengthOfService() > 10) 2?2 1 : 0.5;

double getPayAmount () {
double result;
if (isDead) result = deadAmount ()
else {
if (isSeparated) result = separatedAmount () ;

else {
if (i1isRetired) result = retiredAmount();

else result = normalPayAmount();
}:
)

return result;

double getPayAmount () {
if (isDead) return deadAmount();
if (isSeparated) return separatedAmount();
if (isRetired) return retiredAmount () ;
return normalPayAmount () ;

};

public double getAdjustedCapital () {

double result = 0.0;
if (capital > 0.0) {
if (intRate > 0.0 && duration > 0.0) {

result = (income / duration) * ADJ FACTOR;

}
}

return result;

public double getAdjustedCapital () |
if (capital <= 0.0) return 0.0;
if (intRate <= 0.0 || duration <= 0.0) return 0.0;

return (income / duration) * ADJ FACTOR;

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most

i
I

M

'l

common problems

Type Smuchmd

Factory Method

Wt s

DwAre an wtertace S crmatng »n
B R L N
e 10 retertate Lets 8 Gens deter
Trte et be mole lanen

Design Heuristics: Look for Common Design Patterns

Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most
common problems

Pattern

Description

Abstract Factory

Adapter
Bridge

Composite

Decorator
Facade

Factory Method

Iterator
Observer
Singleton
Strategy

Template Method

Supports creation of sets of related objects by specifying the kind
of set but not the kinds of each specific object.

Converts the interface of a class to a different interface.

Builds an interface and an implementation in such a way that
either can vary without the other varying.

Consists of an object that contains additional objects of its own
type so that client code can interact with the top-level object and
not concern itself with all the detailed objects.

Attaches responsibilities to an object dynamically, without creating

specific subclasses for each possible configuration of responsibilities.

Provides a consistent interface to code that wouldn't otherwise
offer a consistent interface.

Instantiates classes derived from a specific base class without
needing to keep track of the individual derived classes anywhere
but the Factory Method.

A server object that provides access to each element in a set
sequentially.
Keeps multiple objects in synch with one another by making an

object responsible for notifying the set of related objects about
changes to any member of the set.

Provides global access to a class that has one and only one instance.

Defines a set of algorithms or behaviors that are dynamically
interchangeable with each other.

Defines the structure of an algorithm but leaves some of the
detailed implementation to subclasses.

Reduce complexity by providing ready-made abstractions
Reduce errors by institutionalizing details of common solutions
Provide heuristic value by suggesting design alternatives

Streamline communication by moving the design dialog to a higher level

One potential trap with patterns is force-fitting code to use a
pattern. In some cases, shifting code slightly to conform to a
well-recognized pattern will improve understandability of the
code. But if the code has to be shifted too far, forcing it to look
like a standard pattern can sometimes increase complexity.

Another potential trap with patterns is feature-itis: using a
pattern because of a desire to try out a pattern rather than
because the pattern is an appropriate design solution.

https://refactoring.guru/design-patterns

