SWEN 6301 Software Construction

Lecture 11: Research in Software Engineering

Copyright notice: 1- care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.
2- Slides are adopted from Simon Peyton Jones’s talk (https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/), Ivano Malavolta talk on research in Software Engineering
(https://www.slideshare.net/iivanoo/research-in-software-engineering)

https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/
https://www.slideshare.net/iivanoo/research-in-software-engineering

DATA: BY THE NUMBERS

My HOBBY: EXTRAFPOLATING

PG YOU CAN SEE, BY LATE

NEXTMONTH YOU'LL HAVE

OVER FOUR DOZEN HUSEANDS.
) BEMRGETA

SCIENTIST

What makes good research?

s it USEFUL?

s it HARD? s it ELEGANT?

These are all
orthogonal and

W
equally respectful € are young

researchers, don't
refuse usefulness,
why limit your impact

Very little chances to dusty publications?

that you will excel in
all three axes

http://goo.gl/d1YMgv

Ten simple, actionable
suggestions

that will make your papers better

1. Don’t wait: write

Do

Writing papers:
model 1

research

Writing papers:
model 2 00

researcn

Do
research

Writing papers:
model 2

Do

research

* Forces us to be clear, focused.

* Crystallises what we don’t understand.

* Opens the way to dialogue with others:
reality check, critique, and
collaboration.

Writing papers:
model 2 00

research

Writing papers is a primary mechanism for
doing research (not just for reporting it)

2. ldentify your key idea

Your goal to
convey a
useful and
re-usable

idea

* You want to infect the mind of your
reader with . like a virus

* Papers are far more durable than
programs (think Mozart)

The greatest ideas are (literally) worthless

if you keep them to yourself

Do not be

intimidated You need tq have a fantastic idea before
you can write a paper. (Everyone else
seems to.)

Write a paper, and give a talk, about

any idea, no matter how weedy and
insignificant it may seem to you

Do not be Writing the paper is how you develop
intimidated

the idea in the first place

* |t usually turns out to be more
interesting and challenging that it
seemed at first

Write a paper, and give a talk, about
any idea, no matter how weedy and

insignificant it may seem to you

The idea * Your paper should have just one “ping”:

A re-usable insight,
useful to the reader

* You may not know exactly what the
ping is when you start writing; but you
must know when you finish.

* If you have lots of ideas, write lots of
papers.

* Many papers contain good ideas, but do
not distil what they are.

Can you hear . N
he “ping” ? * Make certain that the readeris in no
the PINg : doubt what the idea is. Be 100% explicit:

* “The main idea of this paperis....”
* “In this section we present the main contributions of

' the paper.”

W

How to have
an impact in
reality?

Dynamic
validation

Release
solution

Problem/
issue

Static
validation

Candidate

solution
I Validation

in
academia

Academia

Problem
formulation

Study

state of
the art

3. Tell a story

Your Imagine you are explaining at a whiteboard:
* Here is a problem

* |t's an interesting problem

flow [t’s an unsolved problem

narrative

My idea works (details, data)

Here’s how my idea compares to
other people’s approaches

Structure
(conference

paper)

Title (1000 readers)

Abstract (4 sentences, 100 readers)
Introduction (1 page, 100 readers)

The problem (1 page, 10 readers)

My idea (2 pages, 10 readers)

The details (5 pages, 3 readers)

Related work (1-2 pages, 10 readers)
Conclusions and further work (0.5 pages)

4. Nail your Abstract

* People judge papers by their abstracts and
read the abstract in order to decide
whether to read the whole paper.

 [t's important for the abstract to tell the
whole story.

* Don't assume, though, that simply adding a
sentence about analysis or experience to
your abstract is sufficient; the paper must
deliver what the abstract promises.

ABSTRACT
A b St ra Ct How do we know a program does what it claims to do? After clus-

tering Android apps by their description topics, we identify outliers

I in each cluster with respect to their API usage. A “weather” app that
Exa m p e 1 sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

v X v/ X /
State of Overall Specific -

Abstract
Example 2

ABSTRACT

Despite the flourishing of languages to describe software architec-
tures, existing Architecture Description Languages (ADLSs) are still
far away from what it is actually needed. In fact, while they support
a traditional perception of a Software Architecture (SA) as a set of
constituting elements (such as components, connectors and inter-
faces), they mostly fail to capture multiple stakeholders concerns
and their design decisions that represent a broader view of SA be-
ing accepted today. Next generation ADLs must cope with various
and ever evolving stakeholder concerns by employing semantic ex-
tension mechanisms.

In this paper we present a framework, called BYADL — Build
Your ADL, for developing a new generation of ADLs. BYADL ex-
ploits model-driven techniques that provide the needed technolo-
gies to allow a software architect, starting from existing ADLs, to
define its own new generation ADL by: i) adding domain speci-
ficities, new architectural views, or analysis aspects, ii) integrat-
ing ADLs with development processes and methodologies, and iii)
customizing ADLs by fine tuning them. The framework is put in
practice in different scenarios showing the incremental extension
and customization of the Darwin ADL.

5. Nail your contributions
to the mast

The
introduction

(1 page)

...and that is all

ONE PAGE!

Describe the
problem

1 Introduction

There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the
push/enter model or the eval/upply model [11]. To illustrate the
difference, consider the higher-order function zipWith, which zips
together two lists, using a function k to combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipWith k [] [] 0
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? It can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWith is a
list of functions.

Use an
example to

introduce
the problem

Molehills
NOT
mountains

Example: “Computer programs often have bugs. Itis
very important to eliminate these bugs [1,2]. Many
researchers have tried [3,4,5,6]. It really is very
important.”

Yawn!

Example: “Consider this program, which has an
interesting bug. <brief description>. We will show an
automatic technique for identifying and removing
such bugs”

Cool!

State your * Write the list of contributions first.
contributions

: the paper substantiates
the claims you have made.

» Reader thinks “gosh, if they can really
deliver this, that’s be exciting; I'd better
read on”.

Which of the two is best in practice? The trouble is that the eval-
uation model has a pervasive effect on the implementation, so it is
too much work to implement both and pick the best. Historically,

State your
® ° compilers for strict languages (using call-by-value) have tended to
Co nt rl b u t I 0 n S use eval/apply, while those for lazy languages (using call-by-need)

have often used push/enter, but this is 90% historical accident —ei-
ther approach will work in both settings. In practice, implementors

Do not |eave th e rea d er choose one of the two approaches based on a qualitative assessment
of the trade-offs. In this paper we put the choice on a firmer basis:

to guess what your
contributions are!

e We explain precisely what the two models are, in a common -
notational framework (Section 4). Surprisingly, this has not Bulleted list
been done before. of

e The choice of evaluation model affects many other design .)
choices in subtle but pervasive ways. We identify and dis- contributions
cuss these effects in Sections 5 and 6, and contrast them in
Section 7. There are lots of nitty-gritty details here, for which
we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Contributions

We describe the WizWoz system. It We give the syntax and semantics of a
f t b I is really cool. language that supports concurrent
re U a e processes (Section 3). Its innovative

features are...

We study its properties We prove that the type system is

sound, and that type checking is
decidable (Section 4)

We have used WizWoz in practice We have built a GUI toolkit in

WizWoz, and used it to implement a
text editor (Section 5). The result is
half the length of the Java version.

Types of
software
engineering
research

guestions

Type of question Examples

Method or means of How can we do/create (or automate doing) X?
development What is a better way to do/create X?

Method for analysis How can I evaluate the quality/correctness of X?

How do I choose between X and Y?

Design, evaluation, or
analysis of a par-
ticular nstance

What is a (better) design or implementation for application X?
What is property X of artifact/method Y?

How does X compare to Y?

What is the current state of X / practice of Y?

Generalization or

Given X, what will Y (necessanly) be?

characterization What, exactly, do we mean by X?
What are the important characteristics of X?
What is a good formal/empirical model for X?
What are the varieties of X, how are they related?
Feasibility Does X even exist, and 1f so what 1s 1t like?

Is 1t possible to accomplish X at all?

Shaw, Mary. "Writing good software engineering research papers." 25th International Conference on Software Engineering. |EEE, 2003.

Heilmeier
Catechism

George H. Heilmeier, a former DARPA
director (1975-1977), crafted a set of
questions to help Agency officials

think through and evaluate proposed
research programs.

What are you trying to do? Articulate your objectives using
absolutely no jargon.

How is it done today, and what are the limits of current
practice?

What is new in your approach and why do you think it will be
successful?

Who cares? If you are successful, what difference will it make?
What are the risks?

How much will it cost?

How long will it take?

What are the mid-term and final “exams” to check for
success?

* Your introduction makes claims.
* The body of the paper provides

 Check each claim in the introduction,

identify the evidence, and forward-
reference it from the claim.

» “Evidence” can be: analysis and
comparison, theorems, measurements,
case studies.

‘“ * Not:
NO reSt Of “The rest of this paper is structured as follows. Section
this paper

2 introduces the problem. Section 3 ...Finally, Section 8
concludes”.

-)

1S... e Instead,

. The
introduction (including the contributions)
should survey the whole paper, and
therefore forward reference every
Important part.

6. Show your new results

Types of
software
engineering
research

results

Type of result

Examples

Procedure or tech-
nique

New or better way to do some task, such as design, implementation,
measurement, evaluation, selection from alternatives,

Includes operational techniques for implementation, representation,
management, and analysis, but not advice or guidelines

Qualitative or descrip-
tive model

Structure or taxonomy for a problem area; architectural style, frame-
work, or design pattern; non-formal domain analysis

Well-grounded checklists, well-argued informal generalizations,
guidance for integrating other results,

Empirical model

Empirical predictive model based on observed data

Analytic model

Structural model precise enough to support formal analysis or auto-
matic manipulation

Notation or tool

Formal language to support technique or model (should have a calcu-
lus, semantics, or other basis for computing or inference)
Implemented tool that embodies a technique

Specific solution

Solution to application problem that shows use of software engineer-
ing principles — may be design, rather than implementation

Careful analysis of a system or its development

Running system that embodies a result; it may be the carrier of the

result, or its implementation may illustrate a principle that can be
applied elsewhere

Answer or judgment

Result of a specific analysis, evaluation, or comparison

Report

Interesting observations, rules of thumb

Shaw, Mary. "Writing good software engineering research papers." 25th International Conference on Software Engineering. |EEE, 2003.

Type of validation Examples

Analysis I have analyzed my result and find it satisfactory through ...ormal
analysis) ... rigorous derivation and proof
(empirical model) ... data on controlled use(controlled ...
Ty p e S Of carefully designed statistical
experiment) experiment
Experience My result has been used on real examples by someone other than
me, and the evidence of its correctness / usefulness / effectiveness
S O ft W a r e is ...alitative model) ... narrative(empirical model, ... data,
usually statistical, on practice
o o (notation, tool) ... comparison of this with similar results in
e n g I n e e r I n g technique) actual use
Example Here’s an example of how it works on
(toy example) ... a toy example, perhaps motivated
by reality
(slice of life) ...a system that I have been developing
research
Evaluation Given the stated criteria, my result...
(descriptive model) ... adequately describes the phenomena
re S u t S of interest ...
(qualitative model) ... accounts for the phenomena of interest. ..
) o (empirical model) ... is able to predict ... because ...,
Va I I d a t I O n S or ... gives results that fit real data ...
Includes feasibility studies, pilot projects
Persuasion I thought hard about this, and I believe...
(technique) ... 1if you do it the following way, ...
(system) ... a system constructed like this would ...
(model) ... this model seems reasonable

Note that if the original question was about feasibility, a working
system, even without analysis, can be persuasive

Blatant assertion No serious attempt to evaluate result

Shaw, Mary. "Writing good software engineering research papers." 25th International Conference on Software Engineering. |IEEE, 2003.

The program committee looks for interesting,
What dO novel, exciting results that significantly enhance

our ability:
program to develop and maintain software

committees to know the quality of the software we

look for? develop

* to recognize general principles about
software

* or to analyze properties of software

You should explain your result in such a way that

someone else could use your ideas

(unless you actually did!)
W h a t d O Bad ¥ | « I worked on galumphing.
Poor ¥ | « I worked on improving galumphing.
Good | A| +Ishowed the feasibility of composing
the standard detector.
Better | A| I automated the production of flitz
transform. I achieved a 10% increase

Awful | ¥ | «Icompletely and generally solved ...
(or studied. investigated. sought,
p ro g r a m explored)
. (or contributed to, participated in,
CO l I l I I I Ittees helped with)
| O O k fo r ? blitzing with flitzing.
. * I sigmificantly improved the accuracy of
(or proved. demonstrated, created,
established, found. developed)
tables from specifications.
« With a novel application of the blivet
in speed and a 15% improvement in
coverage over the standard method.

Shaw, Mary. "Writing good software engineering research papers." 25th International Conference on Software Engineering. |IEEE, 2003.

/. Related work: later

Structure » Abstract (4 sentences)
* Introduction (1 page)

* The problem (1 page)

My idea (2 pages)

* The details (5 pages)

* Conclusions and further work (0.5 pages)

Structure » Abstract (4 sentences)
* Introduction (1 page)

* The problem (1 page)
My idea (2 pages)
» The details (5 pages)

* Conclusions and further work (0.5 pages)

No related
work yet!

E

Your reader Your idea

We adopt the notion of transaction from Brown [1], as
modified for distributed systems by White [2], using the
four-phase interpolation algorithm of Green [3]. Our work
differs from White in our advanced revocation protocol,
which deals with the case of priority inversion as described
by Yellow [4].

No related
work yet!

: the reader knows nothing
about the problem yet; so your (highly
compressed) description of various
technical trade-offs is absolutely
incomprehensible.

. describing alternative
approaches gets between the reader
and your idea.

Credit

To make my work look good, | have to
make other people’s work look bad.

The truth: « Warmly acknowledge people who have
credit is not
like money

helped you.

* Be generous to the competition.

“In his inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways...”

» Acknowledge weaknesses in your approach.

Giving credit to others does not diminish

the credit you get from your paper

Awful | ¥ | The galumphing problem has attracted
T h e t r u t h - much attention [3,8,10,18,26.32.37]

L Bad ¥ | Smuth [36] and Jones [27] worked on
galumphing.

C re d it i S n Ot Poor | ¥ | Smith [36] addressed galumphing by

blitzing. whereas Jones [27] took a

I . k flitzing approach.
I e I I I n ey Good | A | Smuth’s blitzing approach to galumphing

[36] achieved 60% coverage [39].
Jones [27] achieved 80% by flitzing.
but only for pointer-free cases [16].
Better | A | Snuth’s blitzing approach to galumphing
[36] achieved 60% coverage [39].
Jones [27] achieved 80% by flitzing.
but only for pointer-free cases [16].
We modified the blitzing approach to
use the kernel representation of flitzing
and achieved 90% coverage while
relaxing the restriction so that only
cyclic data structures are prohibited.

Shaw, Mary. "Writing good software engineering research papers." 25th International Conference on Software Engineering. |EEE, 2003.

What existing technology does your
research build on?

What existing technology or prior research
does your research provide a superior
alternative to?

What’s new here compared to your own
previous work?

What alternatives have other researchers
pursued?

How is your work different or better?

8. Put your readers first

Structure » Abstract (4 sentences)
* Introduction (1 page)

« Related work (1-2 pages)
* Conclusions and further work (0.5 pages)

Structure

Consider a bifircuated semi-lattice D, over a hyper-modulated
signature S. Suppose pi is an element of D. Then we know for
every such pi there is an epi-modulus j, such thatp<p .’

Sounds impressive...but

Sends readers to sleep, and/or makes
them feel stupid

Prese nting * Explain it as if you were speaking to
the idea

someone using a whiteboard.

. , ot
secondary.

* Once your reader has the intuition, she can
follow the details (but not vice versa).

* Even if she skips the details, she still takes
away something valuable.

Conveying
the intuition

Introduce the problem, and your
idea, using EXAMPLES and only then
present the general case.

 Remember: explain it as if you were
speaking to someone using a whiteboard

Using
examples

The Simon PJ question:

is there any typewriter
font?

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrup your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add .
the sizes of the children, and add 1 for the node itself”. Here is the Exam ple rlght
entire code for gsize:

away

gsize :: Data a => a -> Iat

gsize t = 1 + sum (gmapQ gsize t)
The type for gsize says that it works over any type a, provided a
is a data type — that is, that it is an instance of the class Datal
The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:

class Typeable a => Data a where

...other methods of class Data...
gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

Putting the . recapitulate your personal

. journey of discovery. This route may be
reader first soaked with your blood, but that is not

interesting to the reader.

* Instead, choose the most direct route
to the idea.

O. Listen to your readers

Getting he|p » Experts are good.
* Non-experts are also very good.

* Each reader can only read your paper
for the first time once! So use them

carefully.

* Explain carefully what you want (“l got
lost here” is much more important than
“Jarva is mis-spelt”.)

Get your paper read by as many friendly

colleagues as possible

Getting * A good plan: when you think you are
done, send the draft to the competition
expe It help saying “could you help me ensure that |

describe your work fairly?”.

» Often they will respond with helpful
critique (they are interested in the area)

* They are likely to be your referees
anyway, so getting their comments or
criticism up front is good.

Listening Treat every review like gold dust

to your Be (truly) grateful for criticism as
reviewers well as praise

This is hard

But it’s

Important

Listening
to your
reviewers

Read every criticism as a positive
suggestion for something you could
explain more clearly.

DO NOT respond “

INSTEAD: fix the paper so that X is
apparent even to the stupidest reader.

Thank them warmly. They have given up
their time for you.

Don’t wait: write
Identify your key idea

Summary

Tell a story

Nail your contributions

Related work: later

Put your readers first (examples)

N o un kR WwbhRe

Listen to your readers

More: www.microsoft.com/research/people/simonpj

10. Language and Style

Basic stuff

Submit by the deadline

Keep to the length restrictions

* Do not narrow the margins
* Do not ...

* On occasion, supply supporting evidence (e.g.
experimental data, or a written-out proof) in an

appendix
Always use a spell checker

Visual ¢ Give strong visual structure to your paper
using
Stru Ctu re e sections and sub-sections

* bullets
e jtalics
* |aid-out code

* Find out how to draw pictures, and use them

Visual
structure

Info pointer
] Payload

Info table
—> ®——» Entrycode

Object type
Layout info

Type-specific
fields

Figure 3. A heap object

The thiee cases above do not exhaust the possible forms of f. 1t
might also be a THUNK, but we have alicady dealt with that case
(rule THUNK). 1t might be a CON, in which case there cannot be any
pending arguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The last bleck of Figure 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of a FUN applied to some atguments:

e 1f there ate exactly the right number of arguments, we behave
exactly like rule KNOWNCALL, by tail<alling the function.
Rule EXACT s stil | necessary — and indeed has a direct coun-
terpatt in the implementation — because the function might
not be statically known.

e 1f there are too many atguments, rule CALLK pushes a call

remainder of the object is called the puyload, and may consist of
a mixture of pointers and non-pointers. For example, the object
CON(C ay...an) would be represented by an object whose info
pointer represented the constructor C and whose payload is the ar-
guments «| ...dp.

The info table contains:

e Exccutable code for the object. For example, a FUN object
has code for the function body.

e An object-type field, which distinguishes the various kinds of
objects (FUN, PAP,CON cic) from each other.

e Llayout information for garbage collection putposes, which
describes the size and layout of the payload. By “layout™ we
mean which fields contain pointets and which contain non-
pointers, information that is essential for accutate garbage col-
lection.

e Type-specific information, which varies depending on the ob-
ject type. For example, a FUN object contains its anty; a
CON object contains its constructor tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fixed by its info
table; instead, its size is stored in the object itself. The layout of its
fields (e.g. which are pointers) is described by the (initial segment
of) an atgument-descriptor field in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size thatis statically fixed by their info table.

A very common opetation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in
Figure 3. GHC places the info table at the addresses immediately

Use the
active voice

The passive voice is
“respectable” but it
deadens your paper.
Avoid it at all costs.

It can be seen that...

34 tests were run

These properties were thought
desirable

It might be thought that this would
be a type error

We can see that...
We ran 34 tests
We wanted to retain these properties

You might think this would be a type
error

Use simple,
direct
language

The object under study was
displaced horizontally

On an annual basis
Endeavour to ascertain
It could be considered that the

speed of storage reclamation left
something to be desired

The ball moved sideways

Yearly
Find out

The garbage collector was really slow

What do

program
committees
look for?

If you claim to improve on prior art, compare your
result objectively to the prior art.

If you used an analysis technique, follow the rules of
that analysis technique.

If you offer practical experience as evidence for your
result, establish the effect your research has. If at all
possible, compare similar situations with and
without your result.

If you performed a controlled experiment, explain
the experimental design. What is the hypothesis?
What is the treatment? What is being controlled?

If you performed an empirical study, explain what
you measured, how you analyzed it, and what you
concluded.

